JP5761705B2 - Gas circulation type variable temperature oven for temperature standard - Google Patents

Gas circulation type variable temperature oven for temperature standard Download PDF

Info

Publication number
JP5761705B2
JP5761705B2 JP2011001599A JP2011001599A JP5761705B2 JP 5761705 B2 JP5761705 B2 JP 5761705B2 JP 2011001599 A JP2011001599 A JP 2011001599A JP 2011001599 A JP2011001599 A JP 2011001599A JP 5761705 B2 JP5761705 B2 JP 5761705B2
Authority
JP
Japan
Prior art keywords
temperature
cavity
furnace
thermometer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011001599A
Other languages
Japanese (ja)
Other versions
JP2012145343A (en
Inventor
祐公子 清水
祐公子 清水
順太郎 石井
順太郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011001599A priority Critical patent/JP5761705B2/en
Publication of JP2012145343A publication Critical patent/JP2012145343A/en
Application granted granted Critical
Publication of JP5761705B2 publication Critical patent/JP5761705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、約50℃から600℃の温度範囲で放射温度計を代表とする非接触式温度計や熱電対、白金抵抗温度計などの接触式温度計を校正するための温度標準用気体循環式温度可変恒温炉装置に関する。   The present invention is a gas circulation for temperature standard for calibrating contact-type thermometers such as non-contact type thermometers such as radiation thermometers, thermocouples, platinum resistance thermometers in a temperature range of about 50 ° C. to 600 ° C. The present invention relates to a variable temperature thermostat apparatus.

従来、非接触式温度計や接触式温度計を校正するための定点炉や比較炉としては、炉内の空洞の温度分布が均一であることが重要であり、それを評価し、温度均一性を確認する必要がある。その理由は以下の通りである。定点炉の場合には均一な融解・凝固を実現し良好なプラトーを再現性よく得るために定点セルを設置した空洞の温度分布が均一である必要がある。比較炉の場合には、被校正温度計が基準温度計と同じ温度の環境にあることが重要であるため空洞の温度分布が均一である必要がある。非接触式の放射温度計同士を比較校正する場合には、黒体空洞の実効放射率が比較する温度計で同一である必要があるが、異なる波長の放射温度計を校正する場合には、空洞の放射率が限りなく1でないとこの条件は満たされないため、空洞の温度分布が均一である必要がある。さらに、これらの定点炉や比較炉で正しい温度を実現し、広範な温度域にわたって温度計の校正を行うには、広範な温度域を1台の恒温炉でカバーすることが望ましい。この温度分布を均一にするために従来技術として(1)ヒートパイプ炉、(2)電気炉、(3)液体循環式恒温炉などが挙げられる。
しかし、これらの従来技術には、以下のような問題点がある。
上記(1)のヒートパイプ炉については、広範な温度範囲を1台のヒートパイプ炉でカバーすることができず、複数個用意する必要がある。例として、50℃から600℃の温度範囲で、3台の炉を用意する必要があり、しかも全温度範囲を連続的にカバーすることが不可能である。1台が非常に高価であり、熱媒体に、セシウム、ナトリウム、水銀など危険物を使用しているため扱いが困難で、一般の使用が不適当である。校正の不確かさ要因となる空洞壁面の温度分布を小さくするためには、空洞壁面の温度分布の評価が必須であるが、熱電対等による接触式温度計による評価方法しか手段がない。この方法は測定方法が複雑であり信頼性が低い。
次に上記(2)の電気炉については、ヒーター配置や抵抗値による調整等での温度分布調整が必要であるが、設定温度ごとに調整を変える必要があるなど調整は一般に困難であり、炉の均熱性が不十分である。上記(1)と同様に、空洞壁面の温度分布をはじめとする評価方法が複雑で信頼性が低い。
次の上記(3)の液体循環式恒温炉(例えば、引用文献1、2参照)については、熱媒体が水やシリコンオイルなどで構成されているため到達できる上限温度が限られる。硝酸ナトリウム、硝酸カリウムの混合液体からなる塩浴炉に関しては、水や油などの液体が混入すると、塩表面が蒸発しガス状態となり、塩をバスから噴出させるなど蒸気が問題となり、扱いにくい。さらに上記(1)と同様、空洞壁面の温度分布をはじめとする、評価方法が複雑であり、信頼性が低い。
一方で、例えば引用文献3記載のように、低温度での校正装置で熱交換ガスを利用した例もあるが、構造が複雑となる上、0℃以下の技術であり、本願のような常温以上から約600℃の温度範囲での温度計の校正に適用できない。
Conventionally, as a fixed-point furnace or comparative furnace for calibrating non-contact type thermometers and contact-type thermometers, it is important that the temperature distribution of the cavities in the furnace is uniform. It is necessary to confirm. The reason is as follows. In the case of a fixed-point furnace, the temperature distribution of the cavity in which the fixed-point cell is installed needs to be uniform in order to achieve uniform melting and solidification and to obtain a good plateau with good reproducibility. In the case of a comparative furnace, it is important that the thermometer to be calibrated is in the same temperature environment as the reference thermometer, so the temperature distribution of the cavity needs to be uniform. When comparing and calibrating non-contact type radiation thermometers, the effective emissivity of the black body cavity needs to be the same in the thermometer to compare, but when calibrating radiation thermometers of different wavelengths, Since this condition is not satisfied unless the emissivity of the cavity is one, the temperature distribution of the cavity needs to be uniform. Furthermore, in order to achieve the correct temperature in these fixed point furnaces and comparative furnaces and calibrate thermometers over a wide temperature range, it is desirable to cover a wide temperature range with a single thermostat. In order to make this temperature distribution uniform, conventional techniques include (1) a heat pipe furnace, (2) an electric furnace, and (3) a liquid circulation thermostatic furnace.
However, these conventional techniques have the following problems.
About the heat pipe furnace of said (1), the wide temperature range cannot be covered with one heat pipe furnace, but it is necessary to prepare two or more. As an example, it is necessary to prepare three furnaces in a temperature range of 50 ° C. to 600 ° C., and it is impossible to continuously cover the entire temperature range. One unit is very expensive, and because it uses hazardous materials such as cesium, sodium and mercury for the heat medium, it is difficult to handle and is unsuitable for general use. In order to reduce the temperature distribution of the cavity wall surface, which is a factor of uncertainty of calibration, it is essential to evaluate the temperature distribution of the cavity wall surface, but there is only an evaluation method using a contact thermometer such as a thermocouple. This method has a complicated measurement method and is not reliable.
Next, regarding the electric furnace of (2) above, temperature distribution adjustment by adjustment by heater arrangement or resistance value is necessary, but adjustment is generally difficult because adjustment is required for each set temperature, etc. The soaking property is insufficient. Similar to (1) above, the evaluation method including the temperature distribution on the cavity wall surface is complicated and has low reliability.
Regarding the following liquid circulation type thermostatic oven (3) (see, for example, cited documents 1 and 2), the upper limit temperature that can be reached is limited because the heat medium is composed of water, silicon oil, or the like. With regard to a salt bath furnace composed of a mixed liquid of sodium nitrate and potassium nitrate, when a liquid such as water or oil is mixed, the surface of the salt evaporates to become a gas state, and vapor becomes problematic because the salt is ejected from the bath. Furthermore, as in the above (1), the evaluation method including the temperature distribution on the cavity wall surface is complicated and the reliability is low.
On the other hand, there is an example in which heat exchange gas is used in a calibration apparatus at a low temperature as described in Cited Document 3, for example. From the above, it cannot be applied to thermometer calibration in the temperature range of about 600 ° C.

