WO2017105206A1 - Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry - Google Patents

Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry Download PDF

Info

Publication number
WO2017105206A1
WO2017105206A1 PCT/MX2015/000221 MX2015000221W WO2017105206A1 WO 2017105206 A1 WO2017105206 A1 WO 2017105206A1 MX 2015000221 W MX2015000221 W MX 2015000221W WO 2017105206 A1 WO2017105206 A1 WO 2017105206A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
temperature
radiation
black body
calibration
Prior art date
Application number
PCT/MX2015/000221
Other languages
Spanish (es)
French (fr)
Inventor
Margarita KAPLUN MUCHARRAFILLE
Victor MARTINEZ FUENTES
Juan LEÑERO ESPINOZA
Giovanna TROTTA
Alberto ROSA SIERRA
Alejandro LIMON GARCIA
Grecia ACOSTA SOTO
Cesar Tomas MARTINEZ MEZA
Original Assignee
Kaplun Mucharrafille Margarita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaplun Mucharrafille Margarita filed Critical Kaplun Mucharrafille Margarita
Publication of WO2017105206A1 publication Critical patent/WO2017105206A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers

Definitions

  • the present invention relates to the technical field of mechanics, metrology, thermometry, telemetry and infrared radiation, because it describes a disc with a thermal gradient, consisting of at least one metallic thermal diffuser ring and a black body cylindrical cavity; an improved source of electrical radiation comprising said disk with thermal gradient and the cylindrical cavity of black body, to generate and control its temperature.
  • Infrared radiation is an electromagnetic radiation with wavelengths greater than those of visible light and shorter than millimeter wave radiation. All surfaces with a temperature greater than absolute zero (-273.15 ° C) emit infrared radiation.
  • the infrared radiation range follows immediately after the red light and occupies the range of 780 nm to 1 mm within the electromagnetic spectrum.
  • infrared radiation can be subdivided into three other ranges:
  • FIR far infrared [far infrared], 5.5 ⁇ m to 1 mm).
  • the temperature of an object can be measured from its spectral radiance.
  • a thermometer that works like this is called a radiation thermometer, and the measured temperature is called the radiance temperature.
  • Radiation thermometers measure the electromagnetic radiation emitted by an object as a result of its temperature. When an object reaches high temperatures, most of its radiation is a band of wavelengths called infrared spectrum. Very hot objects emit visible light that is also a form of electromagnetic radiation.
  • Radiation thermometers are designed to be sensitive within a specific band of wavelengths.
  • the most used spectral band in radiation thermometers is the one that ranges from 6.3 ⁇ m to 14 ⁇ m (6.3 to 14 micrometers).
  • Infrared radiation is electromagnetic radiation with wavelengths greater than visible light and smaller than millimeter wave radiation. Terms such as wavelength and amplitude are used to describe infrared and other types of electromagnetic radiation. For example, the wavelength describes the intensity of the electromagnetic radiation and the wavelength is used among other things to determine if it is a microwave, visible light or infrared radiation.
  • thermometers are used in a variety of situations where contact measures are not possible.
  • the applications that cover these devices are variable and day by day cover a greater number of analysis possibilities, considering large fields of application from aeronautics to common use applications, such as health, so confidence in these measures is Increase with calibration.
  • Radiation thermometers have an optical resolution defined by the relationship between the distance to the object and the diameter of the area that contains a specific percentage of the total energy collected (D: S) (Spot size).
  • D: S ratio is used as a guide to determine the appropriate distance to make infrared temperature measurements.
  • spot size * represents the pixel and the distance it can see and the" IFOV "is the subtended solid angle of the pixel to the target.
  • a narrow band radiation thermometer is one that has an optical filter that transmits a narrow range of wavelengths. This interval called spectral bandwidth ( ⁇ ) is in the order of some nanometers (nm).
  • a broadband radiation thermometer is one that is characterized by having an optical filter that transmits a wide range of wavelengths ( ⁇ ), this range is approximately a few micrometers ( ⁇ m).
  • Calibration is the operation that, under specified conditions, establishes, in a first stage, a relationship between the values and its associated measurement uncertainties obtained from the measurement patterns and the corresponding indications with its associated uncertainties and in a second stage, use this information to establish a relationship that allows obtaining a measurement result from an indication.
  • Reliable calibration means greater accuracy of readings, less worries, less doubts and greater productivity.
  • Calibration can also be defined as the set of operations carried out in accordance with a defined calibration procedure, which compares the measurements made by an instrument with others performed with a more accurate or standard instrument, with the purpose of detecting and informing , measurement errors, as well as the uncertainty value of the measurement of the instrument being calibrated.
  • the reference measurement standard is the standard designated for the calibration of magnitude patterns of the same nature in a given organization or location. (NMX-Z-055- IMNC-2009) In calibration processes there may be measurement errors that are defined as the difference between a measured value of a magnitude and a reference value (NMX-Z55-IMNC-2009).
  • NMX-Z55-IMNC-2009 There are also non-negative parameters that characterize the dispersion of the values attributed to a measurand, based on the information used.
  • NMX-Z55-IMNC-2009 which is defined as measurement uncertainty.
  • An infrared temperature calibration begins with a superficial measurement of what acts as a source of heat, which must be a flat plate or a cavity that functions as a standard or reference.
  • the calibration geometry which includes the size of the measuring surface and the distance of the thermometer to be calibrated, plays a fundamental role in the measurement result. Also critical are temperature stability, uniformity and physical properties of the emitting surface such as emissivity.
  • Emissivity is the radiant energy coming from an opaque surface and is a combination of the emitted radiance caused by the surface temperature and the reflected radiance coming from anywhere in the environment.
  • Emissivity is the ratio between the radiated energy emitted by a surface and that emitted by a black body at the same temperature. Emissivity is greatly affected by the type of surface material and its finish.
  • Infrared temperature calibrators must be designed to have a known emissivity, which must remain constant over time.
  • the emissivity can be any value between zero and one, both included. Zero emissivity indicates that no matter what the body temperature is, since no light will be radiated. An emissivity of one indicates that the surface will radiate perfectly at all wavelengths. "Black bodies" are objects perfectly radiant. Objects with emissivity very close to one are usually called black bodies. A calibrator with a flat surface and an emissivity of around 0.95 is usually called a gray body if the emissivity is uniform for all wavelengths.
  • thermometers if not most, assume a constant emissivity value for any object or source, that is, independent of temperature and wavelength. However, in most cases it is not met: the emissivity of bodies in general depends on both their temperature and wavelength. Only for an ideal black body is it satisfied that the value of its emissivity is independent of its temperature and wavelength.
  • a black body is an ideal surface that emits and absorbs electromagnetic radiation with the maximum amount of power possible at a given temperature according to Planck's Law, where:
  • c1L is the first radiation constant for spectral radiance, with a value equal to 1,191 042 759 x 10-16 WDm 2 Dsr- 1 .
  • LCN ( ⁇ , T) It is the emitted electromagnetic radiation, called spectral radiance because it involves physical properties of the source, such as:
  • Electromagnetic does not allow radiation to reflect or pass through it.
  • a black body is a long cavity with a small opening. The reflection is avoided because any light that enters through the hole has to be reflected on the surface of the body many times, being absorbed before escaping.
  • Wien's law can be used for the spectral radiance of a black body:
  • a gray body is a surface that emits radiation with a constant emissivity over all wavelengths and temperatures. Although gray bodies do not exist in practice, they are a good approximation for most real surfaces.
  • black bodies are not cavities, but surfaces and these are also used to calibrate radiation thermometers and the exposed radiation surface is preferred for radiation thermometers with a large viewing angle.
  • thermographic equipment do not determine the thermal gradient, in addition to that they provide "spot" temperature measurements without covering the wide range of matrix sizes involving thermographic equipment.
  • thermometer thermometer represents the average of the temperatures measured in the circle resulting from its measurement angle
  • temperature measured with the thermographic equipment is the result of capturing the radiated energy of the measured body, represented by a matrix with point values of temperature in X, Y.
  • thermographic equipment there are deficiencies that make it impossible to calibrate or characterize thermographic equipment.
  • it is only a temperature point to calibrate only one temperature of the thermal imager, there is no way to have a known thermal gradient to calibrate the temperature differences recorded by the thermal imager.
  • thermometers In the case of black surfaces, even though despite having thermal gradients, they are not determined in such a way that they cannot be compared with those shown by the thermal imager. Therefore, existing equipment is really designed to calibrate radiation thermometers and not thermographic equipment.
  • the metrological traceability of the reference thermometers can be given through a contact thermometer, which can be a type thermometer: RTD (Resistance Temperature Detector) or Thermocouple .
  • RTD Resistance Temperature Detector
  • Metrological traceability is the property of a measurement result whereby the result can be related to a reference through an uninterrupted and documented chain of calibrations, each of which contributes to the measurement uncertainty (NMX-Z-055-IMNC- 2009)
  • thermography a method to determine parameters of a component by means of thermography, in which at least one component is heated by means of a hot gas.
  • the invention further relates to a device for the determination of component parameters by means of thermography with a heating means for heating at least one component, with a temperature sensor to detect at least one temperature value of the component, in the that the heating means for heating the component is a hot gas emission device.
  • the patent EP 1726943 of Smith Kevin D of May 12, 2006 also discloses an inspection apparatus that includes a light source positioned to direct the light to a first surface of a workpiece.
  • An infrared detector is positioned to receive radiation from the first surface.
  • a data acquisition and processing computer is coupled to the light source and the infrared detector.
  • the equipment activates the light source to emit the light a series of cases.
  • the equipment acquires thermal data from the infrared detector for a number of times after each case.
  • the computer is configured to process the data using a theoretical solution to analyze thermal data based on a average of the thermal data for a number of each of the corresponding times from different instances between the instances.
  • the aforementioned invention has the disadvantage that although the radiation source with black body cavity can be adapted at different temperatures, the contact reference thermometer is fixed to the cavity and remains stuck over time, with which, the way to calibrate it periodically is impossible and therefore, you can get to lose its metrological traceability;
