JP5041522B2 - Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism - Google Patents

Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism Download PDF

Info

Publication number
JP5041522B2
JP5041522B2 JP2007148789A JP2007148789A JP5041522B2 JP 5041522 B2 JP5041522 B2 JP 5041522B2 JP 2007148789 A JP2007148789 A JP 2007148789A JP 2007148789 A JP2007148789 A JP 2007148789A JP 5041522 B2 JP5041522 B2 JP 5041522B2
Authority
JP
Japan
Prior art keywords
optical filter
measurement sample
laser pulse
pulse light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007148789A
Other languages
Japanese (ja)
Other versions
JP2008304191A (en
Inventor
昭廣 辻本
賢次 島田
大 桑原
洋一 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Riko Inc
Original Assignee
Ulvac Riko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Riko Inc filed Critical Ulvac Riko Inc
Priority to JP2007148789A priority Critical patent/JP5041522B2/en
Publication of JP2008304191A publication Critical patent/JP2008304191A/en
Application granted granted Critical
Publication of JP5041522B2 publication Critical patent/JP5041522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、光学フィルター手段を有する測定試料へのレーザ光照射量調節機構及びこの機構を備えた熱定数測定装置に関し、特にレーザフラッシュ法による熱拡散率測定を実施する際における、光学フィルター手段を有する測定試料への測定試料の表面へのレーザ光照射量調節機構及びこの機構を備えた熱定数測定装置に関する。   The present invention relates to a laser beam irradiation amount adjusting mechanism for a measurement sample having an optical filter means and a thermal constant measuring apparatus equipped with this mechanism, and more particularly to an optical filter means for performing thermal diffusivity measurement by a laser flash method. The present invention relates to a mechanism for adjusting the amount of laser beam irradiation on the surface of a measurement sample, and a thermal constant measurement apparatus including this mechanism.

従来から、例えば固体状態の試料の熱伝導率測定方法として、測定試料の密度(g/cm)、定圧比熱容量(J/kg・K)及び熱拡散率(cm/sec)を個別に測定した後、それぞれの数値の積から熱伝導率[W/(K・m)]を算出する方法が提案されている(例えば、特許文献1参照)。この熱拡散率の測定方法としては、通常、レーザフラッシュ法が使用される。 Conventionally, for example, as a method of measuring the thermal conductivity of a solid sample, the density (g / cm 3 ), the constant pressure specific heat capacity (J / kg · K), and the thermal diffusivity (cm 2 / sec) of the sample are individually measured. There has been proposed a method of calculating the thermal conductivity [W / (K · m)] from the product of the respective numerical values after the measurement (see, for example, Patent Document 1). As a method for measuring the thermal diffusivity, a laser flash method is usually used.

このレーザフラッシュ法は、通常、所定の直径及び厚みを有する円板状の試料の表面にレーザパルス光を照射せしめ、照射後の試料の裏面温度を測定し、裏面温度が所定の温度に達するまでの時間に基づき、試料の熱拡散率を算出する方法である。この場合の熱拡散率の算出は、レーザパルス光が試料表面を一様に加熱し、試料の厚さ方向に対して一次元熱流となり、かつ熱損失がないものと仮定した場合に、次式に基づいて行われる。   In this laser flash method, the surface of a disk-shaped sample having a predetermined diameter and thickness is usually irradiated with laser pulse light, the back surface temperature of the sample after irradiation is measured, and the back surface temperature reaches a predetermined temperature. This is a method for calculating the thermal diffusivity of the sample based on the time. In this case, the thermal diffusivity is calculated by assuming that the laser pulse light uniformly heats the surface of the sample, forms a one-dimensional heat flow in the thickness direction of the sample, and has no heat loss. Based on.

α=1.37×L/π・t1/2
(上式中、αは測定試料の熱拡散率、Lは測定試料の厚み(cm)、t1/2はレーザパルス光照射開始時から測定試料の裏面の最高温度の半分だけ裏面温度が上昇するまでの時間(sec)、いわゆるハーフタイムを表す。)
α = 1.37 × L 2 / π 2 · t 1/2
(In the above formula, α is the thermal diffusivity of the measurement sample, L is the thickness (cm) of the measurement sample, t 1/2 is the back surface temperature increased by half of the maximum temperature of the back surface of the measurement sample from the start of laser pulse light irradiation. (Time to complete (sec), so-called half time)

上記レーザフラッシュ法では、レーザ照射による測定試料の温度変化の様子から熱拡散率を求めているため、計測された熱拡散率が何℃での値かを正確に示すことが難しいという問題がある。このことは、温度に対する熱拡散率の変化率が大きい測定試料の場合には、特に問題となる。   In the above laser flash method, since the thermal diffusivity is obtained from the state of temperature change of the measurement sample due to laser irradiation, there is a problem that it is difficult to accurately indicate at what degree the measured thermal diffusivity is a value. . This is a problem particularly in the case of a measurement sample having a large rate of change of thermal diffusivity with respect to temperature.

そのため、温度的に安定した雰囲気に置かれた測定試料に与える瞬間熱源(パルスレーザ)の出力(レーザ光照射量)を変更して測定した数点のΔT値(試料裏面温度上昇値)から得た各熱拡散率を元に、測定試料のより正確な熱拡散率を求める手法が提唱されている。しかしながら、このようにして熱拡散率を求めるためには、レーザ出力可変機構を備えた熱定数測定装置を開発しなければならないが、未だ簡便なレーザ出力可変機構を備えた熱定数測定装置は提案されていないのが現状である。   Therefore, it is obtained from several ΔT values (sample backside temperature rise values) measured by changing the output (laser beam irradiation amount) of the instantaneous heat source (pulse laser) applied to the measurement sample placed in a temperature stable atmosphere. Based on each thermal diffusivity, a method for obtaining a more accurate thermal diffusivity of the measurement sample has been proposed. However, in order to obtain the thermal diffusivity in this way, it is necessary to develop a thermal constant measuring apparatus equipped with a laser output variable mechanism, but a thermal constant measuring apparatus equipped with a simple laser output variable mechanism is still proposed. The current situation is not.

