JPH0525304B2 - - Google Patents

Info

Publication number
JPH0525304B2
JPH0525304B2 JP61307486A JP30748686A JPH0525304B2 JP H0525304 B2 JPH0525304 B2 JP H0525304B2 JP 61307486 A JP61307486 A JP 61307486A JP 30748686 A JP30748686 A JP 30748686A JP H0525304 B2 JPH0525304 B2 JP H0525304B2
Authority
JP
Japan
Prior art keywords
sample
temperature
shield member
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61307486A
Other languages
Japanese (ja)
Other versions
JPS63159740A (en
Inventor
Hideaki Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30748686A priority Critical patent/JPS63159740A/en
Publication of JPS63159740A publication Critical patent/JPS63159740A/en
Publication of JPH0525304B2 publication Critical patent/JPH0525304B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、レーザフラツシユ法熱定数測定装置
に係り、特に、鉄鋼業、金属工業、化学工業、原
子力工業、船空宇宙工業、セラミツク材料工業、
磁性材料工業、セメント工業などにおいて、高温
における試料の熱容量、熱拡散率及び熱伝導率な
どの熱定数を検出する際用いるのに好適な、レー
ザフラツシユ法熱定数測定装置の改良に関する。
The present invention relates to a laser flash method thermal constant measuring device, and is particularly applicable to the steel industry, the metal industry, the chemical industry, the nuclear industry, the aerospace industry, the ceramic material industry,
This invention relates to improvements in a laser flash method thermal constant measuring device suitable for use in detecting thermal constants such as heat capacity, thermal diffusivity, and thermal conductivity of samples at high temperatures in the magnetic materials industry, cement industry, etc.

【従来の技術】[Conventional technology]