特開2007−309750号公報JP 2007-309750 A 特開2001−147162号公報JP 2001-147162 A 特開2007−232651号公報JP 2007-232651 A

従来の恒温炉では広い温度範囲で十分な均熱性が得られず、また、一部の種類の恒温炉に関しては十分な均熱性が得られるものの、1台で広範な温度域をカバーできないため、装置を複数台用意しなければならないなどの問題があり、また、熱媒体として、セシウム、ナトリウム、水銀など危険物を使用すると取り扱い上の問題があった。
一方、空洞壁面の温度分布を評価するには、熱電対などの接触式温度計を利用するしか手段がなく、これは十分な精度が得られないほか、測定が困難なため信頼性が低く正しい温度分布情報が得られないという問題がある。このため、温度調整に高い信頼性で結果をフィードバックすることができず、空洞の均熱性も不十分となる。さらに、接触式温度計による分布測定は、測定対象となる空洞内側に温度計を直接挿入する必要があるため、温度計の校正中にリアルタイムに空洞壁面の温度分布の計測が不可能であり、かつ測定対象の損傷や劣化を引き起こすリスクも高い。
In conventional constant temperature furnaces, sufficient temperature uniformity cannot be obtained in a wide temperature range, and although some types of temperature controlled furnaces can achieve sufficient temperature uniformity, a single unit cannot cover a wide temperature range, There were problems such as having to prepare a plurality of devices, and there were problems in handling when hazardous materials such as cesium, sodium, mercury were used as the heat medium.
On the other hand, the only way to evaluate the temperature distribution on the cavity wall surface is to use a contact thermometer such as a thermocouple. This is not accurate enough and is difficult to measure and is not reliable and correct. There is a problem that temperature distribution information cannot be obtained. For this reason, the result cannot be fed back to the temperature control with high reliability, and the soaking of the cavity becomes insufficient. Furthermore, the distribution measurement using a contact-type thermometer requires a thermometer to be inserted directly inside the cavity to be measured, so it is impossible to measure the temperature distribution of the cavity wall surface in real time during thermometer calibration. In addition, there is a high risk of causing damage and deterioration of the measurement target.