なお、レーザ出力は、レーザパルス光発生装置における励起管への供給電圧を変更することにより調節することは可能であるが、その際にレーザパルス光の強度パターンも変化してしまうために、試料表面を一様に加熱することができず、熱拡散率の測定値に影響がでるので好ましくない。
特開2003−65982号公報(特許請求の範囲)
The laser output can be adjusted by changing the supply voltage to the excitation tube in the laser pulse light generator, but the intensity pattern of the laser pulse light also changes at that time, so that the sample Since the surface cannot be heated uniformly, the measured value of the thermal diffusivity is affected, which is not preferable.
JP 2003-65982 A (Claims)

本発明の課題は、上述の従来技術の問題点を解決することにあり、レーザフラッシュ法による熱拡散率測定を実施する際に用いる、光学フィルター手段を有する測定試料へのレーザ光照射量調節機構及びこの機構を備えた熱定数測定装置を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art, and a mechanism for adjusting a laser beam irradiation amount to a measurement sample having an optical filter means, which is used when performing thermal diffusivity measurement by a laser flash method. Another object of the present invention is to provide a thermal constant measuring device having this mechanism.

本発明の測定試料へのレーザ光照射量調節機構は、測定試料の表面にレーザパルス光を照射するためのレーザパルス光発生装置と、該測定試料の収納用真空室と、該測定試料の裏面温度を測定する測温手段とを備えた熱定数測定装置で用いる測定試料へのレーザ光照射量調節機構であって、該レーザパルス光発生装置と該測定試料の収納用真空室との間のレーザパルス光の光路上に透過率の異なる複数の第一の光学フィルターを備えた第一の光学フィルター手段と該第一の光学フィルターと透過率が異なるか又は同じである第二の光学フィルターを備えた第二の光学フィルター手段とを設け、また、この光学フィルター手段を回転、又は縦若しくは横にスライドさせ、所定の光学フィルターをレーザパルス光の光路上に配置できるようにする駆動手段を設けたことを特徴とする。このようなレーザ光照射量調節機構を用いることにより、レーザフラッシュ法に従って測定試料の熱定数を測定する装置において、測定試料に入射されるレーザパルス光の強度分布を損なうことなく、レーザ出力を安定にし、レーザパルス光の測定試料への照射量だけを可変することができるため、より正確に熱定数である熱拡散率を測定することが可能となる。 The laser beam irradiation amount adjustment mechanism for the measurement sample of the present invention includes a laser pulse light generator for irradiating the surface of the measurement sample with laser pulse light, a vacuum chamber for storing the measurement sample, and a back surface of the measurement sample. A mechanism for adjusting a laser beam irradiation amount to a measurement sample used in a thermal constant measurement device provided with a temperature measuring means for measuring temperature, between the laser pulse light generator and a vacuum chamber for storing the measurement sample A first optical filter means comprising a plurality of first optical filters having different transmittances on the optical path of the laser pulse light, and a second optical filter having the same or different transmittance as the first optical filter; a second optical filter means having provided, also rotates the optical filter means, or vertical or slide laterally, to allow placing the predetermined optical filter on the optical path of the laser pulse light Characterized in that a motion means. By using such a laser beam irradiation amount adjustment mechanism, the laser output can be stabilized without impairing the intensity distribution of the laser pulse light incident on the measurement sample in an apparatus that measures the thermal constant of the measurement sample according to the laser flash method. In addition, since only the amount of laser pulse light applied to the measurement sample can be varied, the thermal diffusivity, which is a thermal constant, can be measured more accurately.

また、本発明の熱定数測定装置は、測定試料の表面にレーザパルス光を照射するためのレーザパルス光発生装置と、該測定試料の収納用真空室と、該測定試料の裏面温度を測定する測温手段とを備えた熱定数測定装置において、該レーザパルス光発生装置と該測定試料の収納用真空室との間のレーザパルス光の光路上に透過率の異なる複数の第一の光学フィルターを備えた第一の光学フィルター手段と該第一の光学フィルターと透過率が異なるか又は同じである第二の光学フィルターを備えた第二の光学フィルター手段とを測定試料へのレーザ光照射量調節機構として設け、そしてこのレーザ光照射量調節機構が、該光学フィルター手段を回転、又は縦若しくは横にスライドさせ、所定の光学フィルターをレーザパルス光の光路上に配置できるようにする駆動手段を備えていることを特徴とする。このように構成することにより、熱定数測定装置を作動してレーザフラッシュ法に従って熱拡散率を測定する際に、レーザ出力を安定にし、レーザパルス光の照射量だけを可変することができるので、レーザパルス光照射量が安定し、かつ再現性が良くなって、より正確に熱定数である熱拡散率を測定することが可能となる。 The thermal constant measuring apparatus of the present invention also measures a laser pulse light generator for irradiating the surface of a measurement sample with laser pulse light, a vacuum chamber for storing the measurement sample, and a back surface temperature of the measurement sample. A plurality of first optical filters having different transmittances on the optical path of the laser pulse light between the laser pulse light generator and the vacuum chamber for storing the measurement sample. A first optical filter means comprising: a second optical filter means comprising a second optical filter having a transmittance different from or the same as that of the first optical filter; This laser beam irradiation amount adjustment mechanism can be provided as an adjustment mechanism, and the optical filter means can be rotated or slid vertically or horizontally to place a predetermined optical filter on the optical path of the laser pulse light. Characterized in that it comprises a driving means for so. By configuring in this way, when operating the thermal constant measuring device and measuring the thermal diffusivity according to the laser flash method, the laser output can be stabilized and only the irradiation amount of the laser pulse light can be varied. The amount of laser pulse light irradiation becomes stable and reproducibility is improved, and the thermal diffusivity, which is a thermal constant, can be measured more accurately.

本発明の測定試料へのレーザ光照射量調節機構を備えた熱定数測定装置によれば、レーザフラッシュ法に従って測定試料の熱定数である熱拡散率を測定する際に、レーザ出力を安定にし、レーザパルス光の照射量を可変することができるので、レーザパルス光照射量が安定し、かつ再現性が良くなって、より正確に熱定数を測定することが可能になるという効果を奏する。   According to the thermal constant measuring apparatus equipped with the laser beam irradiation amount adjusting mechanism for the measurement sample of the present invention, when measuring the thermal diffusivity which is the thermal constant of the measurement sample according to the laser flash method, the laser output is stabilized, Since the irradiation amount of the laser pulse light can be varied, the laser pulse light irradiation amount is stabilized, the reproducibility is improved, and the thermal constant can be measured more accurately.