近年、広い温度幅に亘つて正確、精密に試料の
熱定数を測定する技術について関心が寄せられて
いる。この熱定数を測定する技術に関し、電子工
学及び光学の分野で種々の技術が提案されてお
り、その一つにレーザフラツシユ法による熱定数
測定技術がある。この技術が採用された熱定数測
定装置には、例えば第7図に示すものがあり、図
に示す熱定数測定装置は、J.Nucl.Sci.Technol.
の第12巻(1975)に高橋、村林が示したものであ
る。 即ち、図の熱定数測定装置には、主に、断熱的
に保持される試料10と、該試料10に照射され
るレーザ光12を発生するたもめルビーレーザヘ
ツド14及び該ルビーレーザヘツド14にレーザ
光を発振させるためのレーザ発振器16と、前記
試料10を一定温度に保つための、ヒータ18及
び該ヒータへの電流を調整して温度を制御する温
度調節器20と、前記試料10及びヒータ18を
内包して内部が真空とされる真空容器22と、前
記試料10へ入射される前記レーザ光12のエネ
ルギーを検出するための、前記レーザ光12の光
量を電気量として検出するための光電子素子を有
するフオトセル24及び該電気量の電力を検出す
る積分電力計26と、前記試料10の温度を検出
するための、前記試料10の温度を電気信号に変
換する熱電対28と、該熱電対28の出力信号を
増幅する増幅器30及び該増幅器30の出力信号
を記憶、出力するためのトランジエントメモリ3
2とを備えたものがある。 前記試料10には、通常円盤状とされた試料
(例えば直径8〜10mm、厚さ1〜3mm程度)が用
いられる。第8図に、熱容量を測定する場合の前
記試料10近傍の拡大図を示す。図において、試
料10の裏側には熱電対28が張付けられ(金属
試料の場合は溶接により、非金属試料の場合は白
金ペースト等を用いる)、前記熱電対28の起電
力により試料10の温度変化を検出する。レーザ
ヘツド14から照射されたレーザ光12の一部は
反射鏡34を透過して試料10に照射(照射時間
1ミリ秒以内)され、該反射鏡34で反射される
他の一部はレーザ光12の照射エネルギー測定の
ため、前記フオトセル24で受光し積分電力計2
6で該照射エネルギーを電力値として計測する。
なお、図中、35はレーザ光12を絞るためのス
リツト、36は試料10を支持するための石英ピ
ン、38は同じく支持台、40は熱電対28のリ
ード線、42は試料10にレーザ光12のエネル
ギーが良好に吸収されるようにするための吸熱板
である。 以上のような構成の熱定数測定装置で、試料1
0の熱拡散率α(cm2S-1)を得る場合は、42の吸
熱板を取り除いて試料10の温度上昇幅の半分に
なる時間t1/2(S)を測定する。即ち、試料の
厚さをL(cm)とすれば、前記熱拡散率αは次式
(1)で与えられる。 α=1.37・L2/(π2t1/2) ……(1) 又、前記試料10の熱容量を測定する場合に
は、照射されたレーザ光12のエネルギーが全て
試料10に吸収されることを意図して、吸熱板4
2、例えばレーザ光の吸収率が1に近いグラツシ
カーボンを試料10に接着する。このようにすれ
ば、レーザ光12のエネルギーが漏れなく試料1
0に吸収される。試料10の比熱容量CP(JK-1
-1)は、該試料10に吸収されたレーザ光のエネ
ルギーをE(J)、試料10の質量をm(g)、接着
剤を含むグラツシカーボンの熱容量をC(JK-1)、
及び熱電対28で検出された温度上昇幅をΔTと
すれば、次式(2)で与えられる。 CP=(1/m)・{(E/ΔT)−C} ……(2) 更に、試料10の熱伝導率K(Wcm-1K-1)は、
該試料10の密度をρ(gcm-3)として次式(3)が
与えられる。 K=α・CP・ρ ……(3)
In recent years, there has been interest in technology for accurately and precisely measuring the thermal constant of a sample over a wide temperature range. Regarding techniques for measuring this thermal constant, various techniques have been proposed in the fields of electronics and optics, one of which is a thermal constant measuring technique using a laser flash method. For example, there is a thermal constant measuring device that employs this technology, as shown in Figure 7. The thermal constant measuring device shown in the figure is from J.Nucl.Sci.Technol.
This was shown by Takahashi and Murabayashi in Volume 12 (1975). That is, the thermal constant measuring apparatus shown in the figure mainly includes a sample 10 that is held adiabatically, a ruby laser head 14 that generates the laser beam 12 that is irradiated onto the sample 10, and a ruby laser head 14 that is connected to the ruby laser head 14. A laser oscillator 16 for oscillating laser light, a heater 18 for keeping the sample 10 at a constant temperature, a temperature controller 20 for controlling the temperature by adjusting the current to the heater, and the sample 10 and the heater. 18 and a vacuum container 22 whose interior is evacuated; and a photoelectron for detecting the energy of the laser beam 12 incident on the sample 10 and for detecting the amount of light of the laser beam 12 as an electric quantity. A photocell 24 having an element, an integral wattmeter 26 for detecting the electric power of the electric quantity, a thermocouple 28 for converting the temperature of the sample 10 into an electrical signal for detecting the temperature of the sample 10, and the thermocouple. an amplifier 30 for amplifying the output signal of 28; and a transient memory 3 for storing and outputting the output signal of the amplifier 30.
There is one that has 2. As the sample 10, a disk-shaped sample (for example, about 8 to 10 mm in diameter and about 1 to 3 mm in thickness) is used. FIG. 8 shows an enlarged view of the vicinity of the sample 10 when measuring heat capacity. In the figure, a thermocouple 28 is attached to the back side of the sample 10 (by welding in the case of a metal sample, using platinum paste etc. in the case of a non-metal sample), and the temperature of the sample 10 changes due to the electromotive force of the thermocouple 28. Detect. A part of the laser beam 12 irradiated from the laser head 14 passes through the reflecting mirror 34 and is irradiated onto the sample 10 (within 1 millisecond of irradiation time), and the other part reflected by the reflecting mirror 34 is reflected by the laser beam 12. In order to measure the irradiation energy, the photocell 24 receives the light and the integral power meter 2
In step 6, the irradiation energy is measured as a power value.
In the figure, 35 is a slit for focusing the laser beam 12, 36 is a quartz pin for supporting the sample 10, 38 is also a support base, 40 is a lead wire of the thermocouple 28, and 42 is a slit for attaching the laser beam to the sample 10. This is a heat absorbing plate for ensuring that the energy of 12 is absorbed well. With the thermal constant measuring device configured as above, sample 1
In order to obtain a thermal diffusivity α (cm 2 S -1 ) of 0, remove the heat absorbing plate 42 and measure the time t1/2 (S) at which the temperature rise of the sample 10 is half. That is, if the thickness of the sample is L (cm), the thermal diffusivity α is calculated by the following formula:
It is given by (1). α=1.37・L 2 /(π 2 t1/2) ...(1) Also, when measuring the heat capacity of the sample 10, all the energy of the irradiated laser beam 12 is absorbed by the sample 10. With the intention of
2. For example, glassy carbon whose laser light absorption rate is close to 1 is adhered to the sample 10. In this way, the energy of the laser beam 12 is not leaked and the sample 1 is
Absorbed by 0. Specific heat capacity C P (JK -1 g
-1 ) is the energy of the laser light absorbed by the sample 10, E (J), the mass of the sample 10, m (g), the heat capacity of the glassy carbon including adhesive, C (JK -1 ),
If ΔT is the temperature rise range detected by the thermocouple 28, it is given by the following equation (2). C P = (1/m)・{(E/ΔT)−C} ...(2) Furthermore, the thermal conductivity K (Wcm -1 K -1 ) of sample 10 is:
The following equation (3) is given by setting the density of the sample 10 to ρ (gcm -3 ). K=α・CP・ρ……(3)