  • the geometry and type of electric heater generates a lack of uniformity in the cavity, thereby causing temperature gradients throughout the cavity.
  • the object of the present invention is to make available a source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved; to give traceability to the temperature measurements of radiation thermometers and thermographic equipment, which allows characterizing the function of thermal gradients of the thermographic cameras by means of plates with continuous and discrete thermal gradients; as well as calibrating radiation temperature measuring instruments, mainly radiation thermometers and thermographic equipment using the black body cavity with reference thermometer and / or radiation transfer thermometer.
  • Another objective of the invention is to make said source of electrical radiation available for calibration and / or characterization of temperature measurement instruments by telemetry, which also allows defining and knowing the thermal gradient required to characterize the temperature differences recorded by the equipment.
  • Another object of the invention is to make said source of electrical radiation available for calibration and / or characterization of temperature measuring instruments by telemetry, improved, which is also structurally practical, operationally efficient, safe and easy to operate.
  • Figure 1 shows in perspective an explosive of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
  • Figure 2 shows in front perspective of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, without the front cover.
  • Figure 3 shows in front perspective of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, with the front cover.
  • Figure 4 shows in front perspective of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, and the front cover.
  • Figure 5 shows in perspective view of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
  • Figure 6 shows a conventional perspective in detail of the cylindrical cavity of the black body of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, where a groove is seen on the cavity to place the control sensor, as well as a metallic insert, of the same material as the cavity, with a geometry preferably in the form of a positive cone or a negative cone.
  • Figure 7 shows a conventional perspective of the cylindrical cavity of the black body with the thermal gradient disk mechanically linked to the source of electrical radiation for calibration and / or characterization of telemetry enhanced temperature measurement instruments.
  • Figure 8 shows a conventional perspective in detail of the high efficiency heaters of the source of electric radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
  • Figure 9 illustrates a cross-section of a concentric thermal diffuser metal ring of those that make up the thermal gradient disk, showing the blasted holes, for the temperature sensors and the grooving of the front working surface, of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
  • Figure 10 illustrates a graph of the temperature steps caused by the thermal contact resistors in the positions of 20 mm, 40 mm, 60 mm and 80 mm corresponding to the contact interfaces between two thermal diffuser plates (which make up the vertical arrangement of thermal gradient plates), made of a high thermal conductivity steel, preferably Inconel®, Stainless Steel, Bronze, Aluminum or similar thermal properties, ares, in the vertical arrangement of thermal gradient plates; where the inclination of the steps is due to the thermal conduction resistance of the steel blocks.
  • two thermal diffuser plates which make up the vertical arrangement of thermal gradient plates
  • a high thermal conductivity steel preferably Inconel®, Stainless Steel, Bronze, Aluminum or similar thermal properties
  • Figure 11 illustrates a detailed side view of the black body cylindrical cavity insert.
  • Concentric thermal diffuser metal ring 9a Concentric thermal diffuser metal ring 9b. Concentric thermal diffuser metal ring 9c. Concentric thermal diffuser metal ring
  • the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry improved consists of an upper insulating housing (1) and a lower insulating housing (2) configured with a hollow for receive internally a lower heater (4) and an upper heater (5) that embed each other and they function as a source of high thermal efficiency thermal radiation; said lower (4) and upper (5) heaters house a black body cylindrical cavity (3) allowing the temperature of said cylindrical cavity to increase, and thanks to the upper (1) and lower (2) insulating housings, losses are avoided and temperature variations It is preferred that the thermal insulator be an insufficient high thermal resistance for temperatures close to 1000 ° C and lower. With sufficient thickness to avoid heating on the outside of the cabinet.
  • the lower insulating housing (2) has at least one duct (13) that allows the cables necessary for the operation of the source of electrical radiation to be passed for calibration and / or characterization of temperature measurement instruments by telemetry, improved
  • the lower heater (4) can be seen, this being equal to the heater (5); both the lower heater (4) and the upper one (5) are of high efficiency and ceramic material, preferably in the form of a half-round of 1500W (watts), to be used with a voltage of 230V (volts), this to efficiently reach temperatures up to 1000 ° C; and they have longitudinal channels on their inner faces that give them high efficiency and uniform distribution of heat in the rich cylinder cavity of the black body (3).
  • the cylindrical cavity of the black body (3) has a groove (7) which allows a cylindrical cavity insert of black body (6) to be placed to obtain the rear end.
  • the slot (7) also allows to place a contact thermometer of the RTD (resistance temperature detector) or Thermocouple type, to be connected to a temperature controller (18); and said rear end, has an interchangeable bottom to be able to use different bottom geometries in the cavity insert black body cylindrical (6), preferably with a positive cone or negative cone geometry, in order to increase the radiated energy.
  • the front end of the cylindrical cavity of the black body (3) is configured to support a disc with a thermal gradient (8) which is composed of at least one concentric thermal diffuser metal ring (9) which is removable, with at least two removable temperature sensors (not shown) in their smooth back, inserted in at least two bump holes (10), located horizontally, with respect to the axial axis of the black body cylindrical cavity (3) and Equistants at its center, inserted on both sides, which generate a radial profile of staggered temperatures due to the loss of heat by convection and radiation in each concentric thermal diffuser metal ring (9) to define temperature profiles with thermal gradient by contact thermal disk with thermal gradient (8) with the black body cylindrical cavity (3), as illustrated in Figure 9.
  • a thermal gradient (8) which is composed of at least one concentric thermal diffuser metal ring (9) which is removable, with at least two removable temperature sensors (not shown) in their smooth back, inserted in at least two bump holes (10), located horizontally, with respect to the axial axis of the black body cylindrical cavity (3) and Equistants
  • the concentric metal rings (9) comprise a groove of triangular profile (1 1) on its outer surface of its front working face (12) which are shown as triangular grooves (equilateral) in cross section and that avoid reflections in it.
  • the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved has a base (14) that houses at least two supports (15), on which the insulating housing is placed lower (2) already connected with the upper insulating housing (1), which inside are the lower (4) and upper (5) heater already fixed in the black body cylindrical cavity (3).
  • the base (14) has in its lower part with at least four levelers (16), which prevent the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved, have movements not desired
  • the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry improved has a control board (17) removable; embedded in said board is a temperature controller (18), which is preferably digital or "ramp" type.
  • the control board (17) has a data acquisition system (19), a switch (20) and, at least, a second power fuse (32), which, when activated, allow the operation of the present invention.
  • the data acquisition system (19) has wireless connection technology for electronic devices known as "Wi-FiV
  • the base (14) houses a muffle (23), at least one heat sink (24), a power fuse (21) and a magnetic induction thermal starter contact (25) , which protects the radiation source of the present invention from some overload.
  • an upper cover (26) is fixed, which is removable in order to cover the lower insulating shell (2) when it is already connected with the upper insulating shell (1), which inside are the lower (4) and upper (5) heater already fixed in the black body cylindrical cavity (3); a side cover (27) is fixed at each base fado (14) and the top cover (26).
  • the top cover (26) and fas side covers (27) are removable and have at least one handle (31), which serves to grab the source of electrical radiation for calibration and / or characterization of telemetry temperature measuring instruments , improved, so that it can be transported to various places in a simple way.
  • the side covers (27) have at least one ventilation means (29), which can be a grid and / or a fan, which allow circulation inside the source of electrical radiation reducing the temperature, to prevent the electrical equipment from failing.
  • a front cover (28) is attached by fastening means (30) to the upper cover (26), engaging in the front part of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved; in such a way that it protects the disk with thermal gradient (8) and the control board (17), when the source of electric radiation is moved or is not in use, when it reaches the destination where the source of radiation, the front cover (28) is removed.
  • the fastening means (30) can be clasps, tongue and groove mechanism, magnets, mechanical clamps, sailboat and / or the combination of the above.
  • Both the top cover (26), sides (27) and front (28) are made of thermal insulating materials, with the purpose of reducing the outside temperature and can be transported immediately after use, without risking burns.
  • the types of cylindrical cavities of black bodies (3), to be used in the present invention are those that preferably have the characteristics of the following table:
  • the material of which the metallic thermal diffuser ring (9) of the present invention is made depends on the temperature at which it is intended to calibrate and / or characterize the temperature measuring instruments by telemetry, as shown in the following. Table:
  • the disk with thermal gradient (8) is formed by at least one concentric thermal diffuser metal ring (9), in the present invention at least four concentric thermal diffuser metal rings are preferred (9a), (9b), (9c) and (9d), mechanically assembled on the disk with thermal gradient (8), which in its preferred mode has the following diameters:
  • Each of said concentric thermal diffuser metal rings (9a), (9b), (9c) and (9d) comprises four threaded holes (10) arranged diametrically and horizontal to the axial axis, to accommodate at least two temperature sensors (no shown), four sensors are preferred in the present invention of temperature (not shown), for the temperature taking of the points for each concentric thermal diffuser metal ring (9a), (9b), (9c) and (9d).
  • the temperature sensors consist of thermocouples type "J", "T * or" N ".
  • thermocouple temperatures of each concentric thermal diffuser metal ring (9a), (9b), (9c) and (9d) are measured.
  • the temperature gradient is generated radially in the disk with thermal gradient (8) composed of said concentric thermal diffuser metal rings (9a), (9b), (9c) and (9d).
  • is the temperature difference between two consecutive points and AL is the distance between those two consecutive points.
  • the temperature difference is mainly measured with calibrated thermocouples located on the back of the concentric thermal diffuser metal rings (9).
  • the distance between two consecutive points is known from the design and construction of said concentric thermal diffuser metal rings (9).

