JPS6119935B2 - - Google Patents

Info

Publication number
JPS6119935B2
JPS6119935B2 JP15933979A JP15933979A JPS6119935B2 JP S6119935 B2 JPS6119935 B2 JP S6119935B2 JP 15933979 A JP15933979 A JP 15933979A JP 15933979 A JP15933979 A JP 15933979A JP S6119935 B2 JPS6119935 B2 JP S6119935B2
Authority
JP
Japan
Prior art keywords
heat
sample
temperature
heat sink
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15933979A
Other languages
Japanese (ja)
Other versions
JPS5682436A (en
Inventor
Michio Maruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP15933979A priority Critical patent/JPS5682436A/en
Publication of JPS5682436A publication Critical patent/JPS5682436A/en
Publication of JPS6119935B2 publication Critical patent/JPS6119935B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は主として熱エネルギに対する試料の
性質を利用して化学分析する熱分析装置のうち少
量の試料で定量的な分析が行える示差走査熱量計
(Differential Scanning Calorimeter)に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential scanning calorimeter, which is a thermal analysis device that performs chemical analysis using the properties of a sample with respect to thermal energy, and is capable of quantitatively analyzing a small amount of sample. It is.

一般にDSCと呼ばれ微量試料で短時間にその
融解や転移などの温度と熱量が精密に測定でき、
また薬品の純度測定、さらに断熱々量計ほどの精
度はないが比熱の測定が簡便にできる示差走査熱
量計には熱量補償形と熱流形とがあることは衆知
のとおりである。前者は試料容器にヒータと温度
センサを設けた内部加熱方式で、その加熱部の熱
容量が小さく応答の速い発熱反応などを正確に測
定できるものであるが、反面外界との熱遮断が断
熱々量計ほど十分でないものが多く、そのため走
査温度の変化に伴ない試料と基準試料の2個の容
器の熱放散の能率が異なつてくることが原因で両
容器間の熱平衡が破れ試料に熱の出入りを伴う現
象が起きていないにもかかわらずサーモグラムの
実験上の基線(ベースライン)が一方向に徐々に
シフトし、これをその修正しながら測定しなけれ
ばならない欠点がある。また液状試料において容
器内ヒータによる対流発生のため温度分布の均一
性が低下し、測定精度が低いという欠点もある。
後者の熱流形は一般にDTAと呼ばれる示差熱分
析で、温度分布の良好な加熱炉内に試料と基準試
料を並べ、一定速度で加熱する外部加熱方式の
DSCであり、試料と基準試料の両容器間は熱電
対などで熱的に連結させているため熱平衡性が高
くベースラインは安定しているが、熱容量の大き
い加熱炉のため速い反応の測定には追随できず、
また反応熱の大きいばあいは外界との間に熱リー
クが発生するので測定には限界がある。
Generally called DSC, it is possible to precisely measure the temperature and heat amount of melting and transition of a minute sample in a short time.
Furthermore, it is well known that there are two types of differential scanning calorimeters that can easily measure the purity of chemicals and, although not as accurate as an adiabatic meter, measure specific heat: a heat compensation type and a heat flow type. The former is an internal heating method in which the sample container is equipped with a heater and a temperature sensor, and the heating part has a small heat capacity and can accurately measure exothermic reactions with a quick response. As a result, as the scanning temperature changes, the efficiency of heat dissipation between the two containers, the sample and reference sample, becomes different, causing the thermal equilibrium between the two containers to be broken and heat to flow in and out of the sample. The disadvantage is that the experimental baseline of the thermogram gradually shifts in one direction even though no phenomenon accompanied by this has occurred, and measurements must be made while correcting this. Another disadvantage is that in a liquid sample, the uniformity of temperature distribution is reduced due to the generation of convection by the heater inside the container, resulting in low measurement accuracy.
The latter type of heat flow is generally called differential thermal analysis (DTA), which uses an external heating method in which the sample and reference sample are arranged in a heating furnace with good temperature distribution and heated at a constant rate.
It is a DSC, and the sample and reference sample containers are thermally connected using thermocouples, etc., so the thermal equilibrium is high and the baseline is stable, but because the heating furnace has a large heat capacity, it is difficult to measure fast reactions. cannot follow,
Furthermore, if the heat of reaction is large, heat leakage occurs between the reaction and the outside world, so there is a limit to measurement.