広い温度範囲を1台の炉でカバーし、温度分布の均一性にすぐれた恒温炉を提供するために気体循環式温度可変恒温炉を開発し、気体(例えば空気)が熱媒体のため、取り扱いに危険がなく、50℃から600℃程度までの広範囲な温度域を1台でカバーできる。
さらに、恒温炉の横方向に放射温度計や熱画像装置等の非接触温度計で空洞温度分布を測定するための透明なガラス窓を炉壁に設けた。具体的には、熱媒体が透明な気体(例えば、空気)のため、恒温炉の側面に、空洞の温度分布を放射温度計でモニターするための窓を設ける。その窓から非接触で信頼性高くかつ簡便に温度分布を測定でき、測定結果に基づいて温度調整を行う。校正中においてもリアルタイムに空洞温度分布の計測が可能である。
In order to provide a constant temperature furnace that covers a wide temperature range with a single furnace and has a uniform temperature distribution, a gas circulation type temperature variable temperature constant temperature furnace was developed. Can cover a wide temperature range from about 50 ° C to about 600 ° C.
Further, a transparent glass window for measuring the cavity temperature distribution with a non-contact thermometer such as a radiation thermometer or a thermal imager was provided in the furnace wall in the transverse direction of the thermostat. Specifically, since the heat medium is a transparent gas (for example, air), a window for monitoring the temperature distribution of the cavity with a radiation thermometer is provided on the side surface of the constant temperature furnace. The temperature distribution can be measured easily and reliably without contact from the window, and the temperature is adjusted based on the measurement result. The cavity temperature distribution can be measured in real time even during calibration.

すなわち、本発明の温度標準用気体循環式温度可変恒温炉装置は、炉内に設置した均熱空洞と、炉内の気体を循環させる熱媒体循環手段と、炉内の気体を加熱する加熱手段を備え、温度制御手段により、前記熱媒体循環手段及び前記加熱手段を駆動制御することを特徴とする温度標準用気体循環式温度可変恒温炉装置。
また、本発明は、上記温度標準用気体循環式温度可変恒温炉装置において、上記空洞は、熱伝導率の良好な素材からなることを特徴とする。
また、本発明は、上記温度標準用気体循環式温度可変恒温炉装置において、上記空洞内に定点セルを挿入したことを特徴とする。
また、本発明は、上記温度標準用気体循環式温度可変恒温炉装置において、炉内の気体は空気又は不活性ガスであることを特徴とする。
また、本発明は、上記温度標準用気体循環式温度可変恒温炉装置において、上記空洞は、空洞の放射率を高めるために、グラファイト素材で形成されるか又は表面に黒色塗料を施されていることを特徴とする。
また、本発明は、上記温度標準用気体循環式温度可変恒温炉装置において、炉壁に設けた透明窓と、当該透明窓を通して空洞壁面温度を測定する温度計とを備えていることを特徴とする。
なお、本発明において、空洞は接触温度計を校正する装置においては温度計を挿入する測定孔を指し、非接触温度計である放射温度計を校正する装置においては黒体空洞を意味するものとする。
That is, the temperature-standard gas circulation type temperature-controlled thermostat apparatus of the present invention includes a soaking cavity installed in the furnace, a heat medium circulation means for circulating the gas in the furnace, and a heating means for heating the gas in the furnace. And a temperature control means for driving and controlling the heat medium circulation means and the heating means.
Moreover, the present invention is characterized in that, in the above-described temperature-circulating gas circulation type variable temperature thermostat apparatus, the cavity is made of a material having a good thermal conductivity.
Moreover, the present invention is characterized in that in the above-mentioned gas circulation type temperature-variable constant temperature furnace for temperature standard, a fixed point cell is inserted into the cavity.
Moreover, the present invention is characterized in that the gas in the furnace is air or an inert gas in the above-described temperature-circulating gas-circulating temperature-variable thermostatic apparatus.
Further, the present invention is the above-described temperature-circulating gas-circulating temperature-variable constant-temperature furnace apparatus, wherein the cavity is formed of a graphite material or a black paint is applied to the surface in order to increase the emissivity of the cavity. It is characterized by that.
Further, the present invention is characterized in that in the above-described temperature-circulating gas-circulating temperature-variable constant-temperature furnace apparatus, a transparent window provided on the furnace wall and a thermometer for measuring the cavity wall surface temperature through the transparent window are provided. To do.
In the present invention, the cavity means a measurement hole into which a thermometer is inserted in an apparatus for calibrating a contact thermometer, and means a black body cavity in an apparatus for calibrating a radiation thermometer which is a non-contact thermometer. To do.