Abstract

The invention relates to an electrical radiation source for the calibration and/or characterisation of instruments for improved temperature measuring via telemetry, in order to provide traceability to the temperature measurements of radiation thermometers and thermographic equipment, which permits the characterisation of the function of thermal gradients of the thermographic cameras via plates with continuous and discrete thermal gradients, as well as to calibrate and provide traceability to the temperature measurements of radiation thermometers and thermographic equipment using the black body cavity with a calibrated thermometer. Another object of the invention is to provide said electrical radiation source for the calibration and/or characterisation of instruments for improved temperature measuring via telemetry, which also permits the definition and establishment of the thermal gradient required to characterise the temperature differences registered by the thermographic equipment. A further object of the invention is to provide said electrical radiation source for the calibration and/or characterisation of instruments for improved temperature measuring via telemetry, which is also structurally practical, operationally efficient and easy to operate.

Description

FUENTE DE RADIACIÓN ELÉCTRICA PARA CALIBRACIÓN Y/O CARACTERIZACIÓN DE INSTRUMENTOS DE MEDICIÓN DE TEMPERATURA POR TELEMETRÍA, MEJORADA CAMPO DE LA INVENCIÓN  ELECTRICAL RADIATION SOURCE FOR CALIBRATION AND / OR CHARACTERIZATION OF TELEMETRY TEMPERATURE MEASUREMENT INSTRUMENTS, IMPROVED FIELD OF THE INVENTION
La presente invención se relaciona con el campo técnico de la mecánica, metrología, termometría, telemetría y la radiación infrarroja, porque describe un disco con gradiente térmico, conformado por al menos un anillo metálico difusor térmico y una cavidad cilindrica de cuerpo negro; una fuente de radiación eléctrica mejorada que comprende a dicho disco con gradiente térmico y a la cavidad cilindrica de cuerpo negro, para generarle y controlarle su temperatura. The present invention relates to the technical field of mechanics, metrology, thermometry, telemetry and infrared radiation, because it describes a disc with a thermal gradient, consisting of at least one metallic thermal diffuser ring and a black body cylindrical cavity; an improved source of electrical radiation comprising said disk with thermal gradient and the cylindrical cavity of black body, to generate and control its temperature.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En muchos procesos industriales en los que se involucra calentamiento por aplicación de calor o como resultado de la operación de aparatos, herramientas, equipos, maquinaria, etc., en líneas de producción determinadas, se debe tener un control oportuno y preciso de la temperatura y tiempos de exposición y/u operación que ofrezcan los mejores resultados del proceso o la mejor operación de los equipos. Para poder lograr este control es necesario medir apropiadamente la temperatura, lo que se debe normalmente realizar sin contacto por las elevadas temperaturas, por las áreas inaccesible de los operarios o por tratarse de equipos de manejo de altas temperaturas como hornos, entre otros. La solución tecnológica actual consiste en utilizar pirómetros infrarrojos (instrumentos que miden la radiación en el infrarrojo que sale de la superficie de la carga en cierta dirección dada, habitualmente en un intervalo de longitudes de onda fijo, e infieren la temperatura de la superficie a partir de ella). In many industrial processes that involve heating by heat application or as a result of the operation of appliances, tools, equipment, machinery, etc., in certain production lines, timely and precise control of the temperature and exposure and / or operation times that offer the best results of the process or the best operation of the equipment. In order to achieve this control, it is necessary to properly measure the temperature, which should normally be done without contact due to the high temperatures, the inaccessible areas of the operators or because they are high temperature handling equipment such as ovens, among others. The current technological solution consists in using infrared pyrometers (instruments that measure the infrared radiation that leaves the surface of the load in a certain given direction, usually in a fixed wavelength range, and infer the surface temperature from it).
La radiación infrarroja es una radiación electromagnética con longitudes de onda mayores que las de la luz visible y más cortas que las radiaciones de onda milimétricas. Todas las superficies con una temperatura mayor que el cero absoluto (-273.15 °C) emiten radiación infrarroja. Infrared radiation is an electromagnetic radiation with wavelengths greater than those of visible light and shorter than millimeter wave radiation. All surfaces with a temperature greater than absolute zero (-273.15 ° C) emit infrared radiation.
El rango de radiación infrarroja sigue inmediatamente a continuación de ia luz roja y ocupa el rango de 780 nm a 1 mm dentro del espectro electromagnético. The infrared radiation range follows immediately after the red light and occupies the range of 780 nm to 1 mm within the electromagnetic spectrum.
Para el campo de la tecnología de medición, la radiación infrarroja se puede subdividir en otros tres rangos: For the field of measurement technology, infrared radiation can be subdivided into three other ranges:
1.SIR (short infrared [infrarrojo corto], 780 nm a 4.5 pm), 1.SIR (short infrared, 780 nm at 4.5 pm),
2. MIR(middle infrared [infrarrojo medio], 4.5 a 5.5 pm),  2. MIR (middle infrared, 4.5 to 5.5 pm),
3. FIR (far infrared [infrarrojo lejano], 5.5 μm a 1 mm).  3. FIR (far infrared [far infrared], 5.5 μm to 1 mm).
En relación a la tecnología de medición por infrarrojos, el rango más significativo es el de 780 nm a 20 pm (FIR).  In relation to infrared measurement technology, the most significant range is 780 nm at 20 pm (FIR).
La temperatura de un objeto se puede medir a partir de su radiancia espectral. Un termómetro que funcione así se llama termómetro de radiación, y la temperatura medida se llama temperatura de radiancia. The temperature of an object can be measured from its spectral radiance. A thermometer that works like this is called a radiation thermometer, and the measured temperature is called the radiance temperature.
Los termómetros de radiación miden la radiación electromagnética emitida por un objeto como resultado de su temperatura. Cuando un objeto alcanza temperaturas elevadas, la mayor parte de su radiación es una banda de longitudes de onda llamada espectro infrarrojo. Los objetos muy calientes emiten una luz visible que es también una forma de radiación electromagnética. Radiation thermometers measure the electromagnetic radiation emitted by an object as a result of its temperature. When an object reaches high temperatures, most of its radiation is a band of wavelengths called infrared spectrum. Very hot objects emit visible light that is also a form of electromagnetic radiation.
Mientras que el ojo humano es muy sensible a la luz amarilla con longitudes de onda de en torno a 0.555 μm, no puede detectar luz con longitudes de onda mayores de 0.700 μπι (roja) ni menores de 0.400 μm (violeta). Aunque nuestros ojos no puedan detectar la energía fuera de esa banda tan estrecha de longitudes de onda llamada espectro visible, se sabe que está ahí porque se puede detectar con un radiómetro. While the human eye is very sensitive to yellow light with Wavelengths of around 0.555 μm, cannot detect light with wavelengths greater than 0.700 μπι (red) or less than 0.400 μm (violet). Although our eyes cannot detect the energy outside that narrow band of wavelengths called the visible spectrum, it is known to be there because it can be detected with a radiometer.
Los termómetros de radiación están diseñados para ser sensibles dentro de una banda específica de longitudes de onda. La banda espectral más utilizada en los termómetros de radiación es la que va de 6.3μm a 14μm (6.3 a 14 micrómetros). Radiation thermometers are designed to be sensitive within a specific band of wavelengths. The most used spectral band in radiation thermometers is the one that ranges from 6.3μm to 14μm (6.3 to 14 micrometers).
La radiación infrarroja es radiación electromagnética con longitudes de onda mayores que la luz visible y más pequeñas que la radiación de onda milimétrica. Términos como longitud de onda y amplitud son utilizados para describir los infrarrojos y otros tipos de radiación electromagnética. Por ejemplo, la amplitud de onda describe la intensidad de la radiación electromagnética y la longitud de onda es utilizada entre otras cosas para determinar si es una microonda, luz visible o radiación infrarroja. Infrared radiation is electromagnetic radiation with wavelengths greater than visible light and smaller than millimeter wave radiation. Terms such as wavelength and amplitude are used to describe infrared and other types of electromagnetic radiation. For example, the wavelength describes the intensity of the electromagnetic radiation and the wavelength is used among other things to determine if it is a microwave, visible light or infrared radiation.
Los termómetros de radiación son utilizados en gran variedad de situaciones donde las medidas de contacto no son posibles. Las aplicaciones que abarcan estos aparatos son variables y día a día abarcan un mayor número de posibilidades de análisis, considerando grandes campos de aplicación desde la aeronáutica hasta aplicaciones de uso común, como podría ser la salud, por lo que la confianza en estas medidas se incrementa con la calibración. Radiation thermometers are used in a variety of situations where contact measures are not possible. The applications that cover these devices are variable and day by day cover a greater number of analysis possibilities, considering large fields of application from aeronautics to common use applications, such as health, so confidence in these measures is Increase with calibration.
Los termómetros de radiación tienen una resolución óptica definida por la relación entre la distancia al objeto y el diámetro del área que contiene un porcentaje específico de la energía total recogida (D: S) (Spot size). La relación D: S es utilizada como una guía para determinar la distancia apropiada para hacer medidas de temperatura infrarroja. Radiation thermometers have an optical resolution defined by the relationship between the distance to the object and the diameter of the area that contains a specific percentage of the total energy collected (D: S) (Spot size). The D: S ratio is used as a guide to determine the appropriate distance to make infrared temperature measurements.
Para una cámara termográfica el "spot size* representa al pixel y la distancia que puede ver y el "IFOV" es el ángulo sólido subtendido del pixel al objetivo. For a thermal imager the "spot size * represents the pixel and the distance it can see and the" IFOV "is the subtended solid angle of the pixel to the target.
Un termómetro de radiación de banda angosta es aquel que posee un filtro óptico que transmite un intervalo estrecho de longitudes de onda. Este intervalo denominado ancho de banda espectral (Δλ) es en el orden de algunos nanómetros (nm). A narrow band radiation thermometer is one that has an optical filter that transmits a narrow range of wavelengths. This interval called spectral bandwidth (Δλ) is in the order of some nanometers (nm).
Un termómetro de radiación de banda ancha es aquel que se caracteriza por tener un filtro óptico que transmite un intervalo amplio de longitudes de onda (Δλ), este intervalo es aproximadamente de algunos micrómetros (μm). A broadband radiation thermometer is one that is characterized by having an optical filter that transmits a wide range of wavelengths (Δλ), this range is approximately a few micrometers (μm).
En procesos industriales es de gran importancia el control y lectura apropiados de las temperaturas de proceso y de los equipos y maquinaría empleados en tales procesos. Muchas decisiones de importancia en la industria están basadas en el resultado de sus mediciones de las condiciones de proceso y sus equipos. Detener una línea de producción para realizar reparaciones y tareas de mantenimiento puede resultar en grandes pérdidas económicas si se debe a problemas de control de temperaturas por fallas o errores en su medición o ante las lecturas equivocadas. Para poder confiar plenamente en las mediciones, no cabe duda que es de importancia mayúscula la calibración óptima de sus instrumentos de medición de temperaturas. In industrial processes, the proper control and reading of process temperatures and of the equipment and machinery used in such processes is of great importance. Many important decisions in the industry are based on the result of their measurements of the process conditions and their equipment. Stopping a production line for repairs and maintenance can result in large economic losses if it is due to temperature control problems due to failures or errors in measurement or to the wrong readings. In order to fully rely on measurements, there is no doubt that the optimum calibration of your temperature measuring instruments is of major importance.
La calibración es la operación que bajo condiciones especificadas establece, en una primera etapa, una relación entre los valores y sus incertidumbres de medida asociadas obtenidas a partir de los patrones de medida y las correspondientes indicaciones con sus incertidumbres asociadas y en una segunda etapa, utiliza esta información para establecer una relación que permita obtener un resultado de medida a partir de una indicación. (NMX-Z-055- IMNC- 2009). Calibration is the operation that, under specified conditions, establishes, in a first stage, a relationship between the values and its associated measurement uncertainties obtained from the measurement patterns and the corresponding indications with its associated uncertainties and in a second stage, use this information to establish a relationship that allows obtaining a measurement result from an indication. (NMX-Z-055- IMNC- 2009).