この発明は以上の現況に鑑みてなされたもの
で、従来の熱量補償形および熱流形の示差走査熱
量計(以下DSCと記す)の有する欠点を解消す
るについて上記それぞれの長所と併せて断熱々量
計の長所もとり入れた改良によつて試料と基準試
料の両容器間の熱平衡性を向上させ、安定したベ
ースラインによつて応答の速い発熱反応を定速昇
温条件において高精度に測定し、とくに液状試料
の試料内温度分布を均一化してその測定精度を高
めることのできる装置の提供を図るものである。
すなわち試料と基準試料とを断熱囲内の同一環境
において制御走査加熱し、試料と基準試料との熱
容量の差を測定する示差走査熱量計において、前
記断熱囲の外側に熱伝導率の大きい部材にて形成
され、前記試料ならびに基準試料のそれぞれの容
器に比べて十分に大きい熱容量を有する熱だめ部
を設け、これに前記各容器をそれぞれ熱伝導桿に
よつて熱的に連結し、さらにその熱伝導桿に、こ
れを通して容器から前記熱だめ部にリークする熱
量を検出する手段を設けるとともに、その検出値
に基づいて前記熱だめ部の温度を適正値に制御す
る手段を設けたことを特徴とする示差走査熱量計
にかかるものである。
This invention was made in view of the above-mentioned current situation, and aims to eliminate the drawbacks of conventional heat compensation type and heat flow type differential scanning calorimeters (hereinafter referred to as DSC). The improved thermal equilibrium between the sample and reference sample vessels has been improved by incorporating the advantages of the analyzer, and a stable baseline enables highly accurate measurement of exothermic reactions with a quick response under constant temperature rise conditions. In particular, it is an object of the present invention to provide an apparatus that can improve measurement accuracy by making the temperature distribution within a liquid sample uniform.
In other words, in a differential scanning calorimeter that measures the difference in heat capacity between a sample and a reference sample by controlling scanning heating of a sample and a reference sample in the same environment within an insulated enclosure, a member with high thermal conductivity is placed outside the insulated enclosure. A heat sink portion having a heat capacity sufficiently larger than that of each container of the sample and the reference sample is provided, and each of the containers is thermally connected to the heat sink portion by a heat conduction rod, and the heat conduction of the heat sink portion is The rod is provided with means for detecting the amount of heat leaking from the container to the heat sink through the rod, and means for controlling the temperature of the heat sink to an appropriate value based on the detected value. This is related to a differential scanning calorimeter.