以下、本発明の測定試料へのレーザ光照射量調節機構の実施の形態と共に、この機構を備えた熱定数測定装置に係る実施の形態について説明する。   Hereinafter, an embodiment of a thermal constant measuring apparatus equipped with this mechanism will be described together with an embodiment of a laser beam irradiation amount adjusting mechanism for a measurement sample of the present invention.

本発明の熱定数測定装置によれば、測定試料(例えば、固体状でも液体状でも良く、その外観状態は問わない)の表面にレーザパルス光を照射するためのレーザパルス光発生装置と、測定試料の収納用真空室と、測定試料の裏面温度を測定する測温手段とを備えた熱定数測定装置において、レーザパルス光発生装置と測定試料の収納用真空室との間のレーザパルス光の光路上に透過率の異なる複数の光学フィルターを備えた光学フィルター手段が測定試料へのレーザ光照射量調節機構として設けられており、この光学フィルター手段を段階的に回転、又は縦若しくは横にスライドさせて、所望の光学フィルターをレーザパルス光の光路上に配置することができるようにし、レーザパルス光照射量が可変可能になるように構成されている。   According to the thermal constant measuring apparatus of the present invention, a laser pulse light generator for irradiating the surface of a measurement sample (for example, solid or liquid, regardless of its appearance) with laser pulse light, and measurement In a thermal constant measuring apparatus comprising a vacuum chamber for storing a sample and a temperature measuring means for measuring the back surface temperature of the measurement sample, the laser pulse light between the laser pulse light generator and the vacuum chamber for storing the measurement sample is measured. An optical filter means provided with a plurality of optical filters having different transmittances on the optical path is provided as a mechanism for adjusting the amount of laser light applied to the measurement sample, and the optical filter means is rotated stepwise or slid vertically or horizontally. Thus, a desired optical filter can be arranged on the optical path of the laser pulse light, and the laser pulse light irradiation amount can be varied.

この測定試料へのレーザ光照射量調節機構を設けることにより、レーザフラッシュ法に従って測定試料の熱定数として熱拡散率を測定する際に、レーザパルス光照射量を可変することができ、より正確に熱拡散率を測定することができる。すなわち、このように簡便なレーザ光照射量調節機構を用いることにより、温度的に安定した雰囲気に置かれた測定試料に与える瞬間熱源(パルスレーザ)の出力(レーザ光照射量)を変更して測定した数点のΔT値(試料裏面温度上昇値)から得た各熱拡散率を元に、求めたい雰囲気温度における測定試料のより正確な熱拡散率を求めることが可能となる。例えば、図3に示すように、光学フィルター透過率対熱拡散率データの外挿線を引いて得た透過率0%における熱拡散率が、求めたい測定雰囲気温度における熱拡散率値である。すなわち、フィルター透過率とレーザ光照射量はほぼ比例するため、フィルター透過率と試料裏面温度上昇値も同様の比例関係であり、試料裏面上昇値ΔTが0℃の時の熱拡散率を求めたことになる。   By providing a laser beam dose adjustment mechanism for this measurement sample, the laser pulse beam dose can be varied more accurately when measuring the thermal diffusivity as the thermal constant of the measurement sample according to the laser flash method. Thermal diffusivity can be measured. In other words, by using this simple laser beam irradiation amount adjustment mechanism, the output (laser beam irradiation amount) of the instantaneous heat source (pulse laser) applied to the measurement sample placed in a temperature stable atmosphere can be changed. Based on each thermal diffusivity obtained from several measured ΔT values (sample back surface temperature rise values), it is possible to obtain a more accurate thermal diffusivity of the measurement sample at the desired atmospheric temperature. For example, as shown in FIG. 3, the thermal diffusivity at 0% transmittance obtained by drawing an extrapolation line of optical filter transmittance vs. thermal diffusivity data is the thermal diffusivity value at the measurement ambient temperature to be obtained. That is, since the filter transmittance and the laser beam irradiation amount are approximately proportional, the filter transmittance and the sample back surface temperature rise value are also in the same proportional relationship, and the thermal diffusivity when the sample back surface rise value ΔT is 0 ° C. was obtained. It will be.

本発明によれば、レーザパルス光照射量を可変するために、上記したような測定試料へのレーザ光照射量調節機構を設けてあるので、レーザフラッシュ法に従って、種々の材料の表面にレーザパルス光を所定の透過率を有する光学フィルターを介して照射し、これら材料の熱拡散率を正確に測定することができる。かくして、この測定された熱拡散率と測定試料の密度及び比熱とから、各材料の熱伝導性を評価することが可能となる。   According to the present invention, in order to vary the laser pulse light irradiation amount, the laser light irradiation amount adjustment mechanism for the measurement sample as described above is provided. Therefore, according to the laser flash method, the laser pulse is applied to the surface of various materials. Light can be irradiated through an optical filter having a predetermined transmittance, and the thermal diffusivity of these materials can be accurately measured. Thus, it is possible to evaluate the thermal conductivity of each material from the measured thermal diffusivity and the density and specific heat of the measurement sample.

本発明におけるレーザパルス光としては、例えばルビーレーザ、ガラスレーザ、YAGレーザ等のパルス発振型レーザシステムから選ばれたレーザからのレーザ光を利用できる。   As the laser pulse light in the present invention, for example, laser light from a laser selected from a pulse oscillation laser system such as a ruby laser, a glass laser, or a YAG laser can be used.

本発明の熱定数測定装置により測定できる材料としては、特に制限はなく、例えば電子デバイス材料(例えば、酸化物、窒化物等)、航空宇宙材料(例えば、Ti、Al、樹脂材料(例えば、ポリイミド、エポキシ等の樹脂材料)等)、超高温材料(例えば、高融点金属、セラミックス(例えば、アルミナ、ジルコニウム等のセラミックス))、原子力材料(例えば、燃料ペレット、被覆管材料、ガラス等)、カーボン電極材料等を挙げることができる。   The material that can be measured by the thermal constant measuring apparatus of the present invention is not particularly limited. For example, electronic device materials (for example, oxides, nitrides, etc.), aerospace materials (for example, Ti, Al, resin materials (for example, polyimide) , Resin materials such as epoxy)), ultra-high temperature materials (e.g., refractory metals, ceramics (e.g., ceramics such as alumina and zirconium)), nuclear materials (e.g., fuel pellets, cladding tube materials, glass, etc.), carbon An electrode material etc. can be mentioned.