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところで、上記従来の熱定数装置においては、
試料10の表面にレーザ光12が照射された場
合、試料10の温度が周囲温度(通常は電気炉の
内壁温度)より高くなつてしまい、熱の伝導、対
流、輻射の現象により試料10から周囲に熱が漏
れてしまう。特に高温の場合においては、試料1
0と周囲との温度差が一定とした場合、輻射によ
る熱の漏れが温度Tの3乗に比して増加すること
から、大量な熱漏れが生じ、該熱漏れが測定誤差
の最大要因となる。このため、レーザフラツシユ
法による熱容量測定には、その高温側に前記熱漏
れで決まる測定限界がある。 上記の輻射熱損等の熱漏れによる誤差を補正す
る方法として、試料にレーザ光が照射され温度が
急激に上昇した後、該試料から周囲への熱漏れに
より温度が徐々に低下するのを防止するため、レ
ーザ光を照射した直後の時期に前記試料10を外
挿する方法がある。(1979年11月発行のJ.Chem.
Thermodynamicsに高橋洋一らが記述)。しかし
ながら、上記方法においても、熱漏れによる測定
誤差が大きくなり、1100K程度が測定限界とな
る。 又熱拡散率測定においても、公称で3000K程度
まで測定できるとされているが、高温においては
熱漏れが原因となり測定値の信頼性が著しく劣つ
たものとなつてしまう。
By the way, in the above conventional thermal constant device,
When the surface of the sample 10 is irradiated with the laser beam 12, the temperature of the sample 10 becomes higher than the ambient temperature (usually the temperature of the inner wall of an electric furnace), and heat transfer from the sample 10 to the surroundings occurs due to heat conduction, convection, and radiation phenomena. Heat leaks out. Especially at high temperatures, sample 1
If the temperature difference between 0 and the surroundings is constant, heat leakage due to radiation increases as compared to the cube of temperature T, resulting in a large amount of heat leakage, and this heat leakage is the largest cause of measurement error. Become. For this reason, heat capacity measurement using the laser flash method has a measurement limit determined by the heat leakage on the high temperature side. As a method of correcting errors due to heat leakage such as the above-mentioned radiant heat loss, after the sample is irradiated with laser light and the temperature rises rapidly, the temperature is prevented from gradually decreasing due to heat leakage from the sample to the surroundings. Therefore, there is a method of extrapolating the sample 10 to the time immediately after laser beam irradiation. (J.Chem, published November 1979.
(described by Yoichi Takahashi et al. in Thermodynamics). However, even in the above method, measurement errors due to heat leakage become large, and the measurement limit is about 1100K. In addition, thermal diffusivity measurements are nominally capable of measuring up to about 3000K, but at high temperatures heat leakage causes the reliability of the measured values to become significantly inferior.

【発明の目的】[Purpose of the invention]

本発明は、上記従来の問題点を解消すべくなさ
れたものであつて、試料からの熱漏れを減少させ
て熱定数測定値の信頼性を向上させると共に、測
定可能な上限温度を引上げて得られる熱定数測定
値の充実を計ることができるレーザフラツシユ法
熱定数測定装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and it reduces heat leakage from the sample to improve the reliability of the measured thermal constant value, and also increases the measurable upper limit temperature. An object of the present invention is to provide a laser flash method thermal constant measurement device that can measure a wide range of thermal constant measurement values.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、主に、断熱的に保持される試料と、
該試料に照射するレーザ光を発生するためのレー
ザ光発振系と、前記試料を一定温度に保つための
温度調節系と、前記試料及び温度調節系の一部を
内包して内部が真空とされる真空容器と、前記試
料へ入射される前記レーザ光のエネルギーを検出
するためのレーザエネルギー検出系と、前記試料
の温度を検出するための試料温度検出系とを有す
るレーザフラツシユ法熱定数測定装置において、
前記試料に照射するレーザ光を、その光路途中で
略一点に集光するための集光系と、前記試料の周
囲を覆い、且つ、略一点に集光されたレーザ光の
光路としての小孔がレーザ孔入射側に形成され
た、該試料の側面方向及び上下方向の熱漏れを減
ずるための金属製のシールド部材と、該シールド
部材に付設された、該シールド部材の温度を検出
するためのシールド温度検出手段と、前記シール
ド部材に通電して加熱するための通電加熱手段と
が設けられ、検出された試料及びシールド部材の
温度に基づき、試料及びシールド部材の温度が等
しくなるよう、前記レーザ光発振手段及び通電加
熱手段が制御することにより、前記目的を達成し
たものである。
The present invention mainly consists of a sample that is adiabatically held;
A laser beam oscillation system for generating a laser beam to irradiate the sample, a temperature control system for keeping the sample at a constant temperature, and a vacuum inside containing the sample and a part of the temperature control system. A laser flash method thermal constant measurement comprising: a vacuum vessel, a laser energy detection system for detecting the energy of the laser beam incident on the sample, and a sample temperature detection system for detecting the temperature of the sample. In the device,
a condensing system for condensing the laser beam irradiated onto the sample to approximately one point midway through its optical path; and a small hole that covers the periphery of the sample and serves as an optical path for the laser beam condensed to approximately one point. A metal shield member is formed on the incident side of the laser hole to reduce heat leakage in the lateral and vertical directions of the sample, and a metal shield member attached to the shield member is used to detect the temperature of the shield member. A shield temperature detection means and an energization heating means for heating the shield member by applying current to the shield member are provided, and based on the detected temperatures of the sample and the shield member, the temperature of the sample and the shield member are equalized. The above object is achieved by controlling the optical oscillation means and the energization heating means.

【作用】[Effect]