以下図面によつてこの発明の実施例装置を説明
する。第1図はその内部構造および装置の構成を
説明するブロツク図で、1は試料でたとえばタン
パク質の水溶液、2は基準試料としての1とほぼ
同等の水、3,4はそれぞれの試料容器で通常ア
ルミニウムの薄板で作られ、後述する容器保持桿
5,6にて支承されている。H1,H2はそれぞれ
の試料容器3,4内に挿入された白金製ヒータ
で、これは測温抵抗対を兼ねたもので、たとえば
1/50〜1/60secの間測温し、つぎの1/50〜1/60sec
の間ヒータとして働くように炉外に設けた7のブ
ロツクすなわち温度検出および差動電力補償回路
が制御する。しかし上記加熱方法および温度検出
方法は上記のものに限定されず、たとえば約10μ
mの薄形ヒータを加熱に用い、サーモパイルで1
と2の温度差の検出、さらに熱電対で試料2の温
度検出をするという方法も用いる。これらは熱量
補償感度を上げ、かつ加熱の応答を速める工夫で
ありこれは従来のDSCとほぼ同様のものである
が、この発明の装置でとくに留意して作られてい
るのは上記一対の試料容器3,4をその内部空間
に対称的に収容したブロツク8をつぎに述べるい
くつかの構成によつて1/1000〜1/100℃位の断熱
制御ができる断熱囲(断熱ブロツク)とした点で
ある。すなわち8のブロツクはたとえば耐食性に
富むモネル・メタルで作り、その内部に設けた加
熱ヒータH3はブロツク8全体を均一に加熱する
ようにしてあり、断熱制御用熱電対9は熱容量が
小さく、伝導による熱損失を極力抑えるよう細い
碍子を用いるなどしてある。ブロツク8の外側は
熱の反射率の大きい金属部材で作つた熱シールド
10が2〜3重(図は簡単のため1重)に設け、
そのシールド間に熱伝導率の小さい空気11を充
填し、さらに12で示すような対流防止用シール
ドを設けている。13はたとえばガラスフアイバ
ーなどの断熱材で作られた炉壁である。以上のよ
うな構成によつて外界温度が試料1および基準試
料2におよぼす影響を最少限に抑えている。上記
加熱ヒータH3は断熱制御器14、プログラマ1
5および7のブロツクの一連の制御系によつて断
熱ブロツク8の温度Tcを基準試料2の温度T2
上記した1/1000〜1/100℃の差以内に断熱制御す
る。試料1の温度T1は前述のヒータH1で加熱さ
れ、試料1が反応を起すまでは理想的には上記
T2と同一温度でプログラムによつてたとえば一
定速度で昇温するものである。このT1,T2が全
く等しければベースラインが安定し、問題がない
のであるが、前述の断熱ブロツクの構成によつて
もなお外界に接続される熱電対リードの温度勾配
やヒータと試料などの接触の差など各種の原因に
よつてT1,T2からの熱損失量が異なり(T1
T2)の熱平衡性が悪くなる。これが従来のDSCの
ベースライン不安定の主因であつたが、この発明
は図に示すように一対の試料容器3,4を5,6
の保持桿によつて断熱ブロツク(8)を貫通して13
の炉壁に設けた熱だめ21の保持桿固定部22に
熱的(機械的も含め)に連結した点が従来のもの
と異なりこの発明の要件である。すなわち保持桿
5,6はたとえばステンレス鋼の細管で作られ、
これを支承する保持桿固定部22はその対称性を
良くするため銀または銅で、熱だめ部の主体21
は銅というようにそれぞれ熱伝導率の大きい金属
で作つてある。H4は熱だめ部21の温度Toを上
記(T1=T2=Ts)より一定の温度だけ低い温度
に常に加熱制御するヒータであり、このヒータ
H4は熱だめ温度To制御器24ならびに15のプ
ログラマ、7の温度検出部の一連の制御系でコン
トロールされる。この構成によつて式料1と基準
試料2とのそれぞれの温度T1,T2は保持桿5,
6の熱リークQ1,Q2を矢印方向に生じ従来装置
での両容器の熱放散の差を打消してToに対し一
定の温度差に収まるという試料1と基準物質2の
熱平衡を得、測定のベースラインを安定化させる
ものであり、前述した熱流式DSCにおいて加熱
炉内の大きい熱容量によつて試料と基準物質間の
熱平衡が安定している長所に匹敵するものとなつ
ている。25,26は上記Q1,Q2の熱リークを
定量的に検出する熱流計で、すなわち単位距離間
での温度差を時間の函数として測定し、リークの
熱流値を測定するものであり、その検出値から熱
だめ温度Toの適正値(試料の発熱反応の大きさ
に対応する値)を求め24の制御器で設定変更す
るものである。以上がこの発明の実施例装置の構
成であり、つぎにこの装置の作用について述べ
る。今基準物質2側のヒータH2にブロツク7か
ら一定の電力Wを供給するとこれと上記熱リーク
Q2との差および2の熱容量によつて定まる速度
で昇温する。この基準試料2の温度T2と試料1
のT0の差ΔTが7のブロツクで検出され、これ
が常にゼロになるようにH1のヒータを制御する
ので試料1も同じ速度で昇温する。一方断熱ブロ
ツク8の温度Tcもまた上記T2との差をほとんど
ゼロにするように14のブロツクがH3を制御す
るため理想的には外界への熱損失は容器保持桿
5,6を通るQ1,Q2だけとなる。Q1,Q2は(T1
=T2)と熱だめ温度Toの差および保持桿の熱伝導
率で定まるものであり、(T1=T2)とToの差はH4
のヒータで常に一定の値に保つことができる。つ
ぎに昇温が進んで試料1に吸熱または発熱反応が
生じたときの作用を第2図で説明する。図
は時間tに対し一定の勾配で昇温する温度プロ
グラムを示し、Tsは(T1=T2)である。図は
試料1に供給されるヒータH1の電力WH1の変化
を示すもので横軸は上記図のtとそれによつて
昇温したした温度T1である。試料が吸熱したば
あいヒータH1にはそれに応じた余分の電力(+
ΔW)が第1図のブロツク7から供給され(T1
=T2=Ts)の条件が保たれる。つぎに発熱反応
のときはヒータH1からそれに応じた(−Δ
W)′の電力が同じくブロツク7で削減され(T1
=T2=Ts)の平衡条件が保たれるのである。図
は基準試料2のヒータH2の供給電力WH2が常
に一定であることを示す図で、ブロツク7の内部
の増幅器で(WH1―WH2)の電力差を増幅し、ブ
ロツク15内の記録計に上記電力値をエネルギー
単位(たとえばmJ/s)に換算して記録するよう
にしてある。図の(H1―H1″)の直線と図の
(H2′―H2″)の直線が常に合致していることがベ
ースラインの安定を示すものである。このプログ
ラム温度が低く断熱制御精度が低下する領域にお
いても第1図の25,26の熱流計の読みによつ
てQ1,Q2の量が補正できるので測定精度は低下
しない。また図示しないが上記25,26の出力
Q1,Q2の差を増幅する回路を設け、これを(T1
=T2=Tc)の平衡制御ならびに上記とToの差の
制御に用いることも可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained below with reference to the drawings. Figure 1 is a block diagram explaining the internal structure and configuration of the device. 1 is a sample, such as an aqueous solution of protein, 2 is water almost equivalent to 1 as a reference sample, and 3 and 4 are each sample container. It is made of a thin aluminum plate and supported by container holding rods 5 and 6, which will be described later. H 1 and H 2 are platinum heaters inserted into the respective sample containers 3 and 4, which also serve as temperature measuring resistance pairs, for example.
Measure the temperature between 1/50 and 1/60 seconds, then take the temperature for the next 1/50 and 1/60 seconds.
During this period, a block 7 installed outside the furnace, ie, a temperature detection and differential power compensation circuit, acts as a heater. However, the above-mentioned heating method and temperature detection method are not limited to those mentioned above, and for example, about 10μ