本発明において測定試料の裏面温度を測定する測温手段としては、特に制限はなく、熱定数測定装置で用いる公知の測温手段を用いることができる。例えば、熱電対等の温度検出器や赤外線検出器等を単独で、又は組み合わせて用いることができる。   In the present invention, the temperature measuring means for measuring the back surface temperature of the measurement sample is not particularly limited, and a known temperature measuring means used in a thermal constant measuring apparatus can be used. For example, a temperature detector such as a thermocouple, an infrared detector, or the like can be used alone or in combination.

本発明で用いることができる光学フィルターとしては、特に制限はなく、市販されている透過率の異なる光学フィルターを適宜選択し、組み合わせて用いることができる。この場合、選択された任意の光学フィルターをフィルターホルダーに取り付けて、光学フィルター手段として熱定数測定装置に組み込んで用いる。   The optical filter that can be used in the present invention is not particularly limited, and commercially available optical filters having different transmittances can be appropriately selected and used in combination. In this case, an arbitrary selected optical filter is attached to the filter holder, and used as an optical filter means incorporated in a thermal constant measuring device.

本発明によれば、上記したように、レーザパルス光発生装置と測定試料の収納用真空室との間のレーザパルス光の光路上に透過率の異なる複数の光学フィルターからなる光学フィルター手段が設けられている。この光学フィルタ手段を有する測定試料へのレーザ光照射量調節機構及びこの機構を組み込んだ熱定数測定装置について図1及び図2を参照して、以下具体的に説明する。なお、図1及び図2では、同じ構成要素については同じ参照番号を付してある。   According to the present invention, as described above, the optical filter means including a plurality of optical filters having different transmittances is provided on the optical path of the laser pulse light between the laser pulse light generator and the vacuum chamber for storing the measurement sample. It has been. The laser beam irradiation amount adjusting mechanism for the measurement sample having this optical filter means and the thermal constant measuring apparatus incorporating this mechanism will be described in detail below with reference to FIGS. 1 and 2, the same reference numerals are assigned to the same components.

図1及び図2に示すように、光学フィフィルター手段11は、光学フィルターを取り付けるための任意形状の開口部12を複数有するフィルターホルダー13、例えば所定の寸法の円板状又は角板状等のフィルターホルダー13を有している。この開口部12は、所定の間隔をあけて円周状又は線状(格子状)に配置されていれば良い。開口部12の数は、フィルターホルダーの大きさ等に応じて適宜選択すればよく、また、その形状や大きさは、レーザパルス光が透過でき、目的とする測定ができれば、特に制限されるものではない。図1では6個の円形状の開口部12を円周状に配置した例を示してあるが、この数や形状や配置形態に制限されるわけではない。開口部12の数は、例えば3〜4個でも良い。   As shown in FIGS. 1 and 2, the optical filter means 11 includes a filter holder 13 having a plurality of openings 12 of an arbitrary shape for attaching an optical filter, for example, a disk-shaped or square-plate shaped having a predetermined size. A filter holder 13 is provided. The openings 12 may be arranged in a circumferential shape or a linear shape (lattice shape) with a predetermined interval. The number of openings 12 may be appropriately selected according to the size of the filter holder, and the shape and size thereof are particularly limited as long as the laser pulse light can be transmitted and the intended measurement can be performed. is not. Although FIG. 1 shows an example in which six circular openings 12 are arranged in a circumferential shape, the number, shape, and arrangement form are not limited. The number of openings 12 may be 3 to 4, for example.

上記フィルターホルダー13には、開口部12のそれぞれに、透過率の異なる光学フィルター14が取り付けられている。各光学フィルター14は、その透過率が適宜の数値間隔をもって段階的に異なるように順番に配置されていることが好ましい。その配置の方向は、特に制限されず、例えば円周状に配置される場合には、時計回りでも反時計回りでも良い。フィルターホルダー13は、ステッピングモータ等の駆動源15により段階的に回転駆動、又は縦若しくは横へスライドさせることできるように構成されている。そのため、数種類の光学フィルター14をセットしたフィルターホルダー13をステッピングモーター等で回転又はスライドさせ、光学フィルターの選択を任意に自動制御することができる。かくして、各光学フィルターの透過率毎に熱拡散率を自動測定することができ、各透過率(%)に対する熱拡散率(cm/s)をプロットして透過率=0%での熱拡散率の外挿が可能になる。 In the filter holder 13, optical filters 14 having different transmittances are attached to the openings 12. The optical filters 14 are preferably arranged in order so that the transmittance varies stepwise with an appropriate numerical interval. The arrangement direction is not particularly limited, and may be clockwise or counterclockwise, for example, when arranged circumferentially. The filter holder 13 is configured to be rotationally driven stepwise by a drive source 15 such as a stepping motor or to be slid vertically or horizontally. Therefore, the filter holder 13 in which several kinds of optical filters 14 are set can be rotated or slid with a stepping motor or the like, and the selection of the optical filters can be arbitrarily controlled automatically. Thus, it is possible to automatically measure the thermal diffusivity for each transmittance of each optical filter, plot the thermal diffusivity (cm 2 / s) against each transmittance (%), and the thermal diffusion at transmittance = 0%. Extrapolation of rates is possible.

上記光学フィルター14としては、3〜4種類或いはそれ以上の種類の異なる透過率を有するフィルターを用いれば良く、その透過率範囲は、測定試料の熱拡散率によることなく、任意に選択することができる。すなわち、透過率=0%が外挿できる範囲の透過率を有する光学フィルターを用いれば良い。例えば、試料として炭素膜の熱拡散率を測定する場合には、透過率100〜10%の範囲内で任意の間隔で3〜4種類変動させた光学フィルターを用いればよい。   As the optical filter 14, it is sufficient to use three or four or more kinds of filters having different transmittances, and the transmittance range can be arbitrarily selected without depending on the thermal diffusivity of the measurement sample. it can. That is, an optical filter having a transmittance in a range in which transmittance = 0% can be extrapolated may be used. For example, when measuring the thermal diffusivity of a carbon film as a sample, it is sufficient to use an optical filter in which three to four types are changed at an arbitrary interval within a range of transmittance of 100 to 10%.