Una calibración fiable supone mayor exactitud de lecturas, menos preocupaciones, menos dudas y una mayor productividad. Reliable calibration means greater accuracy of readings, less worries, less doubts and greater productivity.
La confianza en las medidas de radiación infrarroja requiere normalmente del uso de instrumentos calibrados. La calibración también puede ser definida como el conjunto de operaciones llevadas a cabo de acuerdo con un procedimiento de calibración definido, que compara las medidas realizadas por un instrumento con otras realizadas con un instrumento de mayor exactitud o patrón, con el propósito de detectar e informar, los errores en la medición, así como el valor de incertidumbre de la medición del instrumento que se está calibrando. Confidence in infrared radiation measurements normally requires the use of calibrated instruments. Calibration can also be defined as the set of operations carried out in accordance with a defined calibration procedure, which compares the measurements made by an instrument with others performed with a more accurate or standard instrument, with the purpose of detecting and informing , measurement errors, as well as the uncertainty value of the measurement of the instrument being calibrated.
El patrón utilizado habitualmente para calibrar o verificar instrumentos o sistemas de medida, es un instrumento del cual se conoce su comportamiento y que servirá de referencia para calibrar al "instrumento de medición a calibrar". (NMX-Z-055- IMNC-2009). The standard commonly used to calibrate or verify measuring instruments or systems is an instrument whose behavior is known and which will serve as a reference to calibrate the "measuring instrument to be calibrated". (NMX-Z-055- IMNC-2009).
El patrón de medida de referencia es el patrón designado para la calibración de patrones de magnitudes de la misma naturaleza en una organización o lugar dado. (NMX-Z-055- IMNC-2009) En los procesos de calibración pueden existir errores de medida que se define como la diferencia entre un valor medido de una magnitud y un valor de referencia (NMX-Z55-IMNC-2009). The reference measurement standard is the standard designated for the calibration of magnitude patterns of the same nature in a given organization or location. (NMX-Z-055- IMNC-2009) In calibration processes there may be measurement errors that are defined as the difference between a measured value of a magnitude and a reference value (NMX-Z55-IMNC-2009).
Existen también parámetros no negativos que caracterizan la dispersión de los valores atribuidos a un mensurando, a partir de la información que se utiliza. (NMX-Z55-IMNC-2009), que se define como incertidumbre de medida. Una calibración de temperatura infrarroja comienza con una medida superficial de lo que actúa como fuente de calor, que debe ser un plato plano o una cavidad que funciona como patrón o referencia. La geometría de calibración, que incluye el tamaño de la superficie de medida y la distancia del termómetro a calibrar juega un papel fundamental en el resultado de la medida. También son críticas la estabilidad de la temperatura, la uniformidad y las propiedades físicas de la superficie emisora como es la emisividad. There are also non-negative parameters that characterize the dispersion of the values attributed to a measurand, based on the information used. (NMX-Z55-IMNC-2009), which is defined as measurement uncertainty. An infrared temperature calibration begins with a superficial measurement of what acts as a source of heat, which must be a flat plate or a cavity that functions as a standard or reference. The calibration geometry, which includes the size of the measuring surface and the distance of the thermometer to be calibrated, plays a fundamental role in the measurement result. Also critical are temperature stability, uniformity and physical properties of the emitting surface such as emissivity.
La emisividad es la energía radiante proveniente de una superficie opaca y es una combinación de la radiancia emitida causada por la temperatura de la superficie y la radiancia reflejada proveniente de cualquier lugar en el ambiente. Emissivity is the radiant energy coming from an opaque surface and is a combination of the emitted radiance caused by the surface temperature and the reflected radiance coming from anywhere in the environment.
La cantidad de luz emitida a una determinada temperatura es determinada por la emisividad de la superficie. La emisividad es la relación entre la energía radiada emitida por una superficie y la emitida por un cuerpo negro a la misma temperatura. La emisividad se ve enormemente afectada por el tipo de material de la superficie y el acabado de la misma. The amount of light emitted at a certain temperature is determined by the emissivity of the surface. Emissivity is the ratio between the radiated energy emitted by a surface and that emitted by a black body at the same temperature. Emissivity is greatly affected by the type of surface material and its finish.
Los calibradores de temperatura infrarroja deben ser diseñados para tener una emisividad conocida, que debe permanecer constante a lo largo del tiempo. La emisividad puede ser cualquier valor entre cero y uno, ambos incluidos. Emisividad cero indica que no importa cual sea la temperatura del cuerpo, ya que nada de luz será radiada. Una emisividad de uno indica que la superficie radiará perfectamente a todas las longitudes de onda. Los "cuerpos negros" son objetos perfectamente radiantes. Los objetos con emisividad muy próxima a uno se llaman habitualmente cuerpos negros. Un calibrador con una superficie plana y una emisividad de en torno a 0.95 se suele llamar cuerpo gris si la emisividad es uniforme para todas las longitudes de onda. Infrared temperature calibrators must be designed to have a known emissivity, which must remain constant over time. The emissivity can be any value between zero and one, both included. Zero emissivity indicates that no matter what the body temperature is, since no light will be radiated. An emissivity of one indicates that the surface will radiate perfectly at all wavelengths. "Black bodies" are objects perfectly radiant. Objects with emissivity very close to one are usually called black bodies. A calibrator with a flat surface and an emissivity of around 0.95 is usually called a gray body if the emissivity is uniform for all wavelengths.
Algunos fabricantes de termómetros de radiación, sino es que la mayoría, suponen un valor constante de emisividad para cualquier objeto o fuente, es decir independiente de la temperatura y la longitud de onda. Sin embargo, en la mayoría de los casos no se cumple: la emisividad de los cuerpos en general depende tanto de su temperatura como de la longitud de onda. Solamente para un cuerpo negro ideal se cumple que el valor de su emisividad es independiente de su temperatura y de la longitud de onda. Some manufacturers of radiation thermometers, if not most, assume a constant emissivity value for any object or source, that is, independent of temperature and wavelength. However, in most cases it is not met: the emissivity of bodies in general depends on both their temperature and wavelength. Only for an ideal black body is it satisfied that the value of its emissivity is independent of its temperature and wavelength.
Un cuerpo negro es una superficie ideal que emite y absorbe la radiación electromagnética con la máxima cantidad de potencia posible a una temperatura dada de acuerdo con la Ley de Planck, donde: A black body is an ideal surface that emits and absorbs electromagnetic radiation with the maximum amount of power possible at a given temperature according to Planck's Law, where:
c1L es la primera constante de radiación para radiancia espectral, con valor igual a 1,191 042 759 x 10-16 WDm2Dsr-1. c1L is the first radiation constant for spectral radiance, with a value equal to 1,191 042 759 x 10-16 WDm 2 Dsr- 1 .
λ Es la longitud de onda, en m. λ Is the wavelength, in m.
c2 Segunda constante de radiación, con un valor igual a 1,4388 x 10-2 rnüK. c2 Second radiation constant, with a value equal to 1.4388 x 10-2 rnüK.
T Temperatura del cuerpo negro, en kelvin. T Black body temperature, in Kelvin.
LCN (λ, T) Es la radiación electromagnética emitida, llamada radiancia espectral porque involucra propiedades físicas de la fuente, como son:  LCN (λ, T) It is the emitted electromagnetic radiation, called spectral radiance because it involves physical properties of the source, such as:
• la potencia radiada, en W,  • the radiated power, in W,
· el área de la fuente, en m2, · The source area, in m 2 ,
• el ángulo sólido, en sr.  • the solid angle, in mr.
Dicha superficie ideal que emite y absorbe la radiación electromagnética no permite que la radiación refleje o pase a través de ella. En un laboratorio un cuerpo negro es una larga cavidad con una pequeña apertura. La reflexión es evitada porque cualquier luz que entra a través del agujero tiene que reflejarse sobre la superficie del cuerpo muchas veces, siendo absorbida antes de escapar. Said ideal surface that emits and absorbs radiation Electromagnetic does not allow radiation to reflect or pass through it. In a laboratory a black body is a long cavity with a small opening. The reflection is avoided because any light that enters through the hole has to be reflected on the surface of the body many times, being absorbed before escaping.
Cuando se cumple ο2/λΤ>>1, se puede emplear la ley de Wien para la radiancia espectral de un cuerpo negro: When ο2 / λΤ >> 1 is fulfilled, Wien's law can be used for the spectral radiance of a black body:
Un cuerpo gris es una superficie que emite radiación con una emisividad constante sobre todas las longitudes de onda y temperaturas. Aunque los cuerpos grises no existen en la práctica, son una buena aproximación para la mayoría de las superficies reales.  A gray body is a surface that emits radiation with a constant emissivity over all wavelengths and temperatures. Although gray bodies do not exist in practice, they are a good approximation for most real surfaces.
En la actualidad existen cuerpos negros para la calibración de medidores de temperatura por radiación, principalmente, termómetros radiación y equipos termográficos. Estos cuerpos existen de forma comercial y consisten de cavidades que por sus características físicas de construcción y por los materiales empleados logran tener un alto valor de la emisividad, variable crítica en este campo de la invención.  Currently there are black bodies for the calibration of radiation temperature meters, mainly, radiation thermometers and thermographic equipment. These bodies exist commercially and consist of cavities that, due to their physical construction characteristics and the materials used, have a high emissivity value, a critical variable in this field of the invention.
Marcas internacionales como Land®, Hart Scientific (fluke)®, Isotech®, Wuhan Guide®, Infrared Systems®, entre otras son las más conocidas por su calidad y cuentan con intervalos de temperatura extensos. International brands such as Land®, Hart Scientific (fluke) ®, Isotech®, Wuhan Guide®, Infrared Systems®, among others are the best known for their quality and have extensive temperature ranges.
Algunos de los cuerpos negros no son cavidades, sino superficies y estos se utilizan también para calibrar termómetros de radiación y la superficie expuesta de radiación se prefiere para los termómetros de radiación con un ángulo de visión grande. Some of the black bodies are not cavities, but surfaces and these are also used to calibrate radiation thermometers and the exposed radiation surface is preferred for radiation thermometers with a large viewing angle.
Los cuerpos negros existentes en formas de discos o placas, no determinan el gradiente térmico, adicional a que proporcionan medidas "puntuales" de temperatura sin abarcar la amplia gama de tamaños de matrices que involucran los equipos termográficos. The existing black bodies in the form of discs or plates, do not determine the thermal gradient, in addition to that they provide "spot" temperature measurements without covering the wide range of matrix sizes involving thermographic equipment.
Los cuerpos negros ya existentes son útiles para la calibración de los termómetros de termómetros de radiación y los equipos termográficos, pero no para caracterizar los equipos infrarrojos, dado que su principio de medición es diferente. La temperatura del termómetro de radiación representa el promedio de las temperaturas medidas en el círculo resultante de su ángulo de medición, mientras que la temperatura medida con el equipo termográfico es resultante de captar la energía radiada del cuerpo medido, representada por una matriz con valores puntuales de temperatura en X, Y. En cuanto a los equipos arriba descritos, se tienen deficiencias que imposibilitan calibrar o caracterizar equipos termográficos. Para los cuerpos negros, se trata sólo de un punto de temperatura para calibrar sólo una temperatura de la cámara termográfica, no existe forma de tener un gradiente térmico conocido para calibrar las diferencias de temperatura que registra la cámara termográfica. Existing black bodies are useful for the calibration of radiation thermometer thermometers and thermographic equipment, but not for characterizing infrared equipment, since their measurement principle is different. The temperature of the radiation thermometer represents the average of the temperatures measured in the circle resulting from its measurement angle, while the temperature measured with the thermographic equipment is the result of capturing the radiated energy of the measured body, represented by a matrix with point values of temperature in X, Y. As for the equipment described above, there are deficiencies that make it impossible to calibrate or characterize thermographic equipment. For black bodies, it is only a temperature point to calibrate only one temperature of the thermal imager, there is no way to have a known thermal gradient to calibrate the temperature differences recorded by the thermal imager.
Para el caso de las superficies negras, aun cuando a pesar de tener gradientes térmicos, éstos no se determinan de tal suerte que no se pueden comparar con los que muestra la cámara termográfica. Por lo tanto, los equipos existentes están realmente diseñados para calibrar termómetros de radiación y no equipos termográficos. In the case of black surfaces, even though despite having thermal gradients, they are not determined in such a way that they cannot be compared with those shown by the thermal imager. Therefore, existing equipment is really designed to calibrate radiation thermometers and not thermographic equipment.