本発明の温度標準用気体循環式温度可変恒温炉装置によれば、1台の装置で50℃から600℃程度の広範な温度域をカバーすることができ、熱媒体が気体(例えば空気)のため危険を伴わず、気体を炉内に循環させ、空洞を均熱にする気体の流路を形成することにより均一な温度分布を実現でき、安全で信頼性の高い校正が実現できる。
透明窓を設ければ、窓を通して空洞の横方向の温度分布を非接触で測定できるので、その測定結果に基づいて空洞の温度を均一に調整することができ、正確で信頼性の高い校正が実現できる、また、温度計の校正中において空洞の温度分布をリアルタイムに測定することもできる。
また、本発明の温度標準用気体循環式温度可変恒温炉装置によれば、放射温度計や熱画像装置などの非接触式温度計を校正する場合に、黒体空洞の温度分布がなく均熱であり、かつ十分黒い黒体であれば測定する波長によって輝度温度が異なることはない。従来の装置では、温度分布の評価が不十分であったため温度分布が残り、実効的な放射率が下がると測定波長によって輝度温度が変わることがあったが、本発明の装置では、空洞の温度分布を信頼性高く測定することができるため温度分布の調整を信頼性高く容易に行うことが可能となり、結果、空洞の温度を極力均熱に近づけることが可能となる。したがって、放射温度計の測定波長の影響を受けずに、正しく対象温度の測定が可能となる。
According to the gas-circulation type variable temperature thermostat apparatus for temperature standard of the present invention, a single device can cover a wide temperature range of about 50 ° C. to 600 ° C., and the heat medium is gas (for example, air). For this reason, a uniform temperature distribution can be realized by circulating a gas in the furnace and forming a gas flow path that soaks the cavity without danger, and a safe and reliable calibration can be realized.
If a transparent window is provided, the temperature distribution in the lateral direction of the cavity can be measured in a non-contact manner through the window, so that the temperature of the cavity can be adjusted uniformly based on the measurement result, and accurate and reliable calibration can be performed. It can also be realized and the temperature distribution of the cavity can be measured in real time during the calibration of the thermometer.
Further, according to the gas circulation type temperature-controlled thermostat apparatus for temperature standard of the present invention, when calibrating a non-contact type thermometer such as a radiation thermometer or a thermal imaging apparatus, there is no temperature distribution of the black body cavity and soaking is performed. If the black body is sufficiently black, the luminance temperature does not vary depending on the wavelength to be measured. In the conventional apparatus, the temperature distribution remained insufficient because the temperature distribution was insufficiently evaluated, and when the effective emissivity decreased, the brightness temperature might change depending on the measurement wavelength. However, in the apparatus of the present invention, the temperature of the cavity Since the distribution can be measured with high reliability, the temperature distribution can be easily adjusted with high reliability, and as a result, the temperature of the cavity can be as close to the soaking as possible. Therefore, it is possible to correctly measure the target temperature without being affected by the measurement wavelength of the radiation thermometer.

本発明の温度標準用気体循環式温度可変恒温炉装置の一実施例を説明した側面図である。It is the side view explaining one Example of the gas circulation type temperature variable thermostatic oven apparatus for temperature standards of this invention. 同実施例の正面図である。It is a front view of the same Example. 炉壁に透明窓を設けた第二の実施例の説明図である。It is explanatory drawing of the 2nd Example which provided the transparent window in the furnace wall.

(実施例1)
図1は、本発明の温度標準用気体循環式温度可変恒温炉装置の一実施例を示した側面図であり、図2はその正面図である。
図1において、1は炉内に設置された空洞であり、空洞は炉の正面側に開口している。2は炉内の熱媒体の加熱手段であるヒーター、3は炉内の熱媒体である気体(例えば空気など)を循環させ空洞の温度を均熱にする循環手段としてのファンであって、回転駆動する撹拌翼からなる。4は空洞の外周温度を測定する白金抵抗温度計などの温度計であり、5は均熱空洞近傍の循環気体熱媒体の温度を測定し、熱媒体温度と設定温度とを比較し炉の温度制御をおこなうための白金抵抗温度計などの温度計である。また、4は5を兼ねることもできる。温度制御手段により、温度計5で測定した熱媒体温度と設定温度とを比較して、フィードバック制御しながら熱媒体温度が設定温度になるようにファン3及びヒーター2を駆動制御する。
Example 1
FIG. 1 is a side view showing an embodiment of the temperature-circulating gas variable temperature-controlled thermostat apparatus of the present invention, and FIG. 2 is a front view thereof.
In FIG. 1, 1 is a cavity installed in the furnace, and the cavity is open to the front side of the furnace. 2 is a heater that is a heating means of the heat medium in the furnace, 3 is a fan as a circulation means that circulates a gas (for example, air) that is the heat medium in the furnace and soaks the temperature of the cavity, and rotates It consists of a stirring blade that drives. 4 is a thermometer such as a platinum resistance thermometer for measuring the outer peripheral temperature of the cavity, 5 is a temperature of the circulating gas heat medium in the vicinity of the soaking cavity, and the temperature of the furnace is compared with the heat medium temperature and the set temperature. It is a thermometer such as a platinum resistance thermometer for performing control. 4 can also serve as 5. The temperature control means compares the heat medium temperature measured by the thermometer 5 with the set temperature, and drives and controls the fan 3 and the heater 2 so that the heat medium temperature becomes the set temperature while performing feedback control.