また、本発明の熱定数測定装置に係る実施の形態によれば、この装置は、レーザフラッシュ法に従って熱拡散率を測定する装置であり、図2に示すように、測定試料の表面にレーザパルス光を照射するためのレーザパルス光発生装置21と、測定試料Sの収納用真空室22と、レーザパルス光のエネルギーが照射側の測定試料の表層部に効率よく吸収されて裏面側の温度が上昇する際の試料の裏面温度を測定する測温手段23とを備えた熱定数測定装置において、レーザパルス光発生装置21と測定試料収納用真空室22との間のレーザパルス光の光路上に透過率の異なる複数の光学フィルター14を取り付けた光学フィルター手段11が、上記したように測定試料へのレーザ光照射量調節機構として設けられている。このようなレーザ光照射量調節機構を設けることにより、上記したように、より正確に熱拡散率を評価することが可能となる。   Further, according to the embodiment of the thermal constant measuring apparatus of the present invention, this apparatus is an apparatus for measuring the thermal diffusivity according to the laser flash method. As shown in FIG. 2, the laser pulse is applied to the surface of the measurement sample. The laser pulse light generator 21 for irradiating light, the vacuum chamber 22 for storing the measurement sample S, and the energy of the laser pulse light are efficiently absorbed in the surface layer portion of the measurement sample on the irradiation side, so that the temperature on the back surface side In a thermal constant measuring device provided with a temperature measuring means 23 for measuring the temperature of the back surface of the sample when it rises, it is on the optical path of the laser pulse light between the laser pulse light generator 21 and the measurement sample storage vacuum chamber 22. As described above, the optical filter means 11 having a plurality of optical filters 14 having different transmittances is provided as a mechanism for adjusting the amount of laser light applied to the measurement sample. By providing such a laser beam irradiation amount adjustment mechanism, the thermal diffusivity can be more accurately evaluated as described above.

上記真空室22には、図示していない排気システムが接続されている。また、真空室の外壁には室内の温度を所定の温度に保つための加熱手段が設けられていても良く、これにより、真空室内の雰囲気を測定試料のために温度的に安定した雰囲気とすることができる。例えば、真空室内の雰囲気を、−150〜1500℃に保つことができるようにする。   An exhaust system (not shown) is connected to the vacuum chamber 22. Further, the outer wall of the vacuum chamber may be provided with a heating means for keeping the room temperature at a predetermined temperature, thereby making the atmosphere in the vacuum chamber a temperature stable atmosphere for the measurement sample. be able to. For example, the atmosphere in the vacuum chamber can be maintained at −150 to 1500 ° C.

以下、図1及び図2を参照して、本発明の熱定数測定装置の動作について説明する。本発明によれば、レーザパルス光発生装置21から発生したレーザパルス光を光学フィルター手段11の所望の光学フィルター14を透過せしめる。この場合、上記したようにしてフィルターホルダーを回転又はスライドさせ、光学フィルター手段から所望の光学フィルターを選択する。例えば、この光学フィルターとして透過率が20%から30%ずつ異なるものを光学フィルター手段に取り付け、測定時に所望の光学フィルターを選択することにより、結果として、パルスレーザの出力が100%から10%程度までの範囲で3から4段階程度変更されるようにして測定を行うことができる。この場合、光学フィルター手段11を透過したレーザパルス光を、例えばミラーやプリズム24等を経由せしめた後、測定試料収納用真空室22内に配置された測定試料Sに照射せしめ、測温手段23(赤外線検出器、放射温度計、熱電対)によりその測定試料Sの裏面温度を測定する。光学フィルターを透過したレーザパルス光毎(レーザ出力毎)面温度を測定し、この測定温度データに基づいて測定試料の熱拡散率を求める。   Hereinafter, the operation of the thermal constant measuring apparatus of the present invention will be described with reference to FIGS. According to the present invention, the laser pulse light generated from the laser pulse light generator 21 is transmitted through the desired optical filter 14 of the optical filter means 11. In this case, the filter holder is rotated or slid as described above, and a desired optical filter is selected from the optical filter means. For example, this optical filter having a transmittance varying from 20% to 30% is attached to the optical filter means, and a desired optical filter is selected at the time of measurement. As a result, the output of the pulse laser is about 100% to 10%. The measurement can be performed in such a manner that the level is changed by about 3 to 4 steps. In this case, the laser pulse light transmitted through the optical filter unit 11 is passed through, for example, a mirror or a prism 24 and then irradiated to the measurement sample S disposed in the measurement sample storage vacuum chamber 22, and the temperature measurement unit 23. The back surface temperature of the measurement sample S is measured by (infrared detector, radiation thermometer, thermocouple). The surface temperature of each laser pulse light transmitted through the optical filter (each laser output) is measured, and the thermal diffusivity of the measurement sample is obtained based on the measured temperature data.

以下、駆動源15の動作について説明する。図2に示すように、駆動源15には、駆動源駆動回路25が接続され、この回路25にはマイコンユニット26が接続され、そしてマイコンユニット26にはタッチパネル27及びパーソナルコンピューター28が接続されている。このように構成することにより、フィルターホルダー13を回転又はスライドさせ、所望の光学フィルター14を選択し、熱拡散率の測定に用いることができる。パーソナルコンピュータ28からの指令により、予め駆動源による回転角度やスライド距離とフィルター位置との関係を記憶させたマイコンユニット26から駆動源駆動回路25へ制御信号が出力され、光学フィルター14が選択される。パーソナルコンピューター28の代わりにタッチパネル27からも光学フィルター14選択の指令を出力できる機構となっている。   Hereinafter, the operation of the drive source 15 will be described. As shown in FIG. 2, a drive source drive circuit 25 is connected to the drive source 15, a microcomputer unit 26 is connected to the circuit 25, and a touch panel 27 and a personal computer 28 are connected to the microcomputer unit 26. Yes. By comprising in this way, the filter holder 13 can be rotated or slid, the desired optical filter 14 can be selected, and it can use for the measurement of a thermal diffusivity. In response to a command from the personal computer 28, a control signal is output from the microcomputer unit 26, which previously stores the relationship between the rotation angle or slide distance by the drive source and the filter position, to the drive source drive circuit 25, and the optical filter 14 is selected. . This is a mechanism that can output a command for selecting the optical filter 14 from the touch panel 27 instead of the personal computer 28.