En los equipos comerciales, en la magnitud de temperatura por radiación, la trazabilidad metrológica de los termómetros de referencia se puede dar a través de un termómetro de contacto, el cual puede ser un termómetro tipo: RTD (Detector de Temperatura por Resistencia) o Termopar. La trazabilidad metrológica es la propiedad de un resultado de medida por la cual el resultado puede relacionarse con una referencia mediante una cadena ininterrumpida y documentada de calibraciones, cada una de las cuales contribuye a la incertidumbre de medida (NMX-Z-055- IMNC-2009) In commercial equipment, in the magnitude of radiation temperature, the metrological traceability of the reference thermometers can be given through a contact thermometer, which can be a type thermometer: RTD (Resistance Temperature Detector) or Thermocouple . Metrological traceability is the property of a measurement result whereby the result can be related to a reference through an uninterrupted and documented chain of calibrations, each of which contributes to the measurement uncertainty (NMX-Z-055-IMNC- 2009)
Efectuando una búsqueda del estado de la técnica, se encontraron algunas patentes relacionadas con tecnología de infrarrojo como la solicitud de patente internacional publicada con el No. WO2008031774 de Goldammer Matthias y Heinrich Werner, del 09 de julio de 2007 la cual se refiere a un método para determinar parámetros de un componente por medio de la termografía, en el que, al menos, un componente se calienta por medio de un gas caliente. La invención se refiere además a un dispositivo para la determinación de parámetros de componentes por medio de termografía con un medio de calentamiento para calentar al menos un componente, con un sensor de temperatura para detectar por lo menos un valor de temperatura del componente, en el que el medio de calentamiento para calentar el componente es un dispositivo de emisión de gas caliente. Performing a state of the art search, some patents related to infrared technology were found, such as the international patent application published with No. WO2008031774 of Goldammer Matthias and Heinrich Werner, dated July 9, 2007, which refers to a method to determine parameters of a component by means of thermography, in which at least one component is heated by means of a hot gas. The invention further relates to a device for the determination of component parameters by means of thermography with a heating means for heating at least one component, with a temperature sensor to detect at least one temperature value of the component, in the that the heating means for heating the component is a hot gas emission device.
Se ubicó también la patente EP 1726943 de Smith Kevin D del 12 de mayo del 2006 divulga un aparato de inspección que incluye una fuente de luz posicionada para dirigir la luz a una primera superficie de una pieza de trabajo. Un detector de infrarrojos está posicionado para recibir la radiación de la primera superficie. Un ordenador de adquisición y procesamiento de datos está acoplado a la fuente de luz y el detector de infrarrojos. El equipo activa la fuente de luz para emitir la luz una serie de casos. El equipo adquiere datos térmicos del detector de infrarrojos para un número de veces después de cada uno de los casos.  The patent EP 1726943 of Smith Kevin D of May 12, 2006 also discloses an inspection apparatus that includes a light source positioned to direct the light to a first surface of a workpiece. An infrared detector is positioned to receive radiation from the first surface. A data acquisition and processing computer is coupled to the light source and the infrared detector. The equipment activates the light source to emit the light a series of cases. The equipment acquires thermal data from the infrared detector for a number of times after each case.
El ordenador está configurado para procesar los datos usando una solución teórica para analizar los datos térmicos basados en un promed io de los datos térmicos para un número de cada uno de los correspondientes de las veces a partir de d iferentes de entre las instancias. Por ú ltimo está la solicitud de patente con número de pu blicación MX2013015367 (A), que es u na solicitud previa a la presente invención, la cual se refiere un sistema de calibración y/o caracterización con mayor exactitud de instru mentos de medición de temperatura por telemetría que involucra una u nidad de referencia con gradiente térmico defin ida por un disco con gradiente térmico conformado por, al menos , u n anillo metálico difusor térmico concéntrico, con sensores de temperatura que generan un perfil rad ial de temperatu ras escalonadas, ligados mecánicamente con una cavidad de u n cuerpo negro alojado en un horno eléctrico, para generarle y controlarle su temperatu ra; y un método para calibración de instrumentos de medición de temperatu ra por telemetría, med iante el uso de un su bsistema de medición para calibración de equ ipos de medición de temperatu ra por telemetría, dispuesto frente a dicho al menos un horno que consta de una plataforma con escala longitud inal graduada como ind icador de distancia y que está adaptada para montar los equipos patrón y los equipos a calibrar; y una PC en donde se alimentan las lecturas de temperatu ra del sistema de anillos de referencia de gradiente térmico , de la cavidad cilindrica de cuerpo negro y la trazabilidad con referencia de los equipos patrón para obtener un perfil de temperaturas que permite mediante un programa de computo matemático especializado calibrar y/o caracterizar por comparación los instrumentos de medición de temperatu ra por telemetría. Sin embargo la invención citada, cuenta con la desventaja de que aunque la fuente de radiación con cavidad de cuerpo neg ro se puede adaptar a d iferentes temperaturas, el termómetro de referencia de contacto está fijo a la cavidad y permanece pegado a través del tiempo, con lo cual, se imposibilita la forma de calibrarlo periódicamente y por lo tanto , se puede llegar a perder la trazabilidad metrológica del mismo; The computer is configured to process the data using a theoretical solution to analyze thermal data based on a average of the thermal data for a number of each of the corresponding times from different instances between the instances. Finally, there is the patent application with publication number MX2013015367 (A), which is a prior application to the present invention, which refers to a calibration and / or characterization system with greater accuracy of measuring instruments for telemetry temperature involving a reference unit with a thermal gradient defined by a disk with a thermal gradient consisting of at least one concentric thermal diffuser metal ring, with temperature sensors that generate a radial profile of staggered, linked temperature mechanically with a cavity of a black body housed in an electric oven, to generate and control its temperature; and a method for calibration of temperature measuring instruments by telemetry, through the use of a measuring system for calibration of temperature measuring equipment by telemetry, arranged in front of said at least one oven consisting of a platform with an unallocated length scale as a distance indicator and that is adapted to mount the standard equipment and the equipment to be calibrated; and a PC where the temperature readings of the thermal gradient reference ring system, the black body cylindrical cavity and the traceability with reference of the standard equipment are fed to obtain a temperature profile that allows by means of a program of specialized mathematical computation calibrate and / or characterize by comparison the instruments of temperature measurement by telemetry. However, the aforementioned invention has the disadvantage that although the radiation source with black body cavity can be adapted at different temperatures, the contact reference thermometer is fixed to the cavity and remains stuck over time, with which, the way to calibrate it periodically is impossible and therefore, you can get to lose its metrological traceability;
Se observó que la cavidad estaba conformada por un solo elemento metálico, lo cual imposibilita la opción de colocar insertos en su parte posterior y con ello la opción de probar diferentes geometrías para obtener una mejor medición de la energía radiada. It was observed that the cavity was formed by a single metallic element, which makes it impossible to place inserts on its back and with it the option to test different geometries to obtain a better measurement of the radiated energy.
Se detectó que faltaba una ranura sobre la cavidad para colocar el sensor de control de manera fija, para impedir su movimiento y con ello permitir una buena comunicación entre el sensor y el controlador de temperatura. It was detected that a groove was missing on the cavity to place the control sensor in a fixed manner, to prevent its movement and thereby allow good communication between the sensor and the temperature controller.
Por su geometría no se puede transportar con facilidad y corre el riesgo de que sufra daños en su instrumentación; la estructura de su aislamiento, como se encuentra descrita en la solicitud MX2013015367 (A), hace que la temperatura exterior sea mayor a los 100°C, cuando se trabaja con temperaturas arriba de 550°C, lo cual hace inseguro al sistema para sus operadores y crea convección que puede afectar al proceso de calibración y a su propia instrumentación; Due to its geometry, it cannot be transported easily and you run the risk of damage to your instrumentation; The structure of its insulation, as described in application MX2013015367 (A), makes the outside temperature greater than 100 ° C, when working with temperatures above 550 ° C, which makes the system insecure for operators and creates convection that can affect the calibration process and its own instrumentation;
El hecho de que sea cableado implica ruido electrónico dentro del gabinete que conforma al sistema. No cuenta con un sistema de encendido para protección de regreso de corriente y sobrecarga, lo cual pone en riesgo la integridad del sistema ante posibles variaciones de la electricidad. The fact that it is wired implies electronic noise inside the cabinet that conforms to the system. It does not have an ignition system for protection against the return of current and overload, which jeopardizes the integrity of the system against possible variations in electricity.
La geometría y tipo de calefactor eléctrico genera falta de uniformidad en la cavidad, ocasionando con ello, gradientes de temperatura a lo largo de la cavidad. The geometry and type of electric heater generates a lack of uniformity in the cavity, thereby causing temperature gradients throughout the cavity.
La estructura actual del gabinete, como se encuentra descrita en la solicitud MX2013015367 (A), presenta dificultades en su disposición, impidiendo con ello, llevar acabo mantenimientos del sistema de manera fácil y rápida; ya que existe dificultad para acceder a los diferentes componentes. The current structure of the cabinet, as described in application MX2013015367 (A), presents difficulties in its arrangement, thus preventing it from carrying out maintenance of the system easily and quickly; since there is difficulty in accessing the different components.
Ante la necesidad de contar con una fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, que resuelva los inconvenientes de los equipos y métodos de calibración existentes no aptos para equipos termográficos, fue que se desarrolló la presente invención. OBJETO DE LA INVENCIÓN Given the need for a source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, which solves the inconvenience of existing equipment and calibration methods not suitable for thermographic equipment, it was developed invention. OBJECT OF THE INVENTION
La presente invención tiene como objeto, hacer disponible una fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada; para dar trazabilidad a las mediciones de temperatura de termómetros de radiación y equipos termográficos, que permita caracterizar la función de gradientes térmicos de las cámaras termográficas mediante placas con gradientes térmicos continuos y discretos; así como calibrar instrumentos de medición de temperatura por radiación, principalmente termómetros de radiación y equipos termográficos usando la cavidad de cuerpo negro con termómetro de referencia y/o termómetro de transferencia de radiación. Otro objetivo de la invención es hacer disponible dicha fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada, que además permita definir y conocer el gradiente térmico requerido para caracterizar las diferencias de temperatura que registran los equipos termográficos. The object of the present invention is to make available a source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved; to give traceability to the temperature measurements of radiation thermometers and thermographic equipment, which allows characterizing the function of thermal gradients of the thermographic cameras by means of plates with continuous and discrete thermal gradients; as well as calibrating radiation temperature measuring instruments, mainly radiation thermometers and thermographic equipment using the black body cavity with reference thermometer and / or radiation transfer thermometer. Another objective of the invention is to make said source of electrical radiation available for calibration and / or characterization of temperature measurement instruments by telemetry, which also allows defining and knowing the thermal gradient required to characterize the temperature differences recorded by the equipment. thermographic
Otro objetivo de la invención es hacer disponible dicha fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada, que además estructuralmente sea práctico, operativamente eficiente, seguro y de fácil operación . Another object of the invention is to make said source of electrical radiation available for calibration and / or characterization of temperature measuring instruments by telemetry, improved, which is also structurally practical, operationally efficient, safe and easy to operate.