A thin heater of m is used for heating, and a thermopile is used for heating.
A method is also used in which the temperature difference between sample 2 and sample 2 is detected, and the temperature of sample 2 is also detected using a thermocouple. These devices are designed to increase the heat compensation sensitivity and speed up the heating response, and are almost the same as conventional DSC, but the device of this invention is designed with particular attention to the above pair of samples. The block 8, in which the containers 3 and 4 are housed symmetrically in its internal space, is made into an adiabatic enclosure (insulation block) that can control heat insulation to about 1/1000 to 1/100 degrees Celsius by using several configurations described below. It is. In other words, the block 8 is made of, for example, Monel metal, which is highly corrosion resistant, and the heater H3 installed inside it is designed to uniformly heat the entire block 8, and the thermocouple 9 for heat insulation control has a small heat capacity and is conductive. Thin insulators are used to minimize heat loss. On the outside of the block 8, two to three heat shields 10 (the figure shows one layer for simplicity) made of a metal member with high heat reflectivity are provided.
Air 11 having low thermal conductivity is filled between the shields, and a convection prevention shield as shown at 12 is further provided. 13 is a furnace wall made of a heat insulating material such as glass fiber. With the above configuration, the influence of external temperature on sample 1 and reference sample 2 is minimized. The heater H 3 is a heat insulation controller 14 and a programmer 1.
A series of control systems including blocks 5 and 7 adiabatically control the temperature Tc of the adiabatic block 8 to within the difference between the temperature T2 of the reference sample 2 and the above-mentioned 1/1000 to 1/100°C. The temperature T 1 of sample 1 is heated by the heater H 1 mentioned above, and ideally the temperature T 1 is the same as above until sample 1 starts to react.
The temperature is raised at a constant rate according to a program at the same temperature as T 2 . If T 1 and T 2 are exactly equal, the baseline will be stable and there will be no problem. However, even with the above-mentioned insulating block configuration, the temperature gradient of the thermocouple lead connected to the outside world, the heater, the sample, etc. The amount of heat loss from T 1 and T 2 differs due to various causes such as the difference in contact between the two (T 1 =
T 2 ) thermal equilibrium deteriorates. This was the main cause of baseline instability in conventional DSC, but in this invention, as shown in the figure, the pair of sample containers 3 and 4 are
13 through the insulation block (8) by the retaining rod.
The present invention differs from conventional ones in that it is thermally (including mechanically) connected to the holding rod fixing portion 22 of the heat sink 21 provided on the furnace wall. That is, the holding rods 5 and 6 are made of, for example, stainless steel thin tubes,
The holding rod fixing part 22 that supports this is made of silver or copper to improve its symmetry, and the main body 22 of the heat sink part
are made of metals with high thermal conductivity, such as copper. H 4 is a heater that always controls the temperature To of the heat sink 21 to be lower than the above (T 1 = T 2 = T s ) by a certain temperature;
H 4 is controlled by a series of control systems including a heat sink temperature To controller 24, a programmer 15, and a temperature detector 7. With this configuration, the respective temperatures T 1 and T 2 of the ceremony material 1 and the reference sample 2 are controlled by the holding rod 5,