上記レーザパルス光発生装置21のレーザヘッドとマイコンユニット26との間は、レーザ発振トリガ用の信号ライン29で接続され、そしてマイコンユニット26には、フィルターホルダー13の基準位置決め用の位置センサ30が接続されている。   The laser head of the laser pulse light generator 21 and the microcomputer unit 26 are connected by a signal line 29 for laser oscillation trigger, and a position sensor 30 for reference positioning of the filter holder 13 is connected to the microcomputer unit 26. It is connected.

本発明によれば、上記した測定試料へのレーザ光照射量調節機構において、さらに、レーザパルス光発生装置と光学フィルター手段(以下、第一の光学フィルターを備えた「第一の光学フィルター手段」と称す)との間に、或いはまた第一の光学フィルター手段と測定試料(好ましくはミラー等24)との間に、第一の光学フィルターと透過率が異なるか又は同じであるレーザパルス光減衰用の別の光学フィルター(以下、「第二の光学フィルター」と称す)を備えた光学フィルター手段(以下、「第二の光学フィルター手段」と称す)を設けても良い。第一の光学フィルターの選定が好適であれば、レーザ出力を十分に低下させることができる場合が殆どである。しかし、第二の光学フィルターを用いることにより、二つの光学フィルターを透過し、測定試料に照射されるレーザパルス光照射量をさらに少なくすることができ、結果としてレーザ出力がさらに安定し、かつさらに再現性が良くなって、さらに正確に熱定数である熱拡散率を測定することが可能となる。   According to the present invention, in the above-described laser beam irradiation amount adjusting mechanism for the measurement sample, the laser pulse light generator and the optical filter means (hereinafter referred to as “first optical filter means” including the first optical filter) Or between the first optical filter means and the measurement sample (preferably a mirror 24, etc.), or the transmittance of the laser pulse light is different or the same as that of the first optical filter. An optical filter means (hereinafter referred to as “second optical filter means”) provided with another optical filter (hereinafter referred to as “second optical filter”) may be provided. If the selection of the first optical filter is suitable, in most cases the laser output can be sufficiently reduced. However, by using the second optical filter, the amount of laser pulse light irradiated through the two optical filters and irradiated onto the measurement sample can be further reduced, resulting in a more stable laser output, and further The reproducibility is improved, and the thermal diffusivity, which is a thermal constant, can be measured more accurately.

上記第二の光学フィルター手段を用いる場合として、例えば、熱伝導率の低い材料(例えば、アクリル、ポリイミド等の樹脂)の熱拡散率を測定する場合がある。このような熱伝導率の低い材料は、レーザパルス光によって加熱された受光面からその裏面へ熱が拡散するのに時間がかかるため、受光面の温度が上昇した状態が比較的長く、測定試料表面がダメージを受けることがある。この問題を回避するためには、レーザパルス光の照射量をより少なくする必要がある。   As a case where the second optical filter means is used, for example, the thermal diffusivity of a material having low thermal conductivity (for example, a resin such as acrylic or polyimide) may be measured. Such a material with low thermal conductivity takes a long time for heat to diffuse from the light receiving surface heated by the laser pulse light to the back surface thereof, so that the temperature of the light receiving surface is relatively high, and the measurement sample The surface may be damaged. In order to avoid this problem, it is necessary to reduce the irradiation amount of the laser pulse light.

なお、上記したしように、第一の光学フィルター手段にセットする光学フィルターの数は特に制限はなく、通常3〜6種類セットすれば、第一の光学フィルター手段だけで十分にその役割を果たす場合が殆どである。しかし、上記したような熱伝導率の低い材料の場合には、さらに第二の光学フィルター手段と組み合わせることで、測定試料に照射するレーザパルス光の強度をさらに下げることが好ましい場合もある。   As described above, the number of optical filters to be set in the first optical filter means is not particularly limited. Usually, if three to six kinds of optical filters are set, the first optical filter means can sufficiently fulfill its role. Is most. However, in the case of a material having a low thermal conductivity as described above, it may be preferable to further reduce the intensity of the laser pulse light irradiated to the measurement sample by further combining with the second optical filter means.

本発明において用いる上記した第二の光学フィルター手段としては、透過率30〜70%程度を有する光学フィルターをセットしたものであれば良く、この範囲内のものを適宜選定して用いれば良い。この第二の光学フィルター手段は、複数の光学フィルターを備えたものであっても、単一の光学フィルターを備えたものであっても良く、第一の光学フィルター手段と組み合わされて、レーザパルス光の測定試料への照射量(その結果としてのレーザ出力)をさらに効率よく変動させることができるように構成されていれば良い。第二の光学フィルター手段が複数の光学フィルターを備えている場合には、第一の光学フィルター手段の場合と同様に図示していない駆動源により、段階的に回転駆動又は縦若しくは横にスライドできるように構成されていれば良い。勿論、両フィルター手段とも手動でも良い。   As the second optical filter means used in the present invention, any optical filter having a transmittance of about 30 to 70% may be set, and those within this range may be appropriately selected and used. The second optical filter means may be provided with a plurality of optical filters or a single optical filter. In combination with the first optical filter means, the laser pulse It suffices that the light irradiation amount of the measurement sample (resulting laser output) can be varied more efficiently. When the second optical filter means is provided with a plurality of optical filters, it can be rotationally driven or slid vertically or horizontally stepwise by a drive source not shown in the same manner as in the case of the first optical filter means. What is necessary is just to be comprised. Of course, both filter means may be manually operated.