BREVE DESC RIPC IÓN DE LAS FIG URAS BRIEF DESC RIPC IÓN OF THE FIG URAS
Los detalles característicos de esta novedosa fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatu ra por telemetría, mejorada, se muestran claramente en la siguiente descripción y en las figu ras que se acompañan , así como una ilustración de aquella, y siguiendo los mismos signos de referencia para ind icar las partes mostradas. Sin embargo, d ichas fig uras se muestran a manera de ejemplo y no deben de ser consideradas como limitativas para la presente invención. The characteristic details of this novel source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, are clearly shown in the following description and in the accompanying figures, as well as an illustration of that , and following the same reference signs to indicate the parts shown. However, these figures are shown by way of example and should not be considered as limiting for the present invention.
La figura 1 muestra en perspectiva un explosivo de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de med ición de temperatu ra por telemetría, mejorada. Figure 1 shows in perspective an explosive of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
La figura 2 muestra en perspectiva frontal de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada , sin la tapa frontal . Figure 2 shows in front perspective of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, without the front cover.
La figura 3 muestra en perspectiva frontal de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada, con la tapa frontal .  Figure 3 shows in front perspective of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, with the front cover.
La figura 4 muestra en perspectiva frontal de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatu ra por telemetría, mejorada, y la tapa frontal . La figura 5 muestra en perspectiva posterior de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada. Figure 4 shows in front perspective of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, and the front cover. Figure 5 shows in perspective view of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
La figura 6 muestra una perspectiva convencional en detalle de la cavidad cilindrica del cuerpo negro de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada, donde se aprecia una ranura sobre la cavidad para colocar el sensor de control, así como un inserto metálico, del mismo material que la cavidad, con una geometría preferentemente en forma de cono positivo o cono negativo.  Figure 6 shows a conventional perspective in detail of the cylindrical cavity of the black body of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, where a groove is seen on the cavity to place the control sensor, as well as a metallic insert, of the same material as the cavity, with a geometry preferably in the form of a positive cone or a negative cone.
La figura 7 una perspectiva convencional de la cavidad cilindrica del cuerpo negro con el disco de gradiente térmico ligado mecánicamente de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada.  Figure 7 shows a conventional perspective of the cylindrical cavity of the black body with the thermal gradient disk mechanically linked to the source of electrical radiation for calibration and / or characterization of telemetry enhanced temperature measurement instruments.
La figura 8 muestra una perspectiva convencional en detalle de los calefactores de alta eficiencia de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada.  Figure 8 shows a conventional perspective in detail of the high efficiency heaters of the source of electric radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
La figura 9 ilustra un corte transversal de un anillo metálico difusor térmico concéntrico de los que conforman el disco de gradiente térmico, mostrando los barrenos topados, para los sensores de temperatura y el estriado de la superficie frontal de trabajo, de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada.  Figure 9 illustrates a cross-section of a concentric thermal diffuser metal ring of those that make up the thermal gradient disk, showing the blasted holes, for the temperature sensors and the grooving of the front working surface, of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved.
La figura 10 ilustra un gráfico de los escalones de temperatura provocados por las resistencias térmicas de contacto en las posiciones de 20 mm, 40 mm, 60 mm y 80 mm que corresponden a las interfaces de contacto entre dos placas difusoras térmicas (que conforman el arreglo vertical de placas de gradientes térmicos), hechas de un acero con alto conductividad térmica, preferentemente Inconel®, Acero Inoxidable, Bronce, Aluminio o propiedades térmicas similares, ares, en el arreglo vertical de placas de gradientes térmicos; en donde la inclinación de los escalones se debe a la resistencia térmica de conducción de los bloques de acero. Figure 10 illustrates a graph of the temperature steps caused by the thermal contact resistors in the positions of 20 mm, 40 mm, 60 mm and 80 mm corresponding to the contact interfaces between two thermal diffuser plates (which make up the vertical arrangement of thermal gradient plates), made of a high thermal conductivity steel, preferably Inconel®, Stainless Steel, Bronze, Aluminum or similar thermal properties, ares, in the vertical arrangement of thermal gradient plates; where the inclination of the steps is due to the thermal conduction resistance of the steel blocks.
La figura 11 ilustra una vista lateral a detalle del Inserto de cavidad cilindrica de cuerpo negro.  Figure 11 illustrates a detailed side view of the black body cylindrical cavity insert.
Para una mejor comprensión del invento, se pasará a hacer la descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción; así como una lista de las partes que componen la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada: For a better understanding of the invention, a detailed description of some of the modalities thereof will be shown, shown in the drawings which, for illustrative but non-limiting purposes, are attached to this description; as well as a list of the parts that make up the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved:
1. Carcasa aislante superior 1. Upper insulating housing
2. Carcasa aislante inferior  2. Lower insulating housing
3. Cavidad cilindrica de cuerpo negro  3. Black body cylindrical cavity
4. Calefactor inferior  4. Bottom heater
5. Calefactor superior  5. Upper heater
6. Inserto de cavidad cilindrica de cuerpo negro  6. Black body cylindrical cavity insert
7. Ranura  7. Slot
8. Disco con gradiente térmico  8. Disc with thermal gradient
9. Anillo metálico difusor térmico concéntrico  9. Concentric thermal diffuser metal ring
9a. Anillo metálico difusor térmico concéntrico 9b. Anillo metálico difusor térmico concéntrico 9c. Anillo metálico difusor térmico concéntrico 9a. Concentric thermal diffuser metal ring 9b. Concentric thermal diffuser metal ring 9c. Concentric thermal diffuser metal ring
9d. Anillo metálico difusor térmico concéntrico 9d Concentric thermal diffuser metal ring
10. Barrenos topados 10. Bumped holes
11. Estriado de perfil triangular  11. Striated triangular profile
12. Cara frontal de trabajo  12. Working front face
13. Ducto  13. Pipeline
14. Base  14. Base
15. Soportes  15. Stands
16. Niveladores  16. Levellers
17. Tablero de control  17. Control board
18. Controlador de temperatura  18. Temperature controller
19. Sistema de adquisición de datos  19. Data acquisition system
20. Interruptor  20. Switch
21. Fusible de potencia  21. Power fuse
22. Puerta de acceso  22. Access door
23. Mufla  23. Mufla
24. Disipador de calor  24. Heatsink
25. Arrancador térmico de inducción magnética  25. Magnetic induction thermal starter
26. Tapa superior  26. Top cover
27. Tapas laterales  27. Side covers
28. Tapa frontal  28. Front cover
29. Medios de ventilación  29. Means of ventilation
30. Medios de sujeción  30. Clamping means
31. Asa  31. Asa
32. Segundo fusible de potencia  32. Second power fuse
DESCRIPCIÓN DETALLADA DEL INVENTO DETAILED DESCRIPTION OF THE INVENTION
Haciendo referencia a la figura 1, ia fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada consta de una carcasa aislante superior (1) y una carcasa aislante inferior (2) configuradas con un hueco para recibir internamente un calefactor inferior (4) y un calefactor superior (5) que embonan entre si y funcionan como una fuente de radiación térmica de alta eficiencia térmica; dichos calefactores inferior (4) y superior (5) alojan una cavidad cilindrica de cuerpo negro (3) permitiendo que la temperatura de dicha cavidad cilindrica incremente, y gracias a las carcasas aislantes superior ( 1 ) e inferior (2) se evitan pérdidas y variaciones de temperatura. Se prefiere q ue el aislante térmico sea un insuiado de alta resistencia térmica para temperatu ras cercanas a 1000°C y menores. Con espesor suficiente para evitar calentamientos en el exterior del gabinete. Referring to Figure 1, the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved consists of an upper insulating housing (1) and a lower insulating housing (2) configured with a hollow for receive internally a lower heater (4) and an upper heater (5) that embed each other and they function as a source of high thermal efficiency thermal radiation; said lower (4) and upper (5) heaters house a black body cylindrical cavity (3) allowing the temperature of said cylindrical cavity to increase, and thanks to the upper (1) and lower (2) insulating housings, losses are avoided and temperature variations It is preferred that the thermal insulator be an insufficient high thermal resistance for temperatures close to 1000 ° C and lower. With sufficient thickness to avoid heating on the outside of the cabinet.
La carcasa aislante inferior (2) tiene, al menos, un ducto (13) que permite pasar los cables necesarios para el funcionamiento de la fuente de radiación eléctrica para calibración y/o caracterización de instru mentos de med ición de temperatu ra por telemetría, mejorada. The lower insulating housing (2) has at least one duct (13) that allows the cables necessary for the operation of the source of electrical radiation to be passed for calibration and / or characterization of temperature measurement instruments by telemetry, improved
En la figu ra 8 , se aprecia el calefactor inferior (4) , siendo éste igual al calefactor su perior (5) ; tanto el calefactor inferior (4) como el superior (5) son de alta eficiencia y de material cerámico, preferentemente en forma de media caña de 1500W (watts) , para ser usada con voltaje de 230V (volts), esto para alcanzar eficientemente temperaturas de hasta 1000°C; y tienen en sus caras interiores, canales longitudinales que les dan un alta eficiencia y d istribución u niforme del calor en la cavidad cilind rica del cuerpo negro (3) .  In Fig. 8, the lower heater (4) can be seen, this being equal to the heater (5); both the lower heater (4) and the upper one (5) are of high efficiency and ceramic material, preferably in the form of a half-round of 1500W (watts), to be used with a voltage of 230V (volts), this to efficiently reach temperatures up to 1000 ° C; and they have longitudinal channels on their inner faces that give them high efficiency and uniform distribution of heat in the rich cylinder cavity of the black body (3).
Como se ilustra en las figu ras 6 y 7, la cavidad cilindrica del cuerpo negro (3) , cuenta con una ranura (7) q ue permite colocar un insertos de cavidad cilindrica de cuerpo neg ro (6) para obtu rar ei extremo posterior de dicha cavidad cilindrica del cuerpo negro (3) , la ranura (7) también permite colocar un termómetro de contacto del tipo RTD (resistance temperature detector) o tipo Termopar, para ser conectado a un controlador de temperatura ( 18) ; y dicho extremo posterior, tiene un fondo intercambiable para poder utilizar diferentes geometrías de fondo en el inserto de cavidad cilindrica de cuerpo negro (6) , preferentemente con una geometría de cono positivo o cono negativo, con la finalidad de aumentar la energía radiada . El extremo anterior de la cavidad cilindrica del cuerpo neg ro (3) , está configurado para sustentar un disco con gradiente térmico (8) que está compuesto por, al menos, un anillo metálico difusor térmico concéntrico (9) el cual es removible, con al menos, dos sensores de temperatura (no mostrados) removibles en su parte posterior lisa, insertados en , al menos, dos barrenos topados (10) , ubicados horizontalmente , con respecto al eje axial de la cavidad cilindrica de cuerpo negro (3) y equ idistantes a su centro, insertados en ambos lados, que generan un perfil radial de temperaturas escalonadas por la pérdida de calor por convección y radiación en cada anillo metálico difusor térmico concéntrico (9) para defin ir perfiles de temperatura con gradiente térmico por el contacto térmico del disco con gradiente térmico (8) con la cavidad cilindrica de cuerpo negro (3), tal como se ilustra en la figura 9. As illustrated in Figs. 6 and 7, the cylindrical cavity of the black body (3), has a groove (7) which allows a cylindrical cavity insert of black body (6) to be placed to obtain the rear end. of said cylindrical cavity of the black body (3), the slot (7) also allows to place a contact thermometer of the RTD (resistance temperature detector) or Thermocouple type, to be connected to a temperature controller (18); and said rear end, has an interchangeable bottom to be able to use different bottom geometries in the cavity insert black body cylindrical (6), preferably with a positive cone or negative cone geometry, in order to increase the radiated energy. The front end of the cylindrical cavity of the black body (3) is configured to support a disc with a thermal gradient (8) which is composed of at least one concentric thermal diffuser metal ring (9) which is removable, with at least two removable temperature sensors (not shown) in their smooth back, inserted in at least two bump holes (10), located horizontally, with respect to the axial axis of the black body cylindrical cavity (3) and Equistants at its center, inserted on both sides, which generate a radial profile of staggered temperatures due to the loss of heat by convection and radiation in each concentric thermal diffuser metal ring (9) to define temperature profiles with thermal gradient by contact thermal disk with thermal gradient (8) with the black body cylindrical cavity (3), as illustrated in Figure 9.