この実施例1の温度標準用気体循環式温度可変恒温炉装置を用いて非接触温度計である放射温度計の比較校正を行うには、空洞の開口部に対向して被校正温度計を設置し、空洞内部の温度を測定することによって行う。基準温度計としては、温度目盛りの設定された標準放射温度計を用いて被校正温度計と交代で空洞内部の温度を測定しても良いし、温度計4を用いることもできる。空洞は、熱伝導率の良好な素材からなり、前部が炉壁に開口しているものを用いる。ここでいう空洞とは、被校正温度計の視野に比べ開口が大きく、空洞放射率を高めるために空洞の長さが十分長いものである。
上記空洞は、空洞の放射率を高めるために(黒さを増すために)底面反射を排除すべく後部が円錐状に形成されていることを特徴とする。後部形状は底面反射が排除されれば円錐以外の形状でもよい。図では空洞後部形状は円錐状に形成されているが、空洞を斜めにカットしたような形状や、ほかの形状にすることもできる。さらに空洞の放射率を高めるために、グラファイト素材で形成されるか又は表面に黒色塗料を施して形成された黒体空洞を用いる。グラファイトによる黒体空洞は従来不活性気体雰囲気の中で使うことが常識であったが、本発明の装置では500℃までの温度で100時間以上劣化せずに使用できることが確認された。黒色塗料と比較して、塗料劣化の心配もなく、維持管理がしやすく、寿命も長い。空洞の寿命は短くなるものの600℃でも使用可能である。本発明は空洞の劣化が確認された場合においても空洞交換が容易であることも特徴である。
In order to perform comparative calibration of a radiation thermometer that is a non-contact thermometer using the gas-circulating temperature-variable thermostatic oven apparatus for temperature standard of Example 1, a thermometer to be calibrated is installed facing the opening of the cavity. And measuring the temperature inside the cavity. As the reference thermometer, a standard radiation thermometer with a temperature scale set may be used to measure the temperature inside the cavity in place of the thermometer to be calibrated, or the thermometer 4 may be used. The cavity is made of a material having good thermal conductivity, and the front part is open to the furnace wall. The term “cavity” here means that the opening is larger than the field of view of the thermometer to be calibrated, and the length of the cavity is sufficiently long in order to increase the cavity emissivity.
The cavity is characterized in that the rear part is formed in a conical shape so as to eliminate bottom reflection in order to increase the emissivity of the cavity (in order to increase blackness). The rear shape may be a shape other than a cone as long as bottom surface reflection is eliminated. In the figure, the shape of the rear portion of the cavity is formed in a conical shape, but it can be formed in a shape in which the cavity is cut obliquely or in other shapes. In order to further increase the emissivity of the cavity, a black body cavity formed of a graphite material or a black paint on the surface is used. Conventionally, it has been common knowledge to use a black body cavity made of graphite in an inert gas atmosphere, but it has been confirmed that the apparatus of the present invention can be used at temperatures up to 500 ° C. without deterioration for more than 100 hours. Compared with black paint, there is no worry about paint deterioration, it is easy to maintain and has a long service life. Although the lifetime of the cavity is shortened, it can be used even at 600 ° C. The present invention is also characterized in that the cavity can be easily replaced even when the cavity is confirmed to be deteriorated.

この実施例1によれば、気体循環式であるので取り扱いに危険を伴わず、また、気体を炉内に循環させ、空洞を均熱にする気体の流路を形成することにより均一な温度分布を実現でき、1台で広範な温度域をカバーすることができる。気体としては、空気を用いるのが一般的であるが、窒素ガスなどの空気以外の不活性気体も用いることができ、不活性ガスを用いることでグラファイト素材の空洞の寿命をさらにのばすことができる。
図では、空洞は長手方向が水平に配置されているが、空洞の長手方向を鉛直方向に配置することもできる。
この実施例1の温度標準用気体循環式温度可変恒温炉装置を用いて接触温度計の比較校正を行うには、空洞の開口部から被校正温度計を挿入し、空洞内部の温度を測定することによって行う。基準温度計としては、温度目盛りの設定された標準接触温度計を用いこれを被校正温度計と並べて挿入し同時に空洞内部の温度を測定しても良いし、温度計4を用いることもできる。空洞は、熱伝導率の良好な素材からなり、前部が炉壁に開口しているものを用いる。このとき空洞は、被校正温度計よりわずかに開口が大きく、挿入長が被校正温度計長さより長いものを用いる。
According to the first embodiment, since it is a gas circulation type, there is no danger in handling, and a uniform temperature distribution is achieved by forming a gas flow path that circulates the gas in the furnace and soaks the cavity. Can be realized, and a single unit can cover a wide temperature range. As the gas, air is generally used, but an inert gas other than air, such as nitrogen gas, can also be used, and the lifetime of the graphite material cavity can be further extended by using the inert gas. .
In the figure, the longitudinal direction of the cavity is horizontally arranged, but the longitudinal direction of the cavity can be arranged in the vertical direction.
In order to perform comparative calibration of a contact thermometer using the gas circulation type temperature variable thermostatic oven apparatus for temperature standard of Example 1, a thermometer to be calibrated is inserted from the opening of the cavity, and the temperature inside the cavity is measured. By doing. As the reference thermometer, a standard contact thermometer with a temperature scale set may be used and inserted side by side with the thermometer to be calibrated, and the temperature inside the cavity may be measured at the same time, or the thermometer 4 may be used. The cavity is made of a material having good thermal conductivity, and the front part is open to the furnace wall. At this time, a cavity having a slightly larger opening than the thermometer to be calibrated and an insertion length longer than the length of the thermometer to be calibrated is used.