本発明においては、レーザフラツシユ法で試料
の熱定数を測定する際に、集光系、金属製のシー
ルド部材、シールド温度検出手段及び通電加熱手
段を設け、前記集光系でレーザ光を、その光路途
中で略一点に集光し、前記シールド部材で前記試
料の周囲を覆い、該シールド部材のレーザ光入射
側に形成された光路としての小孔から前記略一点
に集光されたレーザ孔を通過させて前記試料を加
熱すると共に、前記シールド部材で該試料の側面
方向及び上下方向の熱漏れを減じ、前記シールド
部材の温度を検出し、検出された試料及びシール
ド部材の温度に基づき、試料及びシールド部材の
温度が等しくなるよう、前記レーザ光発振手段及
び通電加熱手段を制御する。 従つて、試料の熱定数をレーザフラツシユ法で
測定するに際して、試料からの熱路れを減少させ
て測定される熱定数の信頼性を向上させると共
に、測定できる上限温漏を引上げて得られる熱定
数の測定値の充実を計ることができる。 このため、従来、鉄鋼業、金属工業、化学工
業、原子力工業、船空宇宙工業、セラミツク材料
工業、磁性材料工業、及びセメント工業など高温
を扱う全ての産業分野において、高温における熱
定数例えば熱容量、熱拡散率、熱伝導率などの測
定値が不正確なために、あるいは上限温度限界を
有する測定装置上の制約から高温測定値の欠如の
ために、材料設計上及びプロセス設計上の重大な
支障となつている場合が多かつたが、本発明によ
り、精度の高い熱定数測定値を高温側でも採取が
可能となるため、上記の支障をなくすことがで
き、上記産業分野に及ぼす影響が大きく、有用性
が極めて高い。
In the present invention, when measuring the thermal constant of a sample by the laser flash method, a condensing system, a metal shield member, a shield temperature detection means, and an energization heating means are provided, and the condensing system emits a laser beam. A laser hole condenses the light to approximately one point in the middle of the optical path, covers the sample with the shield member, and condenses the light to approximately the one point from a small hole as an optical path formed on the laser beam incident side of the shield member. to heat the sample, reduce heat leakage in the lateral and vertical directions of the sample with the shield member, detect the temperature of the shield member, and based on the detected temperature of the sample and the shield member, The laser beam oscillation means and the energization heating means are controlled so that the temperatures of the sample and the shield member are equalized. Therefore, when measuring the thermal constant of a sample using the laser flash method, it is possible to improve the reliability of the measured thermal constant by reducing the heat path from the sample, and to raise the upper limit of measurable heat leakage. Enrichment of measured values of thermal constants can be measured. For this reason, in all industrial fields that handle high temperatures, such as the steel industry, metal industry, chemical industry, nuclear industry, ship aerospace industry, ceramic materials industry, magnetic materials industry, and cement industry, thermal constants at high temperatures, such as heat capacity, Significant difficulties in material and process design due to inaccurate measurements of thermal diffusivity, thermal conductivity, etc., or lack of high-temperature measurements due to limitations of measurement equipment with upper temperature limits. However, with the present invention, it is possible to collect highly accurate thermal constant measurement values even at high temperatures, which eliminates the above-mentioned problems and has a large impact on the above-mentioned industrial fields. , extremely useful.