Heat leaks Q 1 and Q 2 of 6 are generated in the direction of the arrow, canceling out the difference in heat dissipation between both containers in the conventional device, and achieving thermal equilibrium between sample 1 and reference material 2 in which the temperature difference is kept at a constant value with respect to To. This stabilizes the measurement baseline, and is comparable to the advantage of the heat flow DSC described above, in which the thermal balance between the sample and the reference material is stable due to the large heat capacity in the heating furnace. 25 and 26 are heat flow meters that quantitatively detect the heat leaks of Q 1 and Q 2 mentioned above, that is, they measure the temperature difference between unit distance as a function of time and measure the heat flow value of the leak, An appropriate value for the heat reservoir temperature To (a value corresponding to the magnitude of the exothermic reaction of the sample) is determined from the detected value, and the setting is changed using the controller 24. The above is the configuration of the apparatus according to the embodiment of the present invention, and the operation of this apparatus will now be described. Now, if a constant power W is supplied from block 7 to heater H2 on the reference material 2 side, this and the above heat leakage will occur.
The temperature increases at a rate determined by the difference between Q and 2 and the heat capacity of 2. This temperature T 2 of reference sample 2 and sample 1
The difference ΔT between T 0 is detected in block 7, and the heater of H 1 is controlled so that this value is always zero, so sample 1 is also heated at the same rate. On the other hand, since block 14 controls H 3 so that the temperature Tc of insulation block 8 also has almost zero difference from T 2 above, ideally heat loss to the outside world passes through container holding rods 5 and 6. Only Q 1 and Q 2 are left. Q 1 and Q 2 are (T 1
It is determined by the difference between (T 2 ) and the heat sink temperature To and the thermal conductivity of the holding rod, and the difference between (T 1 = T 2 ) and To is H 4
It can always be kept at a constant value using a heater. Next, the effect when the temperature increases and an endothermic or exothermic reaction occurs in sample 1 will be explained with reference to FIG. The figure shows a temperature program in which the temperature is increased at a constant gradient with respect to time t, and Ts is (T 1 =T 2 ). The figure shows the change in the electric power W H1 of the heater H1 supplied to the sample 1 , and the horizontal axis is t in the above figure and the temperature T1 raised thereby. If the sample absorbs heat, heater H1 will receive a corresponding amount of extra power (+
ΔW) is supplied from block 7 in FIG .
=T 2 =T s ) is maintained. Next, when there is an exothermic reaction, the heater H1 responds accordingly (−Δ
The power of W)′ is also reduced in block 7 (T 1
= T 2 = T s ) is maintained. The figure shows that the power W H2 supplied to the heater H2 of the reference sample 2 is always constant; the amplifier inside block 7 amplifies the power difference (W H1 - W H2 ), and The above power value is converted into an energy unit (for example, mJ/s) and recorded on a recorder. The fact that the straight line (H 1 - H 1 ″) in the figure always matches the straight line (H 2 ′ - H 2 ″) in the figure indicates that the baseline is stable. Even in this region where the programmed temperature is low and the adiabatic control accuracy decreases, the measurement accuracy does not decrease because the quantities Q 1 and Q 2 can be corrected based on the readings of the heat flow meters 25 and 26 in FIG. Also, although not shown, the outputs of 25 and 26 above
A circuit is provided to amplify the difference between Q 1 and Q 2 , and this is converted to (T 1
=T 2 =Tc) and can also be used to control the difference between the above and To.