本実施例では、図2に示す熱定数測定装置を用い、各光学フィルターの透過率(結果として、各レーザ出力に対応する)に対する熱拡散率を測定し、測定値を外挿して光学フィルター透過率=0%(ΔT=0℃)における熱拡散率を求めた。   In this embodiment, the thermal constant measuring apparatus shown in FIG. 2 is used to measure the thermal diffusivity for each optical filter (as a result, corresponding to each laser output), and the measured value is extrapolated to transmit the optical filter. The thermal diffusivity at a rate = 0% (ΔT = 0 ° C.) was determined.

レーザパルス光発生装置(出力30J/pulse程度のガラスレーザ)21から発生したレーザパルス光を光学フィルター手段11に取り付けられた所望の光学フィルター14(透過率が50%、20%及び10%の光学フィルターを用いると共に、透過率100%(光学フィルターなしの場合))を透過せしめた。この場合、フィルターホルダー13を回転させ、光学フィルター手段11から所望の光学フィルターを選択して、熱拡散率(cm/s)の測定を行った。光学フィルター手段11を透過したレーザパルス光を、ミラー24を経由した後、測定試料収納用真空室22内に配置された測定試料(厚さ1.0mmの黒鉛膜)Sに照射せしめ、測温手段23(赤外線検出器)によりその測定試料Sの裏面温度を測定した。この場合、各光学フィルター毎に裏面温度を測定し、この測定データに基づいて測定試料の熱拡散率を求めた。その結果を以下の表1に示すと共に、図4に、フィルター透過率に対する熱拡散率をプロットした。各熱拡散率の値は3回測定の平均値である。 Laser pulse light generated from a laser pulse light generator (glass laser having an output of about 30 J / pulse) 21 is optical filter 14 having a desired optical filter 14 (transmittance of 50%, 20%, and 10%) attached to optical filter means 11. A filter was used and a transmittance of 100% (in the case of no optical filter) was transmitted. In this case, the filter holder 13 was rotated, a desired optical filter was selected from the optical filter means 11, and the thermal diffusivity (cm 2 / s) was measured. After passing through the mirror 24, the laser pulse light transmitted through the optical filter means 11 is irradiated onto a measurement sample (graphite film having a thickness of 1.0 mm) S disposed in the measurement sample storage vacuum chamber 22, thereby measuring the temperature. The back surface temperature of the measurement sample S was measured by means 23 (infrared detector). In this case, the back surface temperature was measured for each optical filter, and the thermal diffusivity of the measurement sample was obtained based on the measurement data. The results are shown in Table 1 below, and the thermal diffusivity against the filter transmittance is plotted in FIG. Each thermal diffusivity value is an average of three measurements.

図4から明らかなように、測定値を外挿して透過率=0%(ΔT=0℃)における熱拡散率を求めたところ、0.9653cm/sとなり、文献値(30℃:9.65(cm/s)、THERMOPHYSICAL PROPERTIES OF MATTER, The TPRC Data Series)と一致した。
なお、上記した透過率10%の1種の光学フィルターの代わりに、透過率50%と20%の2種の光学フィルターを用いて、上記と同様に熱拡散率を測定したところ、上記透過率10%の光学フィルターを用いた場合と同様な結果が得られた。
As is clear from FIG. 4, the measured value was extrapolated to determine the thermal diffusivity at transmittance = 0% (ΔT = 0 ° C.), which was 0.9653 cm 2 / s, which was a literature value (30 ° C .: 9. 65 (cm 2 / s), the same as THERMOPHYSICAL PROPERTIES OF MATTER, The TPRC Data Series.
In addition, when the thermal diffusivity was measured in the same manner as described above using two optical filters having a transmittance of 50% and 20% instead of the one optical filter having the transmittance of 10%, the transmittance was Similar results were obtained when a 10% optical filter was used.

本発明によれば、レーザフラッシュ法に従って測定試料の熱定数を測定する際に、測定試料に入射するレーザ照射量を段階的に変更することができ、より正確に熱定数を測定することが可能となるので、種々の材料の熱伝導性を評価することが必要な産業分野で有効に利用可能である。   According to the present invention, when measuring the thermal constant of a measurement sample according to the laser flash method, the amount of laser irradiation incident on the measurement sample can be changed in stages, and the thermal constant can be measured more accurately. Therefore, it can be effectively used in industrial fields where it is necessary to evaluate the thermal conductivity of various materials.

本発明で用いる光学フィルター手段の一構成例を模式的に示す構成図。The block diagram which shows typically one structural example of the optical filter means used by this invention. 本発明の熱定数測定装置の一構成例を模式的に示す構成図。The block diagram which shows typically the example of 1 structure of the thermal constant measuring apparatus of this invention. ΔT対熱拡散率データの外挿線を示すグラフ。The graph which shows the extrapolation line of (DELTA) T vs. thermal diffusivity data. 本発明における光学フィルター透過率に対する熱拡散率の関係を示すグラフ。The graph which shows the relationship of the thermal diffusivity with respect to the optical filter transmittance | permeability in this invention.

符号の説明Explanation of symbols

11 光学フィルター手段 12 開口部
13 フィルターホルダー 14 光学フィルター
15 駆動源 21 レーザパルス光発生装置
22 駆動源駆動回路 23 マイコンユニット
24 タッチパネル 25 パーソナルコンピューター
26 測定試料収納用真空室 27 測温手段
28 プリズム S 測定試料
DESCRIPTION OF SYMBOLS 11 Optical filter means 12 Opening part 13 Filter holder 14 Optical filter 15 Drive source 21 Laser pulse light generator 22 Drive source drive circuit 23 Microcomputer unit 24 Touch panel 25 Personal computer 26 Vacuum chamber for measurement sample storage 27 Temperature measuring means 28 Prism S measurement sample

Claims (2)