【実施例】【Example】

以下、図面を参照して本発明の実施例を詳細に
説明する。 この実施例は、前出第7図に示した熱定数測定
装置おいて、第1図に示されるように、試料10
に照射するレーザ光12を、その光路途中で略一
点に集光するための集光レンズ46と、前記試料
10の周囲を覆い、且つ、略一点に集光されたレ
ーザ光12Aの光路としての小孔48がレーザ光
12入射側に形成された、該試料10の側面方向
及び上下方向の熱漏れを減じるための金属製のシ
ールド部材50と、該シールド部材50に付設さ
れた、該シールド部材50の温度を検出するため
の、後述する各熱電対52A〜52Cと、前記シ
ールド部材50に直接通電して加熱するための電
源60と、該電源60及びシールド部材50間を
繋ぐリード線54と、検出された試料10及びシ
ールド部材50の温度に基づき、該試料10及び
シールド部材50の温度上昇幅を制御すべく、レ
ーザ発振器16及び電源を制御するためのタイミ
ング回路62とを備える。 前記集光レンズ46は、前記小孔48の直径を
なるべく小さくし、該集光レンズ46そのものが
高温部分に接近せず、且つ、略一点に集光された
レーザ光12が前記小孔48を通過すると共に、
前記小孔48を通過したレーザ光12がほぼ一様
に広がつて試料10表面に照射されるように構
成、設置される。 前記シールド部材50は、薄い金属(例えばモ
リブデンMo、タングステンW等)製の円筒56
及び上下の円盤58で試料10を取囲むように構
成されている。該上部に円盤58上の小孔48
は、レーザ光12の光路を確保するための適当な
直径(好適には3mm以下)のものが開けられて形
成されている。なお、円筒56と各円盤58間
は、絶縁性の無機接着剤61で互いに接合されて
いる。 前記熱電対52A〜52Cについては、前記シ
ールド部材50の円筒56に熱電対52Aが付設
され、上下の円盤58に熱電対52B,52Cが
付設される。これら熱電対52A〜52Cはリー
ド線59A〜59Cを介して増幅器30に接続さ
れ、その起電力を増幅するようにされている。
又、前記各熱電対28、52A〜52Cには、直
径50〜100(μm)程度のものを用い、1100K程度
の温度まではクロメルーコンスタンタンの成分を
含むもの、1700K程度の温度までは白金−白金ロ
ジウムの成分を含むもの、1700K以上の温度では
タングステン−タングステンレニユウムの成分を
含むものを用いることができる。又、1500K以上
の温度領域においては、前記試料10の温度変化
を測定するのに前記の如き熱電対によらずに赤外
線温度センサを用いて測定を行うことができる。 前記円筒56及び58に直接通電する回路の電
源60には、2(V)のバツテリを並列に繋ぎ、
且つ、第1図に示すように出力電圧調整用の抵抗
R1、R2を設けることができる。この通電による
温度上昇幅の制御は試料10の温度上昇幅によつ
て異なるが、繋ぐバツテリの数を適当に選ぶこ
と、及び通電時間を1〜500ミリ秒の範囲で調整
することによつて行うことができる。なお、上、
下の円盤58間はリード線63で繋がれている。 前記タイミング回路62は試料10へのレーザ
光12の照射とシールド部材50への直接通電を
同時に行い、試料10の温度上昇幅とシールド部
材50の温度上昇幅に同じにするために、まず、
試料10及びシールド部材50に取付けられた各
熱電対28,52A〜52Cの起電力を増幅器3
0で増幅した後トランジエントメモリ32とを温
度信号として入れる。そして、前記タイミング回
路62は、入力されて温度信号から各熱電対2
8,52A〜52Cの起電力が等しくなるように
レーザ発振器16制御してレーザ光12のエネル
ギーを調節する。 図中の吸熱板42にはグラツシカーボンの代わ
りに他の吸熱板を設置することができる。熱容量
を測定する際には吸熱板42でレーザ光12のエ
ネルギーの吸熱していたが、熱拡散測定の際には
該吸熱板42を置かずに試料10に前記レーザ光
12を直接照射して測定することができる。 次に、本発明が適用された熱定数測定装置を用
いて熱容量CP及び熱拡散率αの測定を行つた結
果を説明する。 この場合、シールド部材50の円筒56及び円
盤58にはモリブデンMoを用い、これらを円筒
56及び円盤58に接続されるリード線54,6
3にはモリブデンMo線を用い、各熱電対28,
52A〜52Cへのリード線40,59A〜59
Cには白金−13%白金ロジウム線を用いた。そし
て、試料10としてストロンチウムフエライト
(SrFe12O19)及び白金(Pt)をそれぞれ直径10
mm、厚さ2mmに成形し、熱容量として該試料の比
熱容量(JK-1-1)を1550Kの温度で測定した。 以上のようにして試料のストロンチウムフエラ
イトを測定した結果を第2図に示す。この場合、
測定温度が1550K、試料重量が0.8011g、吸熱板
のグラツシカーボンは0.0098g、接着剤は0.0052
gであつた。グラツシカーボンと接着剤との熱容
量の和は0.0226JK-1であり、比熱容量の測定平均
値は0.7540JK-1-1であつた。図から、1550Kで
の測定時の偏差が±0.7%以内と小さいことから
精度(再現性)が高いことが理解される。又、従
来は1100K以上の温度領域における高精度な測定
はできなかつたが、この温度領域においても本発
明により有効に熱容量を測定できることが理解さ
れる。 又、同じく、試料として白金を測定した結果を
第3図に示す。図は試料重量が3.3568gの場合の
白金の比熱容量(JK-1-1)の測定値である。
図から、1700Kまでかなりの高精度で比熱容量が
測定できることがわかる。 これに対して、従来技術として前述したJ.
Chem.Thermodynamicsには、1700Kの温度領域
で落下式熱量計のみを用いて測定した白金のモル
熱容量のデータが第4図の如く示されている。こ
の場合の測定値は温度T(K)に対するエンタル
ピの値H(Jmol-1)で得られるため、このエンタ
ルピー温度の曲線を平滑化し、それを温度で微分
して前記モル熱容量が得られる。従つて、図では
データのばらつきが表面上に現われていないが、
一次データのばらつき(1100K以上の温度領域で
は最低でも1%ある)が二次データの熱容量のそ
のばらつきに大きく反映されているはずであり、
信頼性の点で問題があつた。 次に、前記試料の白金の熱拡散率α(cm2S-1)の
測定結果を第5図に示す。この場合吸熱板は用い
ずに直接試料にレーザ光を照射して加熱した。
又、比較のため従来法により白金の熱拡散率αを
計測したデータを第6図に示す。このデータは
The TPRC Date Seriesの第10巻に示された
Thermophysical properties of Matterによる。 第6図から分るように従来法による白金の熱拡
散率αのデータは温度と共に大きく前後し、ばら
つく傾向があることがわかる。これに対して、第
5図に示した本発明装置による測定では、温度と
共に熱拡散率αがゆるやかに上昇し、又、測定さ
れた熱拡散率αの絶対値の多くは測定値の中間附
近にあることから、測定の信頼性が高いことがわ
かる。 なお、前記実施例においては第1図に示される
ような円筒56及び円盤58で形成されたシール
ド部材50で試料10を囲んでいたが、シールド
部材50の構成は図に示されるものに限定され
ず、試料10の側方及び上下方向の熱漏れを減ず
るように該試料を囲むように形成されていれば他
のシールド部材を用いることができる。又、該シ
ールド部材50の材質あるいはリード線の材質は
モリブデンのみに限定されず、他の材質のシール
ド部材あるいはリード線を用いることができる。
Embodiments of the present invention will be described in detail below with reference to the drawings. In this example, in the thermal constant measuring apparatus shown in FIG. 7 above, a sample 10
A condensing lens 46 for condensing the laser beam 12 to be irradiated onto approximately one point in the middle of its optical path, and a condensing lens 46 that covers the periphery of the sample 10 and serves as an optical path for the laser beam 12A that is condensed at approximately one point. A metal shield member 50 having a small hole 48 formed on the incident side of the laser beam 12 for reducing heat leakage in the lateral and vertical directions of the sample 10, and the shield member attached to the shield member 50. Each thermocouple 52A to 52C, which will be described later, is used to detect the temperature of 50, a power source 60 for heating the shield member 50 by directly applying current to the shield member 50, and a lead wire 54 connecting the power source 60 and the shield member 50. , a timing circuit 62 for controlling a laser oscillator 16 and a power supply in order to control the temperature rise range of the sample 10 and the shield member 50 based on the detected temperatures of the sample 10 and the shield member 50. The condensing lens 46 makes the diameter of the small hole 48 as small as possible, so that the condensing lens 46 itself does not approach a high temperature part, and the laser beam 12 focused on approximately one point passes through the small hole 48. As you pass,