以上がこの発明の実施例装置の第1図による構
成と作用の説明であるが、この発明は必ずしも第
1図のものに限定されるものではなく、たとえば
この発明の装置はふんい気中の測定もできること
はいうまでもない。
The above is an explanation of the configuration and operation of the embodiment device of this invention according to FIG. 1, but this invention is not necessarily limited to that shown in FIG. 1. For example, the device of this invention can be Needless to say, it can also be measured.

この発明は以上のように構成されているので従
来の示差走査熱量計の熱量補償形および熱流形の
欠点を解消し、断熱方式によつて熱損失を極めて
少なくするとともに一方向にだけ既知の熱リーク
量の通路を設け、大きい熱容量を有する熱だめに
よつて試料と基準試料の熱平衡性を高めベースラ
インの安定化を図つたもので、応答の速い発熱反
応を定速昇温条件で高精度に測定でき、とくに液
状試料の測定において、上記一方向熱リークが試
料容器内での対流の発生を防ぐことにより良好な
温度分布となり、測定精度の向上が図れる便宜な
装置を提供しえたものである。
Since this invention is constructed as described above, it eliminates the drawbacks of conventional differential scanning calorimeters, such as the heat compensation type and the heat flow type. A passage for leakage is provided and a heat sink with a large heat capacity improves the thermal equilibrium between the sample and the reference sample and stabilizes the baseline, allowing for fast-responsive exothermic reactions to be performed with high accuracy under constant temperature rise conditions. The present invention has provided a convenient device that can improve measurement accuracy by preventing convection from occurring in the sample container due to the one-way heat leak, which improves measurement accuracy, especially when measuring liquid samples. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である示差走査熱量
計の構成を示すブロツク図、第2図はこの装置
の定速昇温プログラムを示す図、図は上記昇温
条件での試料の吸熱および発熱反応時のヒータへ
の供給電力の変化を示す図、図は基準物質の同
じくヒータ供給電力を示す図である。 1……試料、2……基準試料、3……試料容
器、4……基準試料容器、H1・H2……試料およ
び基準試料加熱ヒータ兼温度センサ、5,6……
熱伝導桿(容器保持を兼ねるもの)、8……断熱
囲、H3……断熱囲加熱ヒータ、9……断熱制御
用熱電対、10……断熱シールド、11……空気
層、12……対流防止シールド、13……加熱炉
外壁、21……熱だめ部、22……保持桿固定部
(熱だめの一部)、23……熱だめ温度制御用熱電
対、H4……熱だめ部加熱ヒータ、25,26…
…熱リーク量検出用熱流計。
Fig. 1 is a block diagram showing the configuration of a differential scanning calorimeter which is an embodiment of the present invention, Fig. 2 is a diagram showing a constant rate temperature increase program of this device, and the figure shows the endotherm and heat absorption of the sample under the above heating conditions. A diagram showing changes in the power supplied to the heater during an exothermic reaction, and a diagram showing the power supplied to the heater for the reference substance. 1...Sample, 2...Reference sample, 3...Sample container, 4...Reference sample container, H1 / H2 ...Sample and reference sample heater/temperature sensor, 5, 6...
Heat conduction rod (also serves as container holding), 8...Insulated enclosure, H3 ...Insulated enclosure heater, 9...Thermocouple for heat insulation control, 10...Insulation shield, 11...Air layer, 12... Convection prevention shield, 13... Heating furnace outer wall, 21... Heat sink part, 22... Holding rod fixing part (part of heat sink), 23... Thermocouple for controlling heat sink temperature, H 4 ... Heat sink Part heating heater, 25, 26...
...Heat flow meter for detecting heat leakage.