En la figura 9 se muestra que los anillos metálicos concéntricos (9) comprenden un estriado de perfil triangular ( 1 1 ) en su superficie exterior de su cara frontal de trabajo (12) que se muestran como surcos triangulares (equiláteros) en corte transversal y que evitan reflejos en la misma . In figure 9 it is shown that the concentric metal rings (9) comprise a groove of triangular profile (1 1) on its outer surface of its front working face (12) which are shown as triangular grooves (equilateral) in cross section and that avoid reflections in it.
La fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatu ra por telemetría, mejorada, cuenta con una base (14) que aloja, al menos, dos soportes (15) , sobre los cuales se coloca la carcasa aislante inferior (2) ya unida con la carcasa aislante superior ( 1 ), las cuales en su interior se encuentran el calefactor inferior (4) y superior (5) ya fijos en la cavidad cilindrica de cuerpo negro (3) . La base ( 14) cuenta en su parte inferior con , al menos, cuatro niveladores (16) , que evitan que la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada, tenga movimientos no deseados. The source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved, has a base (14) that houses at least two supports (15), on which the insulating housing is placed lower (2) already connected with the upper insulating housing (1), which inside are the lower (4) and upper (5) heater already fixed in the black body cylindrical cavity (3). The base (14) has in its lower part with at least four levelers (16), which prevent the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved, have movements not desired
Con referencia a la figura 2, en el parte inferior frontal de la base (14), debajo de los soportes (15), la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada tiene un tablero de control (17) removible; incrustado a dicho tablero se encuentra un controlador de temperatura (18), el cual preferentemente es digital o de tipo "rampa". El tablero de control (17) cuenta con un sistema de adquisición de datos (19), un interruptor (20) y, al menos, un segundo fusible de potencia (32), los cuales, al activarse, permiten el funcionamiento de la presente invención.  With reference to Figure 2, in the lower front part of the base (14), below the supports (15), the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved has a control board (17) removable; embedded in said board is a temperature controller (18), which is preferably digital or "ramp" type. The control board (17) has a data acquisition system (19), a switch (20) and, at least, a second power fuse (32), which, when activated, allow the operation of the present invention.
El sistema de adquisición de datos (19), cuenta con tecnologia de conexión de dispositivos electrónicos de forma inalámbrica conocida como "Wi-FiV The data acquisition system (19) has wireless connection technology for electronic devices known as "Wi-FiV
Con referencia a la figura 5, en la parte posterior de la base (14), por encima de los soportes (15) hay una puerta de acceso (22), la cual es removible lo que permite hacer cambios de termopares de la cavidad cilindrica de cuerpo negro (3) asi como facilitar el mantenimiento preventivo y/o correctivo de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada. Debajo de la puerta de acceso (22) la base (14) aloja una mufla (23), al menos, un disipador de calor (24), un fusible de potencia (21) y un contacto arrancador térmico de inducción magnética (25), que protege la fuente de radiación de la presente invención de alguna sobrecarga. With reference to figure 5, on the back of the base (14), above the supports (15) there is an access door (22), which is removable which allows thermocouple changes of the cylindrical cavity black body (3) as well as facilitate preventive and / or corrective maintenance of the source of electrical radiation for calibration and / or characterization of temperature measurement instruments by telemetry, improved. Under the access door (22) the base (14) houses a muffle (23), at least one heat sink (24), a power fuse (21) and a magnetic induction thermal starter contact (25) , which protects the radiation source of the present invention from some overload.
Sobre la base (14) se fija una tapa superior (26) que es removible con la finalidad de cubrir la carcasa aislante inferior (2) cuando ya está unida con la carcasa aislante superior (1), las cuales en su interior se encuentran el calefactor inferior (4) y superior (5) ya fijos en la cavidad cilindrica de cuerpo negro (3); una tapa lateral (27) se fija en cada fado de la base (14) y la tapa superior (26). La tapa superior (26) y fas tapas laterales (27) son removibles y tienen, al menos, un asa (31), que sirve para asir la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada, con la finalidad de que se pueda transportar a diversos lugares de una manera sencilla. Para evitar sobrecalentamientos dentro de la fuente de radiación eléctrica de la presente invención, las tapas laterales (27) tienen, al menos, un medio de ventilación (29), el cual puede ser una rejilla y/o un ventilador, que permiten la circulación dentro de la fuente de radiación eléctrica reduciendo la temperatura, para impedir que el equipo eléctrico falle. On the base (14) an upper cover (26) is fixed, which is removable in order to cover the lower insulating shell (2) when it is already connected with the upper insulating shell (1), which inside are the lower (4) and upper (5) heater already fixed in the black body cylindrical cavity (3); a side cover (27) is fixed at each base fado (14) and the top cover (26). The top cover (26) and fas side covers (27) are removable and have at least one handle (31), which serves to grab the source of electrical radiation for calibration and / or characterization of telemetry temperature measuring instruments , improved, so that it can be transported to various places in a simple way. To avoid overheating within the source of electrical radiation of the present invention, the side covers (27) have at least one ventilation means (29), which can be a grid and / or a fan, which allow circulation inside the source of electrical radiation reducing the temperature, to prevent the electrical equipment from failing.
Con referencia a la figura 3 y 4, una tapa frontal (28) se une por medios de sujeción (30) a la tapa superior (26), acoplándose en la parte delantera de la fuente de radiación eléctrica para calibración y/o caracterización de instrumentos de medición de temperatura por telemetría, mejorada; de tal manera que protege el disco con gradiente térmico (8) y el tablero de control (17), cuando es trasladada o no se encuentra en uso la fuente de radiación eléctrica, cuando se llega al destino donde se va a utilizar la fuente de radiación, la tapa frontal (28) se quita. Los medios de sujeción (30) pueden ser broches, mecanismo machihembrado, imanes, abrazaderas mecánicas, velero y/o la combinación de los anteriores. With reference to FIGS. 3 and 4, a front cover (28) is attached by fastening means (30) to the upper cover (26), engaging in the front part of the source of electrical radiation for calibration and / or characterization of temperature measuring instruments by telemetry, improved; in such a way that it protects the disk with thermal gradient (8) and the control board (17), when the source of electric radiation is moved or is not in use, when it reaches the destination where the source of radiation, the front cover (28) is removed. The fastening means (30) can be clasps, tongue and groove mechanism, magnets, mechanical clamps, sailboat and / or the combination of the above.
Tanto la tapa superior (26), laterales (27) y frontal (28) son de materiales aislantes térmicos, con la finalidad de reducir la temperatura exterior y se pueda transportar inmediatamente después de su uso, sin correr riesgos de quemadura. Both the top cover (26), sides (27) and front (28) are made of thermal insulating materials, with the purpose of reducing the outside temperature and can be transported immediately after use, without risking burns.
Los tipos de cavidades cilindricas de cuerpos negros (3), que se utilizar en la presente invención, son aquellos que tengan preferentemente las características de la siguiente tabla: The types of cylindrical cavities of black bodies (3), to be used in the present invention, are those that preferably have the characteristics of the following table:
Figure imgf000024_0001
Figure imgf000024_0001
La principal razón para la selección de estos materiales está en función de su alta conductividad térmica y estabilidad en los respectivos intervalos de temperatura, así como condiciones óptimas de operación. The main reason for the selection of these materials is based on their high thermal conductivity and stability in the respective temperature ranges, as well as optimal operating conditions.
El material de que está hecho el anillo metálico difusor térmico (9) de la presente invención, depende de la temperatura a la cual se pretenden calibrar y/o caracterizar los instrumentos de medición de temperatura por telemetría, como se muestra en la siguiente. Tabla:
Figure imgf000025_0001
The material of which the metallic thermal diffuser ring (9) of the present invention is made depends on the temperature at which it is intended to calibrate and / or characterize the temperature measuring instruments by telemetry, as shown in the following. Table:
Figure imgf000025_0001
Con referencia a las figuras 7, 9 y 10, el disco con gradiente térmico (8) se forma por al menos un anillo metálico difusor térmico concéntrico (9), en la presente invención se prefieren, al menos, cuatro anillos metálicos difusores térmicos concéntricos (9a), (9b), (9c) y (9d), ensamblados mecánicamente en el disco con gradiente térmico (8), que en su modalidad preferida tiene los siguientes diámetros: With reference to Figures 7, 9 and 10, the disk with thermal gradient (8) is formed by at least one concentric thermal diffuser metal ring (9), in the present invention at least four concentric thermal diffuser metal rings are preferred (9a), (9b), (9c) and (9d), mechanically assembled on the disk with thermal gradient (8), which in its preferred mode has the following diameters:
Figure imgf000025_0002
Figure imgf000025_0002
Cada uno de dichos anillos metálicos difusores térmicos concéntricos (9a), (9b), (9c) y (9d) comprenden cuatro barrenos topados (10) dispuestos diametralmente y horizontales al eje axial, para alojar al menos a dos sensores de temperatura (no mostrados), en la presente invención se prefieren cuatro sensores de temperatura (no mostrados), para la toma de temperatura de los puntos para cada anillo metálico difusor térmico concéntrico (9a), (9b), (9c) y (9d). En donde los sensores de temperatura consisten en termopares tipo "J", "T* o "N". Each of said concentric thermal diffuser metal rings (9a), (9b), (9c) and (9d) comprises four threaded holes (10) arranged diametrically and horizontal to the axial axis, to accommodate at least two temperature sensors (no shown), four sensors are preferred in the present invention of temperature (not shown), for the temperature taking of the points for each concentric thermal diffuser metal ring (9a), (9b), (9c) and (9d). Where the temperature sensors consist of thermocouples type "J", "T * or" N ".
Para cuantifícar los gradientes térmicos se miden las temperaturas de los termopares de cada anillo metálico difusor térmico concéntrico (9a), (9b), (9c) y (9d). El gradiente de temperatura se genera en forma radial en el disco con gradiente térmico (8) compuesto por dichos anillos metálicos difusores térmicos concéntricos (9a), (9b), (9c) y (9d). To quantify the thermal gradients, the thermocouple temperatures of each concentric thermal diffuser metal ring (9a), (9b), (9c) and (9d) are measured. The temperature gradient is generated radially in the disk with thermal gradient (8) composed of said concentric thermal diffuser metal rings (9a), (9b), (9c) and (9d).
Los gradientes térmicos se cuantifican de la forma siguiente: Thermal gradients are quantified as follows:
Gradiente= ΔΤ/Δί  Gradient = ΔΤ / Δί
Donde ΔΤ es la diferencia de temperatura entre dos puntos consecutivos y AL es la distancia entre esos dos puntos consecutivos. La diferencia de temperatura se mide principalmente con termopares calibrados ubicados en la parte posterior de los anillos metálicos difusores térmicos concéntricos (9). La distancia entre dos puntos consecutivos se conoce desde el diseño y construcción de dichos anillos metálicos difusores térmicos concéntricos (9). Where ΔΤ is the temperature difference between two consecutive points and AL is the distance between those two consecutive points. The temperature difference is mainly measured with calibrated thermocouples located on the back of the concentric thermal diffuser metal rings (9). The distance between two consecutive points is known from the design and construction of said concentric thermal diffuser metal rings (9).
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, sin embargo, si para la aplicación de estas modificaciones en una estructura determinada o en el proceso de manufactura del mismo, se requiere de la materia reclamada en las siguientes reivindicaciones, dichas estructuras deberán ser comprendidas dentro del alcance de la invención. The invention has been described sufficiently that a person with average knowledge in the field can reproduce and obtain the results mentioned in the present invention. However, any skilled person in the field of the art that is in charge of the present invention may be able to make modifications not described in the present application, however, if for the application of these modifications in a given structure or in the manufacturing process of it, it requires the subject matter claimed in the following claims, said structures must be included within the scope of the invention.