The structure and installation are such that the laser beam 12 passing through the small hole 48 spreads almost uniformly and irradiates the surface of the sample 10. The shield member 50 is a cylinder 56 made of thin metal (for example, molybdenum Mo, tungsten W, etc.).
The sample 10 is surrounded by upper and lower disks 58. There is a small hole 48 on the disk 58 in the upper part.
is formed with an opening having a suitable diameter (preferably 3 mm or less) to ensure an optical path for the laser beam 12. Note that the cylinder 56 and each disc 58 are bonded to each other with an insulating inorganic adhesive 61. Regarding the thermocouples 52A to 52C, the thermocouple 52A is attached to the cylinder 56 of the shield member 50, and the thermocouples 52B and 52C are attached to the upper and lower disks 58. These thermocouples 52A to 52C are connected to an amplifier 30 via lead wires 59A to 59C to amplify their electromotive force.
Further, each of the thermocouples 28, 52A to 52C has a diameter of about 50 to 100 (μm), and a thermocouple containing a chromeru-constantan component is used up to a temperature of about 1100K, and a platinum-containing thermocouple is used up to a temperature of about 1700K. A material containing a platinum-rhodium component, and a material containing a tungsten-tungsten rhenium component at temperatures of 1700K or higher can be used. Further, in a temperature range of 1500K or more, an infrared temperature sensor can be used to measure the temperature change of the sample 10 instead of using a thermocouple as described above. A 2 (V) battery is connected in parallel to the power supply 60 of the circuit that directly energizes the cylinders 56 and 58.
In addition, as shown in Figure 1, a resistor for output voltage adjustment is required.
R 1 and R 2 can be provided. Control of the temperature rise range due to this energization differs depending on the temperature rise range of the sample 10, but is performed by appropriately selecting the number of batteries to be connected and adjusting the energization time in the range of 1 to 500 milliseconds. be able to. Furthermore, above,
The lower disks 58 are connected by a lead wire 63. The timing circuit 62 simultaneously irradiates the sample 10 with the laser beam 12 and directly energizes the shield member 50, and in order to make the temperature rise width of the sample 10 and the temperature rise width of the shield member 50 the same, first,
The electromotive force of each thermocouple 28, 52A to 52C attached to the sample 10 and the shield member 50 is transferred to the amplifier 3.
After being amplified by 0, the transient memory 32 is input as a temperature signal. The timing circuit 62 then processes each thermocouple 2 from the input temperature signal.
The energy of the laser beam 12 is adjusted by controlling the laser oscillator 16 so that the electromotive forces of 8, 52A to 52C are equal. As the heat absorbing plate 42 shown in the figure, another heat absorbing plate can be installed instead of the glassy carbon. When measuring the heat capacity, the energy of the laser beam 12 was absorbed by the heat absorbing plate 42, but when measuring thermal diffusion, the sample 10 was directly irradiated with the laser beam 12 without placing the heat absorbing plate 42. can be measured. Next, the results of measuring the heat capacity C P and the thermal diffusivity α using the thermal constant measuring device to which the present invention is applied will be explained. In this case, molybdenum Mo is used for the cylinder 56 and disk 58 of the shield member 50, and the lead wires 54 and 6 connected to the cylinder 56 and disk 58 are
3 uses molybdenum Mo wire, and each thermocouple 28,
Lead wires 40, 59A to 59 to 52A to 52C
For C, a platinum-13% platinum rhodium wire was used. As sample 10, strontium ferrite (SrFe 12 O 19 ) and platinum (Pt) were each made with a diameter of 10 mm.
The specific heat capacity (JK -1 g -1 ) of the sample was measured at a temperature of 1550K. The results of measuring the strontium ferrite in the sample as described above are shown in FIG. in this case,
The measurement temperature is 1550K, the sample weight is 0.8011g, the glassy carbon of the heat absorption plate is 0.0098g, and the adhesive is 0.0052g.
It was hot at g. The sum of the heat capacities of the glassy carbon and the adhesive was 0.0226JK -1 , and the measured average value of the specific heat capacity was 0.7540JK -1 g -1 . From the figure, it can be seen that the accuracy (reproducibility) is high because the deviation during measurement at 1550K is small, within ±0.7%. Further, although it has not been possible to perform highly accurate measurements in the temperature range of 1100K or higher in the past, it is understood that the present invention allows effective measurement of heat capacity even in this temperature range. Similarly, FIG. 3 shows the results of measuring platinum as a sample. The figure shows the measured value of the specific heat capacity (JK -1 g -1 ) of platinum when the sample weight is 3.3568 g.