Claims (1)

【特許請求の範囲】[Claims] 1 試料と基準試料とを断熱囲内の同一環境にお
いて制御走査加熱し、試料と基準試料との熱容量
の差を測定する示差走査熱量計において、前記断
熱囲の外側に熱伝導率の大きい部材にて形成さ
れ、前記試料ならびに基準試料のそれぞれの容器
に比べて十分に大きい熱容量を有する熱だめ部を
設け、これに前記各容器をそれぞれ熱伝導桿によ
つて熱的に連結し、さらにその熱伝導桿に、これ
を通して容器から前記熱だめ部にリークする熱量
を検出する手段を設けるとともに、その検出値に
基づいて前記熱だめ部の温度を適正値に制御する
手段を設けたことを特徴とする示差走査熱量計。
1. In a differential scanning calorimeter that measures the difference in heat capacity between a sample and a reference sample by controlling scanning heating of a sample and a reference sample in the same environment within an insulated enclosure, a member with high thermal conductivity is placed outside the insulated enclosure. A heat sink portion having a heat capacity sufficiently larger than that of each container of the sample and the reference sample is provided, and each of the containers is thermally connected to the heat sink portion by a heat conduction rod, and the heat conduction of the heat sink portion is The rod is provided with means for detecting the amount of heat leaking from the container to the heat sink through the rod, and means for controlling the temperature of the heat sink to an appropriate value based on the detected value. Differential scanning calorimeter.
JP15933979A 1979-12-08 1979-12-08 Differential scanning calorimeter Granted JPS5682436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15933979A JPS5682436A (en) 1979-12-08 1979-12-08 Differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15933979A JPS5682436A (en) 1979-12-08 1979-12-08 Differential scanning calorimeter

Publications (2)

Publication Number Publication Date
JPS5682436A JPS5682436A (en) 1981-07-06
JPS6119935B2 true JPS6119935B2 (en) 1986-05-20

Family

ID=15691665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15933979A Granted JPS5682436A (en) 1979-12-08 1979-12-08 Differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JPS5682436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141047A (en) * 1983-01-31 1984-08-13 Shimadzu Corp Differential scanning calorimeter
JPS6050443A (en) * 1983-08-31 1985-03-20 Shinku Riko Kk Temperature controlling apparatus for thermal analysis
FR2570825B1 (en) * 1984-09-26 1987-02-06 Commissariat Energie Atomique THERMAL MEASUREMENT APPARATUS FOR THE TEXTURE OF A POROUS BODY
JPH0623702B2 (en) * 1987-05-26 1994-03-30 北海道 Moisture content sensor using load transducer for drying wood
US5108191A (en) * 1990-09-12 1992-04-28 Industrial Technology Research Institute Method and apparatus for determining Curie temperatures of ferromagnetic materials
JP2003014674A (en) * 2001-07-03 2003-01-15 Sumitomo Chem Co Ltd Method for controlling calorimeter installing atmosphere
JP4611154B2 (en) * 2005-09-01 2011-01-12 エスアイアイ・ナノテクノロジー株式会社 Heat flux type differential scanning calorimeter
WO2011130785A1 (en) * 2010-04-20 2011-10-27 Corbett Research Pty Ltd Temperature control method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container

Also Published As

Publication number Publication date
JPS5682436A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
US5141331A (en) Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry
US4170455A (en) Gas monitoring method and apparatus therefor
JP2008530560A (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
Christensen et al. An isothermal titration calorimeter
US3767469A (en) In-situ oxygen detector
US3871981A (en) In-situ oxygen detector
JPS6119935B2 (en)
Orr et al. Liquid Tin Solution Calorimeter for Measuring Heats of Formation of Alloys
US3266307A (en) Adiabatic calorimeter
JPH03225268A (en) Direct heating type calorimetric instrument
CN104792821B (en) Miniature calorimeter
NITTA et al. On the Phase Transition in Pentaerythritol (II)
US3527081A (en) Differential scanning calorimeter
Darby Jr et al. Twin liquid metal solution calorimeter
Sherratt et al. VI. A hot wire method for the thermal conductivities of gases
Gordon Isothermal jacket microcalorimeter for heat effects of long duration
WO1994006000A1 (en) Differential scanning calorimeter
JP2949314B2 (en) Calorimeter and method
US3453864A (en) Test cell for thermal analysis
RU2727342C1 (en) Adiabatic calorimeter
Westrum Jr High Temperature adiabatic calorimetry
JP2002156345A (en) Specific heat measuring instrument and method
JPH0525304B2 (en)
Kotoyori et al. An adiabatic self-ignition testing apparatus
Crovini et al. Apparatus for accurate determination of melting and freezing points