また、この実施例1の温度標準用気体循環式温度可変恒温炉装置を用いて温度計の定点校正を実施するには、空洞中にたとえばインジウム点、スズ点、亜鉛点などの定点セルを挿入し、定点セル温度を被校正温度計で測定しながら恒温炉装置の温度を定点温度近傍、例えば亜鉛点の場合には420℃前後上下させ、観測される融解・凝固プラトーを捉えて温度計を校正する。   In addition, in order to perform a fixed point calibration of a thermometer using the gas circulation type temperature variable thermostatic oven apparatus for temperature standard of Example 1, for example, a fixed point cell such as an indium point, a tin point, or a zinc point is inserted into the cavity. Then, while measuring the fixed-point cell temperature with a thermometer to be calibrated, raise the temperature of the thermostatic furnace near the fixed-point temperature, for example, around 420 ° C in the case of the zinc point, and capture the observed melting / solidification plateau and set the thermometer Calibrate.

(実施例2)
図3に、本発明の温度標準用気体循環式温度可変恒温炉装置の第二の実施例を示す。この実施例2が、上記実施例1と異なるところは、図3に示すように炉壁に透明窓が設けられ、当該透明窓を通して空洞の外壁面温度を測定する温度計を有している点であり、それ以外の構成は図1及び2に示された上記実施例1と同じである。
図3において、6は炉壁に設けられた空洞温度分布測定用のスリットであり、そのスリットには透明ガラスを設けている。7は被校正放射温度計、8は炉の外側から透明ガラスを設置したスリット6をとおして空洞の温度分布を炉外側面から測定する放射温度計である。
スリット6は、空洞の長手方向に沿って炉壁に設けられており、空洞外壁の長手方向の温度分布を測定できるようにするためのものである。図では透明窓はスリット状の場合を示したが、これ以外に空洞に沿って何か所か穴があいている形状でもよいし、1点穴があいていて、その穴に対して温度計の角度をふって空洞の温度分布を測定してもよい。
(Example 2)
FIG. 3 shows a second embodiment of the temperature-standard gas circulation type temperature-variable constant temperature furnace according to the present invention. This Example 2 is different from Example 1 described above in that a transparent window is provided on the furnace wall as shown in FIG. 3 and a thermometer for measuring the outer wall surface temperature of the cavity through the transparent window is provided. The rest of the configuration is the same as that of the first embodiment shown in FIGS.
In FIG. 3, 6 is a cavity temperature distribution measuring slit provided on the furnace wall, and transparent glass is provided in the slit. 7 is a radiation thermometer to be calibrated, and 8 is a radiation thermometer that measures the temperature distribution of the cavity from the outside surface of the furnace through the slit 6 provided with transparent glass from the outside of the furnace.
The slit 6 is provided in the furnace wall along the longitudinal direction of the cavity so that the temperature distribution in the longitudinal direction of the outer wall of the cavity can be measured. In the figure, the transparent window is shown as a slit, but in addition to this, it may have a shape with some holes along the cavity. The temperature distribution of the cavity may be measured at an angle.

図では、空洞温度分布測定用の温度計として放射温度計8の例を示したが、炉の外側から透明窓6をとおして空洞の温度分布を測定できるものであればよく、また、温度分布を効率良く測定するためには温度計を複数台並べて設けたり、温度計を移動可能に設けたりすることが好ましい。
また、実施例2においても、空洞はその長手方向を水平に配置しても、鉛直に配置してもよく、その際に、炉壁に設けるスリットは、空洞の配置に応じて、空洞に沿うように配置して、スリットを通して空洞の温度分布が測定できるようにすればよい。
In the figure, an example of the radiation thermometer 8 is shown as a thermometer for measuring the cavity temperature distribution. However, any radiation thermometer may be used as long as it can measure the cavity temperature distribution through the transparent window 6 from the outside of the furnace. In order to measure the temperature efficiently, it is preferable to provide a plurality of thermometers side by side or to provide a thermometer so as to be movable.
Also in Example 2, the cavity may be arranged horizontally or vertically, and the slits provided in the furnace wall along the cavity according to the arrangement of the cavity. So that the temperature distribution of the cavity can be measured through the slit.