The figure shows that the specific heat capacity can be measured with fairly high accuracy up to 1700K. On the other hand, as the prior art, J.
Chem.Thermodynamics shows data on the molar heat capacity of platinum measured using only a drop calorimeter in the temperature range of 1700K, as shown in Figure 4. Since the measured value in this case is obtained as the enthalpy value H (Jmol -1 ) with respect to temperature T (K), the molar heat capacity can be obtained by smoothing this enthalpy temperature curve and differentiating it with respect to temperature. Therefore, although the data dispersion does not appear on the surface in the figure,
The variation in the primary data (at least 1% in the temperature range above 1100K) should be largely reflected in the variation in the heat capacity of the secondary data.
There were problems with reliability. Next, FIG. 5 shows the measurement results of the thermal diffusivity α (cm 2 S -1 ) of platinum in the sample. In this case, the sample was directly irradiated with laser light and heated without using a heat absorbing plate.
Further, for comparison, data obtained by measuring the thermal diffusivity α of platinum using a conventional method is shown in FIG. This data is
Shown in Volume 10 of The TPRC Date Series
Due to thermophysical properties of Matter. As can be seen from FIG. 6, it can be seen that the data on the thermal diffusivity α of platinum obtained by the conventional method fluctuates greatly with temperature, and tends to vary. On the other hand, in the measurement using the apparatus of the present invention shown in FIG. , it can be seen that the reliability of the measurement is high. In the above embodiment, the sample 10 was surrounded by a shield member 50 formed of a cylinder 56 and a disc 58 as shown in FIG. 1, but the structure of the shield member 50 is limited to that shown in the figure. First, other shield members can be used as long as they are formed to surround the sample 10 so as to reduce heat leakage in the lateral and vertical directions of the sample 10. Further, the material of the shield member 50 or the lead wire is not limited to molybdenum, and shield members or lead wires made of other materials may be used.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、試料の周
囲から熱が漏れるのを減少することができるた
め、熱定数測定の測定値の信頼性が向上し、又、
測定上限温度が引上げられることにより測定値の
データ例えば熱伝導率の測定データの充実を図る
ことができる等の優れた効果が得られる。
As explained above, according to the present invention, it is possible to reduce the leakage of heat from the surroundings of the sample, thereby improving the reliability of the measured values of thermal constant measurement, and
By raising the measurement upper limit temperature, excellent effects such as enrichment of measurement data such as thermal conductivity measurement data can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る熱定数測定装置の実施例
の試料及びシールド部材近傍の構成を示す、一部
ブロツク線図を含む要部断面図、第2図は前記実
施例の作用を説明するための、試料の比熱容量の
測定データの一例を示す線図、第3図は同じく、
他の試料の比熱容量の測定データの例を示す線
図、第4図は同じく、従来法による白金のモル熱
容量測定データの例を示す線図、第5図は同じ
く、本発明を適用して測定した熱拡散率の測定デ
ータの例を示す線図、第6図は同じく、従来法に
より測定した熱拡散率データの例を示す線図、第
7図は熱定数測定装置の全体構成を示す、一部断
面図を含むブロツク線図、第8図は従来の熱定数
測定装置の試料周囲の構成を示す要部断面図であ
る。 10……試料、12……レーザー光、14……
ルビーレーザヘツド、16……レーザ発振器、2
0……温度調節器、22……真空容器、24……
フオトセル、28,52A〜52C……熱電対、
42……吸熱板、40,59A〜59C……熱電
対リード線、46……集光レンズ、48……小
孔、50……金属性のシールド部材、54,63
……リード線、56……円筒、58……円盤、6
0……電源、62……タイミング回路。
FIG. 1 is a cross-sectional view of the main parts, including a partial block diagram, showing the structure near the sample and shield member of an embodiment of the thermal constant measuring device according to the present invention, and FIG. 2 explains the operation of the embodiment. Similarly, Figure 3 is a diagram showing an example of the measurement data of the specific heat capacity of the sample.
Similarly, FIG. 4 is a diagram showing an example of measurement data of the specific heat capacity of other samples. Similarly, FIG. FIG. 6 is a diagram showing an example of thermal diffusivity data measured using a conventional method. FIG. 7 is a diagram showing an example of thermal diffusivity data measured using a conventional method. , a block diagram including a partial sectional view, and FIG. 8 is a sectional view of a main part showing the structure around a sample of a conventional thermal constant measuring device. 10...sample, 12...laser light, 14...
Ruby laser head, 16...Laser oscillator, 2
0... Temperature controller, 22... Vacuum container, 24...
Photocell, 28,52A-52C...thermocouple,
42... Heat absorption plate, 40, 59A to 59C... Thermocouple lead wire, 46... Condensing lens, 48... Small hole, 50... Metallic shielding member, 54, 63
... Lead wire, 56 ... Cylinder, 58 ... Disc, 6
0...Power supply, 62...Timing circuit.