Claims

REIVINDICACIONES H abiendo descrito suficientemente la invención , se reclama como propiedad lo conten ido en las siguientes cláusulas reivindicatorías. CLAIMS Having described the invention sufficiently, it is claimed as property contained in the following clauses claims.
1 . U na fuente de radiación eléctrica para calibración y caracterización de instrumentos de medición de temperatura por telemetría, mejorada, caracterizado porque comprende : i . una carcasa aislante superior ( 1 ) y una carcasa aislante inferior (2) configuradas con un hueco; one . A source of electrical radiation for calibration and characterization of temperature measurement instruments by telemetry, enhanced, characterized in that it comprises: i. an upper insulating housing (1) and a lower insulating housing (2) configured with a recess;
i¡ . u n calefactor inferior (4) y un calefactor superior (5) de alta eficiencia, con canales longitudinales en sus interiores, embonan entre sí , se ubican en el hueco de la carcasa aislante superior ( 1 ) y la carcasa aislante inferior (2) ;  i. a lower heater (4) and a high efficiency upper heater (5), with longitudinal channels in their interiors, embed each other, are located in the hollow of the upper insulating housing (1) and the lower insulating housing (2);
iii . u na cavidad cilindrica de cuerpo neg ro (3) se aloja en medio del calefactor inferior (4) y el calefactor superior (5) ;  iii. a cylindrical cavity with a black body (3) is housed in the middle of the lower heater (4) and the upper heater (5);
iv. al menos, un ducto (13) se coloca en la carcasa aislante inferior (2);  iv. at least one duct (13) is placed in the lower insulating housing (2);
v. una ranura (7) configurada para colocar en ella un termómetro de contacto tipo "RTD" o termopar, cercano a dicha ranura (7) se encuentra un inserto de cavidad cil indrica de cuerpo negro (6) en el extremo posterior de la cavidad cilindrica del cuerpo negro (3) ;  v. a groove (7) configured to place a "RTD" or thermocouple contact thermometer therein, close to said groove (7) is a cylindrical cavity insert with a black body (6) at the rear end of the cylindrical cavity of the black body (3);
vi . un d isco con gradiente térmico (8) se coloca en el extremo anterior de la cavidad cilindrica del cuerpo negro (3) , compuesto por, al menos, un anillo metálico difusor térmico concéntrico (9) ;  saw . a thermal gradient gradient (8) is placed at the front end of the cylindrical cavity of the black body (3), comprising at least one concentric thermal diffuser metal ring (9);
vii . una base (14) aloja, al menos, dos soportes ( 15), sobre los cuales se coloca la carcasa aislante inferior (2) ya unida con la carcasa aislante su perior ( 1 ) , las cuales en su interior se encuentran el calefactor inferior (4) y superior (5) ya fijos en la cavidad cilindrica de cuerpo negro (3); viii. al menos, cuatro niveladores (16) se colocan en la parte inferior de la base (14); vii. a base (14) houses, at least, two supports (15), on which the lower insulating housing (2) is placed and already connected with the insulating housing its perimeter (1), which inside are the lower heater (4) and upper (5) already fixed in the cylindrical cavity of black body (3); viii at least four levelers (16) are placed at the bottom of the base (14);
ix. un tablero de control (17) se encuentra en la parte inferior frontal de la base (14);  ix. a control board (17) is located in the lower front part of the base (14);
x. un controlador de temperatura (18) está incrustado en el tablero de control (17);  x. a temperature controller (18) is embedded in the control board (17);
xi. un sistema de adquisición de datos (19), un interruptor (20) y, al menos, un segundo fusible de potencia (32) están en el tablero de control (17);  xi. a data acquisition system (19), a switch (20) and at least a second power fuse (32) are in the control board (17);
xii. una puerta de acceso (22) está en la parte posterior de la base (14), por encima de los soportes (15);  xii. an access door (22) is at the back of the base (14), above the supports (15);
xiii. una mufla (23), al menos, un disipador de calor (24), un fusible de potencia (21) y un arrancador térmico de inducción magnética (25), se encuentran en la parte posterior de la base (14) bajo la puerta de acceso (22); xiv. una tapa superior (26) se fija sobre la base (14) cubriendo la carcasa aislante inferior (2) ya unida con la carcasa aislante superior (1);  xiii. a muffle (23), at least one heat sink (24), a power fuse (21) and a magnetic induction thermal starter (25), are located at the back of the base (14) under the door access (22); xiv. an upper cover (26) is fixed on the base (14) covering the lower insulating housing (2) already connected with the upper insulating housing (1);
xv. una tapa lateral (27) se fija en cada lado de la base (14) y la tapa superior (26);  xv. a side cover (27) is fixed on each side of the base (14) and the top cover (26);
xví. al menos, un asa (31) se coloca en la tapa superior (26) y en cada una de las tapas laterales (27);  xví. at least one handle (31) is placed in the top cover (26) and in each of the side covers (27);
xvii. al menos, un medio de ventilación (29), está en las tapas laterales (27); y,  xvii. at least one ventilation means (29) is in the side covers (27); Y,
xviii. una tapa frontal (28) se une por medios de sujeción (30) a la tapa superior (26). xviii. a front cover (28) is attached by fastening means (30) to the upper cover (26).
2. La fuente de radiación de la reivindicación anterior, donde el calefactor inferior (4) y el calefactor superior (5), tienen forma de media caña. 2. The radiation source of the preceding claim, wherein the lower heater (4) and the upper heater (5), have a half-round shape.
3. La fuente de las reivindicaciones anteriores, donde el calefactor inferior (4) y el calefactor superior (5), son de material cerámico. 3. The source of the preceding claims, wherein the lower heater (4) and the upper heater (5), are made of ceramic material.
4. La fuente de radiación de la reivindicación 1, donde el extremo posterior de la cavidad cilindrica del cuerpo negro (3) tiene un fondo intercambiable para utilizar diferentes geometrías de fondo en el inserto de cavidad cilindrica de cuerpo negro (6). 4. The radiation source of claim 1, wherein the rear end of the cylindrical cavity of the black body (3) has an interchangeable bottom for using different bottom geometries in the cylindrical cavity insert of black body (6).
5. La fuente de radiación de la reivindicación 4, donde las geometrías son en forma de cono. 5. The radiation source of claim 4, wherein the geometries are cone-shaped.
6. La fuente de radiación de las reivindicaciones 4 y 5, done el cono puede ser positivo o negativo. 6. The radiation source of claims 4 and 5, where the cone may be positive or negative.
7. La fuente de radiación de la reivindicación 1, donde el anillo metálico difusor térmico concéntrico (9), el tablero de control (17), la tapa superior (26), las tapas laterales (27) y la tapa frontal (28) son removibles. 7. The radiation source of claim 1, wherein the concentric thermal diffuser metal ring (9), the control board (17), the top cover (26), the side covers (27) and the front cover (28) They are removable.
8. La fuente de radiación de la reivindicación 1, donde el controlador de temperatura (18) es digital de tipo "rampas*. 8. The radiation source of claim 1, wherein the temperature controller (18) is "ramps * " digital type.
9. La fuente de radiación de la reivindicación 1, donde el sistema de adquisición de datos (19), cuenta con tecnología de conexión de dispositivos electrónicos de forma inalámbrica. 9. The radiation source of claim 1, wherein the data acquisition system (19) has wireless device connection technology.
10. La fuente de radiación descrita en la reivindicación 1, donde el medio de ventilación (29) es una rejilla y/o un ventilador. 10. The radiation source described in claim 1, wherein the ventilation means (29) is a grid and / or a fan.
11. La fuente de radiación de la reivindicación 1, donde los medios de sujeción (30) son broches, mecanismo machihembrado, imanes, abrazaderas mecánicas, velero y/o la combinación de los anteriores. 11. The radiation source of claim 1, wherein the fastening means (30) are clasps, tongue and groove mechanism, magnets, mechanical clamps, sailboat and / or The combination of the above.
12. La fuente de radiación de la reivindicación 1, donde ia tapa superior (26), laterales (27) y frontal (28) son de materiales aislantes térmicos. 12. The radiation source of claim 1, wherein the top cover (26), sides (27) and front (28) are made of thermal insulating materials.
13. La fuente de radiación de las reivindicaciones 1, donde el anillo metálico difusor térmico concéntrico (9) está conformado por, al menos, cuatro anillos metálicos difusores térmicos concéntricos (9a), (9b), (9c) y (9d), ensamblados mecánicamente en el disco con gradiente térmico (8). 13. The radiation source of claims 1, wherein the concentric thermal diffuser metal ring (9) is formed by at least four concentric thermal diffuser metal rings (9a), (9b), (9c) and (9d), mechanically assembled on the disk with thermal gradient (8).
14. La fuente de radiación de la reivindicación 13, donde los anillos metálicos difusores térmicos concéntricos (9a), (9b), (9c) y (9d), tienen un estriado de perfil triangular (11) en su superficie exterior de su cara frontal de trabajo (12) que se muestran como surcos triangulares (equiláteros) en corte transversal y que evitan reflejos en la misma y una cara lisa. 14. The radiation source of claim 13, wherein the concentric thermal diffuser metal rings (9a), (9b), (9c) and (9d), have a triangular profile groove (11) on its outer surface of its face frontal work (12) that are shown as triangular grooves (equilateral) in cross section and that avoid reflections in it and a smooth face.
15. La fuente de radiación de las reivindicaciones 13 y 14, donde los anillos metálicos difusores térmicos concéntricos (9) tienen, al menos, dos sensores de temperatura en su parte posterior lisa, insertados en al menos, dos barrenos topados (10), ubicados horizontalmente, con respecto al eje axial de la cavidad cilindrica de cuerpo negro (3) y equidistantes a su centro, insertados en ambos lados. 15. The radiation source of claims 13 and 14, wherein the concentric thermal diffuser metal rings (9) have at least two temperature sensors on their smooth back, inserted into at least two blasted holes (10), located horizontally, with respect to the axial axis of the cylindrical cavity of black body (3) and equidistant to its center, inserted on both sides.
16. La fuente de radiación de las reivindicaciones 13 a la 15, donde los sensores de temperatura son del tipo "RTD* o Termopares. 16. The radiation source of claims 13 to 15, wherein the temperature sensors are of the type "RTD * or Thermocouples.
17. La fuente de radiación de las reivindicaciones 13 a la 16, donde los termopares son del tipo "J", "T" o "N". 17. The radiation source of claims 13 to 16, wherein the thermocouples are of the "J", "T" or "N" type.
18. La fuente de radiación de las reivind icaciones 13 a la 17, donde los termopares son removibles . 18. The radiation source of claims 13 to 17, wherein the thermocouples are removable.
PCT/MX2015/000221 2015-12-18 2015-12-18 Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry WO2017105206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2015/017718 2015-12-18
MX2015017718A MX2015017718A (en) 2015-12-18 2015-12-18 Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry.

Publications (1)

Publication Number Publication Date
WO2017105206A1 true WO2017105206A1 (en) 2017-06-22

Family

ID=59056946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2015/000221 WO2017105206A1 (en) 2015-12-18 2015-12-18 Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry

Country Status (2)

Country Link
MX (1) MX2015017718A (en)
WO (1) WO2017105206A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088813A1 (en) * 2017-11-03 2019-05-09 Kaplun Mucharrafille Margarita Portable apparatus for measuring and calibrating temperature measuring instruments by telemetry
WO2019088814A1 (en) * 2017-11-03 2019-05-09 Kaplun Mucharrafille Margarita Electrical radiation source with exchangeable blackbody cavity for calibrating instruments for measuring temperature by means of telemetry
CN110017917A (en) * 2018-01-09 2019-07-16 北京康斯特仪表科技股份有限公司 A kind of low temperature stem body temperature checker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263016A (en) * 1963-10-30 1966-07-26 Branstetter James Robert Black-body furnace
US20050205773A1 (en) * 2004-03-22 2005-09-22 Fauci Mark A Integrated black body and lens cap assembly and methods for calibration of infrared cameras using same
US20090122826A1 (en) * 2007-11-14 2009-05-14 Fluke Corporation Infrared Target Temperature Correction System and Method
WO2015093930A1 (en) * 2013-12-19 2015-06-25 Kaplun Mucharrafille Margarita System and method for calibrating and characterising instruments for temperature measurement by telemetry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263016A (en) * 1963-10-30 1966-07-26 Branstetter James Robert Black-body furnace
US20050205773A1 (en) * 2004-03-22 2005-09-22 Fauci Mark A Integrated black body and lens cap assembly and methods for calibration of infrared cameras using same
US20090122826A1 (en) * 2007-11-14 2009-05-14 Fluke Corporation Infrared Target Temperature Correction System and Method
WO2015093930A1 (en) * 2013-12-19 2015-06-25 Kaplun Mucharrafille Margarita System and method for calibrating and characterising instruments for temperature measurement by telemetry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088813A1 (en) * 2017-11-03 2019-05-09 Kaplun Mucharrafille Margarita Portable apparatus for measuring and calibrating temperature measuring instruments by telemetry
WO2019088814A1 (en) * 2017-11-03 2019-05-09 Kaplun Mucharrafille Margarita Electrical radiation source with exchangeable blackbody cavity for calibrating instruments for measuring temperature by means of telemetry
CN110017917A (en) * 2018-01-09 2019-07-16 北京康斯特仪表科技股份有限公司 A kind of low temperature stem body temperature checker

Also Published As

Publication number Publication date
MX2015017718A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2015093930A1 (en) System and method for calibrating and characterising instruments for temperature measurement by telemetry
ES2509141T3 (en) Furnace for heat treatment of an object of dental combustion
EP2793006A2 (en) Improved blackbody function
Monte et al. The measurement of directional spectral emissivity in the temperature range from 80° C to 500° C at the Physikalisch-Technische Bundesanstalt.
WO2017105206A1 (en) Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry
WO2016099237A1 (en) Apparatus and method for calibration and characterisation of instruments for measuring temperature by telemetry
CN104048945A (en) Spectral emissivity steady testing system and method
JP2013229496A5 (en)
RU2617725C1 (en) Method for determining emissivity of hard materials and device for its implementation
JP2020046309A (en) Black body furnace
Ploteau et al. Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces
CN103344341A (en) Radiation temperature measurement device and temperature control method thereof
CN104076060A (en) Transient spectral emissivity test system and method
WO2019088814A1 (en) Electrical radiation source with exchangeable blackbody cavity for calibrating instruments for measuring temperature by means of telemetry
De Lucas Numerical optimization of the radial dependence of effective emissivity in blackbody cylindrical cavities
Kim et al. Thermal mapping using infrared thermography
Mekhontsev et al. NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures
Ishii et al. Radiation thermometry standards at NMIJ from− 30° C to 2800° C
Ogarev et al. Blackbody radiation sources for the IR spectral range
CN107655833B (en) Method and system for measuring high-temperature hemispherical emissivity of low-thermal-conductivity non-conductor material
WO2017164723A1 (en) Calibrator for infrared ear thermometers
Chen et al. Development and testing of a simple heat gauge for the measurement of high-intensity thermal radiation
US20060289721A1 (en) Device for detecting optical parameters of a laser beam
Pronin Low-temperature test objects for alignment of thermal imaging systems
Yuan et al. -30\,^ ∘ C-30∘ C to 960\,^ ∘ C 960∘ C Variable Temperature Blackbody (VTBB) Radiance Temperature Calibration Facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910852

Country of ref document: EP

Kind code of ref document: A1