図3の温度標準用気体循環式温度可変恒温炉装置を用いて温度計の校正を行うには、実施例1と同様に空洞の開口部に対向して被校正温度計を設置し、空洞内部の温度を測定することによって行う。このとき、基準温度計としては、温度目盛の設定された標準放射温度計を用いて被校正温度計と交代で空洞内部の温度を測定しても良いし、温度計4を用いることもできる。
なお、図では、被校正温度計7は非接触式温度計として図示されているが、接触式温度計であっても開口部から空洞内部に温度計を挿入して空洞内部の温度を測定することにより同様に校正することができる。
この実施例2によれば、スリット6をとおして空洞の温度分布を信頼性高く測定することができるため、温度分布の調整も信頼性高く容易に行うことが可能となり、結果、空洞の温度が均熱となる。
In order to calibrate the thermometer using the gas-circulating temperature variable temperature-controlled thermostatic furnace for temperature standard shown in FIG. 3, a thermometer to be calibrated is installed facing the opening of the cavity in the same manner as in Example 1, and the inside of the cavity This is done by measuring the temperature. At this time, as a reference thermometer, a standard radiation thermometer having a temperature scale set may be used to measure the temperature inside the cavity in place of the thermometer to be calibrated, or the thermometer 4 may be used.
In the drawing, the thermometer 7 to be calibrated is shown as a non-contact type thermometer, but even if it is a contact type thermometer, the thermometer is inserted into the cavity from the opening to measure the temperature inside the cavity. Can be calibrated in the same way.
According to the second embodiment, since the temperature distribution of the cavity can be reliably measured through the slit 6, the temperature distribution can be easily adjusted with high reliability. As a result, the temperature of the cavity is reduced. It becomes soaking.

空洞のグラファイトの厚みを3mm以下と薄くすることで空洞内壁面と外壁面の温度差をなくし、空洞内壁面の温度分布をなくし均熱にすることができる。1.5mm以下にすると、さらに空洞を均熱にでき、なおかつ100時間以上の寿命も確認されている。   By reducing the thickness of the hollow graphite to 3 mm or less, the temperature difference between the inner wall surface and the outer wall surface can be eliminated, the temperature distribution on the inner wall surface of the cavity can be eliminated, and soaking can be achieved. When the thickness is 1.5 mm or less, the cavity can be further soaked, and a lifetime of 100 hours or more has been confirmed.

さらに、空洞の温度分布を測定し、気体循環式恒温炉装置の熱媒体循環手段の循環条件を制御することで恒温炉装置の温度分布制御を行い、空洞の温度分布を均一に保つことを可能とした。   Furthermore, by measuring the temperature distribution of the cavity and controlling the circulation conditions of the heat medium circulation means of the gas circulation type thermostatic furnace device, the temperature distribution of the constant temperature furnace device can be controlled, and the temperature distribution of the cavity can be kept uniform. It was.

1 空洞(黒体空洞)
2 ファン
3 ヒーター
4 白金抵抗温度計(空洞(黒体空洞)の外周温度を測定する温度計)
5 白金抵抗温度計(炉の温度制御を行うために炉内を循環する気体の温度測定用温度計)
6 炉壁に設けたスリット(透明窓)
7 被校正温度計
8 空洞(黒体空洞)の温度分布をスリットを通して測定する放射温度計
1 cavity (black body cavity)
2 Fan 3 Heater 4 Platinum resistance thermometer (thermometer that measures the outer temperature of the cavity (black body cavity))
5 Platinum resistance thermometer (thermometer for measuring the temperature of the gas circulating in the furnace to control the furnace temperature)
6 Slit (transparent window) on the furnace wall
7 Thermometer to be calibrated 8 Radiation thermometer that measures temperature distribution of cavity (black body cavity) through slit

Claims (3)