Claims (1)

【特許請求の範囲】 1 主に、断熱的に保持される試料と、該試料に
照射するレーザ光を発生するためのレーザ光発振
系と、前記試料を一定温度に保つための温度調節
系と、前記試料及び温度調節系の一部を内包して
内部が真空とされる真空容器と、前記試料へ入射
される前記レーザ光のエネルギーを検出するため
のレーザエネルギー検出系と、前記試料の温度を
検出するための試料温度検出系とを有するレーザ
フラツシユ法熱定数測定装置において、 前記試料に照射するレーザ光を、その光路途中
で略一点に集光するための集光系と、 前記試料の周囲を覆い、且つ、略一点に集光さ
れたレーザ光の光路としての小孔がレーザ光入射
側に形成された、該試料の側面方向及び上下方向
の熱漏れを減ずるための金属製のシールド部材
と、該シールド部材に付設された、該シールド部
材の温度を検出するためのシールド温度検出手段
と、 前記シールド部材に通電して加熱するための通
電加熱手段とが設けられ、 検出された試料及びシールド部材の温度に基づ
き、試料及びシールド部材の温度が等しくなるよ
う、前記レーザ光発振手段及び通電加熱手段が制
御されることを特徴とするレーザフラツシユ法熱
定数測定装置。
[Claims] 1. Mainly includes a sample held adiabatically, a laser beam oscillation system for generating laser light to irradiate the sample, and a temperature control system for maintaining the sample at a constant temperature. , a vacuum container containing the sample and a part of the temperature control system and having a vacuum inside; a laser energy detection system for detecting the energy of the laser beam incident on the sample; and a temperature of the sample. A laser flash method thermal constant measuring device having a sample temperature detection system for detecting the temperature of the sample, comprising: a condensing system for concentrating the laser beam irradiated onto the sample to approximately one point in the middle of its optical path; A metal plate that covers the periphery of the sample and has a small hole formed on the laser light incident side as an optical path for the laser light focused on approximately one point, to reduce heat leakage in the lateral and vertical directions of the sample. A shield member, a shield temperature detection means attached to the shield member for detecting the temperature of the shield member, and an energization heating means for heating the shield member by supplying current to the shield member are provided, and the temperature is detected. A laser flash method thermal constant measuring device characterized in that the laser beam oscillation means and the energization heating means are controlled based on the temperatures of the sample and the shield member so that the temperatures of the sample and the shield member are equalized.
JP30748686A 1986-12-23 1986-12-23 Heat constant measuring instrument by laser flash method Granted JPS63159740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30748686A JPS63159740A (en) 1986-12-23 1986-12-23 Heat constant measuring instrument by laser flash method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30748686A JPS63159740A (en) 1986-12-23 1986-12-23 Heat constant measuring instrument by laser flash method

Publications (2)

Publication Number Publication Date
JPS63159740A JPS63159740A (en) 1988-07-02
JPH0525304B2 true JPH0525304B2 (en) 1993-04-12

Family

ID=17969668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30748686A Granted JPS63159740A (en) 1986-12-23 1986-12-23 Heat constant measuring instrument by laser flash method

Country Status (1)

Country Link
JP (1) JPS63159740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304191A (en) * 2007-06-05 2008-12-18 Ulvac-Riko Inc Laser light irradiation amount adjusting mechanism for measuring sample having optical filter means, and thermal constant measuring device equipped with the mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718828B2 (en) * 1990-02-14 1995-03-06 工業技術院長 Specific heat measurement method
JP2864097B2 (en) * 1994-09-03 1999-03-03 株式会社超高温材料研究所 Method and apparatus for analyzing thermal diffusivity, biot number and specific heat data in laser flash method
JP7250268B2 (en) * 2018-12-21 2023-04-03 国立研究開発法人産業技術総合研究所 How to measure specific heat and enthalpy change

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823892A (en) * 1981-07-02 1983-02-12 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Heterocyclic nitrogen composition selected as antioxidant/metal deactivator/electric insulator in hydrocarbon composition
JPS5831543A (en) * 1981-08-19 1983-02-24 Nec Home Electronics Ltd Manufacture of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245157Y2 (en) * 1980-02-19 1987-12-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823892A (en) * 1981-07-02 1983-02-12 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Heterocyclic nitrogen composition selected as antioxidant/metal deactivator/electric insulator in hydrocarbon composition
JPS5831543A (en) * 1981-08-19 1983-02-24 Nec Home Electronics Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304191A (en) * 2007-06-05 2008-12-18 Ulvac-Riko Inc Laser light irradiation amount adjusting mechanism for measuring sample having optical filter means, and thermal constant measuring device equipped with the mechanism

Also Published As

Publication number Publication date
JPS63159740A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
JP4195935B2 (en) Thermophysical property measuring method and apparatus
Takahashi et al. Laser-flash calorimetry I. Calibration and test on alumina heat capacity
US3527081A (en) Differential scanning calorimeter
JPH0525304B2 (en)
JPH09222404A (en) Method and device for measuring specific heat capacity
JP2001004455A (en) Method and device for measuring minute surface temperature distribution
JP5160816B2 (en) Infrared detector temperature calibration method and specific heat capacity measurement method
JP4953061B2 (en) Object heating method and apparatus
JP2949314B2 (en) Calorimeter and method
JPH0372944B2 (en)
JP5041522B2 (en) Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism
RU2811326C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using heat flow sensors
RU213568U1 (en) DEVICE FOR DETERMINING THE ENERGY DENSITY IN A DEVICE FOR DETERMINING THERMAL CONDUCTIVITY BY THE LASER FLASH METHOD
JPH03237346A (en) Method for measuring specific heat
RU2807398C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using pyrometers
Tabor et al. An instrument for measuring absorptivities for solar radiation
JPH03237345A (en) Method for measuring thermal conductivity
JPH0560708A (en) Calorimeter for testing thermal vacuum
JP6213986B2 (en) Absolute light intensity measuring device and measuring method
JP2004157009A (en) Balanced type radiation temperature / emissivity measuring apparatus and method
JPH09288074A (en) Method and apparatus for controlling temperature of sample
JPH0514200Y2 (en)
Ryan et al. Calorimeter for simultaneous measurements of stored energy and resistance
JPH11160259A (en) Apparatus for differential thermal analysis
JP2939313B2 (en) Temperature detector for heater