測定試料の表面にレーザパルス光を照射するためのレーザパルス光発生装置と、該測定試料の収納用真空室と、該測定試料の裏面温度を測定する測温手段とを備えた熱定数測定装置で用いる測定試料へのレーザ光照射量調節機構であって、該レーザパルス光発生装置と該測定試料の収納用真空室との間のレーザパルス光の光路上に透過率の異なる複数の第一の光学フィルターを備えた第一の光学フィルター手段と該第一の光学フィルターと透過率が異なるか又は同じである第二の光学フィルターを備えた第二の光学フィルター手段とを設け、また、この光学フィルター手段を回転、又は縦若しくは横にスライドさせ、所定の光学フィルターをレーザパルス光の光路上に配置できるようにする駆動手段を設けたことを特徴とする測定試料へのレーザ光照射量調節機構。 Thermal constant measuring device comprising a laser pulse light generator for irradiating the surface of the measurement sample with laser pulse light, a vacuum chamber for storing the measurement sample, and a temperature measuring means for measuring the back surface temperature of the measurement sample A laser beam irradiation amount adjusting mechanism for the measurement sample used in the measurement, wherein a plurality of first different in transmittances on the optical path of the laser pulse light between the laser pulse light generator and the vacuum chamber for storing the measurement sample A first optical filter means having the optical filter and a second optical filter means having a second optical filter having a transmittance different from or the same as that of the first optical filter. The optical filter means is rotated or slid vertically or horizontally, and a drive means is provided to allow the predetermined optical filter to be arranged on the optical path of the laser pulse light. The light irradiation amount adjusting mechanism. 測定試料の表面にレーザパルス光を照射するためのレーザパルス光発生装置と、該測定試料の収納用真空室と、該測定試料の裏面温度を測定する測温手段とを備えた熱定数測定装置において、該レーザパルス光発生装置と該測定試料の収納用真空室との間のレーザパルス光の光路上に透過率の異なる複数の第一の光学フィルターを備えた第一の光学フィルター手段と該第一の光学フィルターと透過率が異なるか又は同じである第二の光学フィルターを備えた第二の光学フィルター手段とを測定試料へのレーザ光照射量調節機構として設け、そしてこのレーザ光照射量調節機構が、該光学フィルター手段を回転、又は縦若しくは横にスライドさせ、所定の光学フィルターをレーザパルス光の光路上に配置できるようにする駆動手段を備えていることを特徴とする熱定数測定装置。 Thermal constant measuring device comprising a laser pulse light generator for irradiating the surface of the measurement sample with laser pulse light, a vacuum chamber for storing the measurement sample, and a temperature measuring means for measuring the back surface temperature of the measurement sample A first optical filter means comprising a plurality of first optical filters having different transmittances on the optical path of the laser pulse light between the laser pulse light generator and the vacuum chamber for storing the measurement sample; A first optical filter and a second optical filter means having a second optical filter having a transmittance different from or the same as that of the first optical filter are provided as a laser light irradiation amount adjusting mechanism for the measurement sample, and this laser light irradiation amount The adjusting mechanism includes driving means for rotating or sliding the optical filter means vertically or horizontally so that a predetermined optical filter can be arranged on the optical path of the laser pulse light. Thermal constant measuring apparatus according to claim and.
JP2007148789A 2007-06-05 2007-06-05 Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism Active JP5041522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148789A JP5041522B2 (en) 2007-06-05 2007-06-05 Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148789A JP5041522B2 (en) 2007-06-05 2007-06-05 Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism

Publications (2)

Publication Number Publication Date
JP2008304191A JP2008304191A (en) 2008-12-18
JP5041522B2 true JP5041522B2 (en) 2012-10-03

Family

ID=40233057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148789A Active JP5041522B2 (en) 2007-06-05 2007-06-05 Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism

Country Status (1)

Country Link
JP (1) JP5041522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316617B1 (en) * 2012-02-21 2013-10-15 주식회사 엘티에스 Apparatus for sealing frit using laser
DE102015122037B4 (en) * 2015-12-17 2017-12-07 Netzsch-Gerätebau GmbH Method for the thermal analysis of a sample and / or for the calibration of a temperature measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159740A (en) * 1986-12-23 1988-07-02 Kawasaki Steel Corp Heat constant measuring instrument by laser flash method
JPH07333144A (en) * 1994-06-07 1995-12-22 Iseki & Co Ltd Near infrared spectral analysis device
JP3079216B2 (en) * 1996-02-19 2000-08-21 工業技術院長 Specific heat capacity measurement method
JP2000249670A (en) * 1999-03-02 2000-09-14 Tokai Carbon Co Ltd Displacement-measuring device at hot temperature
JP4394315B2 (en) * 2001-08-24 2010-01-06 株式会社超高温材料研究所 Thermal diffusivity measurement method using laser flash method
JP2007040715A (en) * 2005-07-29 2007-02-15 Ulvac-Riko Inc Michelson optical interferometer, thermal expansion meter using optical interferometer, and thermal expansion amount measuring method

Also Published As

Publication number Publication date
JP2008304191A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4195935B2 (en) Thermophysical property measuring method and apparatus
CN109900738B (en) Device and method for heating material based on high-power laser
US10180358B2 (en) Method and device for the photothermic investigation of a sample
JP2011185852A (en) Device for measurement of thermal diffusivity
JP5041522B2 (en) Laser beam irradiation amount adjusting mechanism for measurement sample having optical filter means and thermal constant measuring apparatus having this mechanism
Gallais et al. High power continuous wave laser heating of graphite in a high temperature range up to 3800 K
JP6382863B2 (en) Three-dimensional thermal diffusivity
Maglić et al. The apparatus for thermal diffusivity measurement by the laser pulse method
GB2044453A (en) Device for measuring the thermal conductivity of liquids
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
Hay et al. New apparatus for thermal diffusivity and specific heat measurements at very high temperature
US3081632A (en) Direct-reading pyrometer microscope
JPH09222404A (en) Method and device for measuring specific heat capacity
Branscomb et al. Improved thermal diffusivity method applied to TiB2, ZrB2, and HfB2 from 200–1300° C
JP5761705B2 (en) Gas circulation type variable temperature oven for temperature standard
JP2002107229A (en) Infrared radiator and infrared radiation device using it
JPH0525304B2 (en)
Ionescu et al. Studies on thermal properties of substrates for electronics using IR thermography
KR100387591B1 (en) Method of measuring temperature of sample heated by radiation
RU2811326C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using heat flow sensors
RU2807398C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using pyrometers
JP2728497B2 (en) Trimming device for thermal head
JP2004157009A (en) Balanced type radiation temperature / emissivity measuring apparatus and method
Sivkov et al. The bulk properties of Pd-Si alloys at temperatures from room temperature to 1600° C
Cox A technique for measuring thermal radiation properties of translucent materials at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

R150 Certificate of patent or registration of utility model

Ref document number: 5041522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250