炉内に設置され炉の正面側に開口した有底円筒形状の空洞と、炉内の気体を循環させる気体循環手段と、炉内の気体を加熱するための加熱手段を備え、前記気体循環手段の循環条件を制御することで温度分布制御を行い前記空洞の温度分布を均一に保つようにした50℃〜600℃の温度域で使用するための温度標準用気体循環式温度可変恒温炉装置であって、
前記空洞の長手方向に沿って炉壁に設けた透明窓と、当該透明窓を通して前記空洞の外壁面の長手方向の温度分布を測定する非接触式温度計とを備え、
前記非接触式温度計で前記空洞の温度分布を測定し、前記気体循環手段の循環条件を制御することで温度分布制御を行い、前記空洞の温度分布を均一に保つとともに、前記空洞を厚み3mm以下のグラファイト素材で形成して空洞内壁面と外壁面の温度差をなくすことにより、前記空洞内壁面の温度分布をなくし均熱にしたことを特徴とする温度標準用気体循環式温度可変恒温炉装置。
Comprising a cavity opening to a bottomed cylindrical shape on the front side of the installed furnace into the furnace, and the gas circulating means for circulating the gas in the furnace, a heating means for heating the gas in the furnace, the gas circulation means A temperature-circulating temperature-variable thermostatic furnace for temperature standard for use in a temperature range of 50 ° C. to 600 ° C. by controlling the temperature distribution by controlling the circulation conditions of the temperature and keeping the temperature distribution of the cavity uniform. There,
A transparent window provided on the furnace wall along the longitudinal direction of the cavity, and a non-contact thermometer for measuring the temperature distribution in the longitudinal direction of the outer wall surface of the cavity through the transparent window,
The temperature distribution of the cavity is measured by the non-contact type thermometer , the temperature distribution is controlled by controlling the circulation condition of the gas circulation means, the temperature distribution of the cavity is kept uniform, and the thickness of the cavity is 3 mm. A temperature-circulating temperature-variable constant temperature furnace for temperature standard, which is made of the following graphite material and eliminates the temperature difference between the inner wall surface and the outer wall surface of the cavity, thereby eliminating the temperature distribution of the inner wall surface of the cavity. apparatus.
前記空洞内に定点セルを挿入したことを特徴とする請求項1記載の温度標準用気体循環式温度可変恒温炉装置。   The fixed-point cell is inserted into the cavity, and the temperature-circulating temperature-variable constant-temperature furnace apparatus for temperature standard according to claim 1. 炉内の気体は空気又は不活性ガスであることを特徴とする請求項1又は2記載の温度標準用気体循環式温度可変恒温炉装置。   The gas circulation type temperature-variable constant temperature furnace for temperature standard according to claim 1 or 2, wherein the gas in the furnace is air or an inert gas.
JP2011001599A 2011-01-07 2011-01-07 Gas circulation type variable temperature oven for temperature standard Active JP5761705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001599A JP5761705B2 (en) 2011-01-07 2011-01-07 Gas circulation type variable temperature oven for temperature standard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001599A JP5761705B2 (en) 2011-01-07 2011-01-07 Gas circulation type variable temperature oven for temperature standard

Publications (2)

Publication Number Publication Date
JP2012145343A JP2012145343A (en) 2012-08-02
JP5761705B2 true JP5761705B2 (en) 2015-08-12

Family

ID=46789060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001599A Active JP5761705B2 (en) 2011-01-07 2011-01-07 Gas circulation type variable temperature oven for temperature standard

Country Status (1)

Country Link
JP (1) JP5761705B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388784B2 (en) * 2014-04-11 2018-09-12 国立研究開発法人産業技術総合研究所 Carbon nanotube standard blackbody furnace equipment
WO2019137343A1 (en) * 2018-01-09 2019-07-18 北京康斯特仪表科技股份有限公司 Flow guiding and heat dissipating type dry block temperature calibrator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177846U (en) * 1982-05-20 1983-11-28 東京精工株式会社 Low-temperature blackbody furnace
JPS5912027U (en) * 1982-07-15 1984-01-25 東京精工株式会社 Low-temperature blackbody furnace
JPS59162633U (en) * 1983-04-15 1984-10-31 東京精工株式会社 Low-temperature blackbody furnace
JP3404531B2 (en) * 2001-03-02 2003-05-12 独立行政法人産業技術総合研究所 Temperature calibration method and device

Also Published As

Publication number Publication date
JP2012145343A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP6388784B2 (en) Carbon nanotube standard blackbody furnace equipment
WO2015093930A1 (en) System and method for calibrating and characterising instruments for temperature measurement by telemetry
US20160018266A1 (en) Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager
CN106165079B (en) Processing system and method for calibrating, verifying workpiece process and processing workpiece at high temperature
JP2000180272A (en) Temperature fixed point crucible, temperature fixed point apparatus and thermometer calibrating method
JP2020046309A (en) Black body furnace
Saunders Radiation thermometry: fundamentals and applications in the petrochemical industry
JP5761705B2 (en) Gas circulation type variable temperature oven for temperature standard
US11454599B2 (en) Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method
Vuelban et al. Radiometric techniques for emissivity and temperature measurements for industrial applications
CN108698879B (en) Float glass production unit comprising a continuous glass temperature measuring device and method for adjusting the measuring device
WO2017105206A1 (en) Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry
Dong et al. Investigation of the furnace effect in cobalt-carbon high-temperature fixed-point cells
De Lucas et al. Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry
Murthy et al. Radiative Calibration of Heat Flux Sensors at NIST: An Overview
JP4893930B2 (en) Blackbody furnace
Hill et al. Characterizing the NRC blackbody sources for radiation thermometry from 150 C to 962 C
Machin et al. Bilateral comparison between NPL and INMETRO using a high-temperature fixed point of unknown temperature
Lovas et al. Meeting RTP temperature accuracy requirements: measurement and calibrations at NIST
Ishii et al. Radiation thermometry standards at NMIJ from− 30° C to 2800° C
RU2720819C1 (en) Device for calibration of high-temperature thermocouples
Diril et al. UME radiation thermometer calibration facilities below the freezing point of silver (961.78° C)
Ogura et al. Realization of Ru–C eutectic point for evaluation of W–Re and IrRh/Ir thermocouples
Diril et al. Construction and Characterization of Mini-ruthenium–Carbon Eutectic Cells for Industrial Use
US20200189955A1 (en) Furnace for relieving stress from glass products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5761705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250