JP6388784B2 - Carbon nanotube standard blackbody furnace equipment - Google Patents

Carbon nanotube standard blackbody furnace equipment Download PDF

Info

Publication number
JP6388784B2
JP6388784B2 JP2014081870A JP2014081870A JP6388784B2 JP 6388784 B2 JP6388784 B2 JP 6388784B2 JP 2014081870 A JP2014081870 A JP 2014081870A JP 2014081870 A JP2014081870 A JP 2014081870A JP 6388784 B2 JP6388784 B2 JP 6388784B2
Authority
JP
Japan
Prior art keywords
cavity
temperature
cnt
furnace
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014081870A
Other languages
Japanese (ja)
Other versions
JP2015203589A (en
Inventor
祐公子 清水
祐公子 清水
順太郎 石井
順太郎 石井
山田 善郎
善郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014081870A priority Critical patent/JP6388784B2/en
Publication of JP2015203589A publication Critical patent/JP2015203589A/en
Application granted granted Critical
Publication of JP6388784B2 publication Critical patent/JP6388784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非接触式温度計を校正するための比較炉として用いる温度標準黒体炉装置に関し、特に、参照標準温度計と異なる波長の放射温度計を比較校正する場合に好適な高放射率で波長依存性のないカーボンナノチューブ標準黒体放射源装置に関する。   The present invention relates to a temperature standard blackbody furnace apparatus used as a comparison furnace for calibrating a non-contact type thermometer, and particularly, a high emissivity suitable for comparative calibration of a radiation thermometer having a wavelength different from that of a reference standard thermometer. The present invention relates to a carbon nanotube standard blackbody radiation source device that is independent of wavelength.

サーモグラフィをはじめとした産業界でニーズの高い波長10μm付近の赤外放射温度計は100℃から1000℃程度の広い温度範囲において高精度な校正が求められている。一方でこの温度範囲において国家標準である放射温度計の波長は1.6μmや0.9μmであるため、これらの国家標準放射温度計で波長の異なる10μm帯の赤外放射温度計を高精度校正するための比較校正技術が必要となる。このように波長の異なる非接触式温度計を校正するための比較炉としては、炉内の空洞の実効放射率が限りなく1であることが必要不可欠である。空洞の放射率を限りなく1に近づけるには、空洞が均熱であること、空洞の固有放射率が高いことが必要となる。さらに、これらの定点炉や比較炉で、広範な温度域にわたって温度計の校正を行うには、広範な温度域を1台の恒温炉でカバーすることが望ましい。この従来技術として、(1)ヒートパイプ炉、(2)電気炉などの温度可変黒体炉が実用化されている。
しかし、これらの従来技術には以下のような問題点がある。
空洞壁面の温度分布の評価は、均熱性の高い空洞を実現するためにも、空洞の放射率を正確に決定するためにも必須であるが、上記(1)のヒートパイプ炉については、熱電対等の接触式温度計による評価手段しかなく、この方法は複雑な上、信頼性が低い。また(1)のヒートパイプ炉は、広範な温度域を1台の炉でカバーすることができず、複数台用意する必要がある。しかも、100℃から600℃の温度範囲を連続的にカバーすることができない。
上記(2)の電気炉については、ヒーター配置や抵抗値の調整が複雑で、一般に空洞の均熱性が不十分である。また、(1)と同様に、空洞壁面の温度分布の評価が困難かつ信頼性が低いため、正確な放射率が不明であり、参照標準温度計との高精度な比較校正が不可能である。
本発明者らは、空洞壁面温度分布が信頼性高く評価でき、均熱性の高いグラファイトの空洞を持った、50℃から500℃で使用可能な空気循環式の温度可変黒体炉を開発・製作し、先に特許出願している(特許文献1参照)。この技術においては、炉体の横方向に放射温度計や熱画像装置等の非接触温度計で空洞温度分布を測定するための透明なガラス窓を設け、その窓から非接触で信頼性高くかつ簡便にリアルタイムで温度分布を測定できる。これにより正確な実効放射率の推定が可能となったが、異なる波長の放射温度計同士を比較校正するためには、まだ放射率の高さが不十分である。
したがってこれらの先行技術では、1000℃までの広い温度範囲を1台の炉で波長の異なる放射温度計同士の高精度な比較校正は不可能である。
一方で垂直配向した高品質なカーボンナノチューブ(以下本明細書中では、カーボンナノチューブを「CNT」と略記することがある)の成膜技術が比較的容易に実施できるようになり、このCNTは紫外から遠赤外までの広い波長範囲で放射率が0.98程度と極めて高く、波長依存性がほとんどないことが知られている(非特許文献1参照)。
Infrared radiation thermometers near the wavelength of 10 μm, which are highly needed in the industry, including thermography, are required to be calibrated with high accuracy in a wide temperature range of about 100 ° C. to 1000 ° C. On the other hand, the radiation thermometer, which is the national standard in this temperature range, has a wavelength of 1.6 μm and 0.9 μm, so these national standard radiation thermometers calibrate infrared radiation thermometers in the 10 μm band with different wavelengths with high precision. In order to do this, a comparative calibration technique is required. Thus, as a comparative furnace for calibrating non-contact type thermometers having different wavelengths, it is essential that the effective emissivity of the cavity in the furnace is 1 as much as possible. In order to make the cavity emissivity as close to 1 as possible, the cavity must be soaked and the intrinsic emissivity of the cavity must be high. Furthermore, in order to calibrate thermometers over a wide temperature range in these fixed-point furnaces and comparative furnaces, it is desirable to cover a wide temperature range with a single thermostat. As this prior art, temperature variable blackbody furnaces such as (1) a heat pipe furnace and (2) an electric furnace have been put into practical use.
However, these conventional techniques have the following problems.
Evaluation of the temperature distribution of the cavity wall is essential both for realizing a highly uniform cavity and for accurately determining the emissivity of the cavity, but for the heat pipe furnace of (1) above, There is only an evaluation means using an equivalent contact thermometer, and this method is complicated and unreliable. Moreover, the heat pipe furnace of (1) cannot cover a wide temperature range with one furnace, and it is necessary to prepare a plurality of heat pipe furnaces. Moreover, the temperature range from 100 ° C. to 600 ° C. cannot be continuously covered.
Regarding the electric furnace of (2) above, the heater arrangement and the adjustment of the resistance value are complicated, and generally the heat uniformity of the cavity is insufficient. In addition, as in (1), since the evaluation of the temperature distribution of the cavity wall surface is difficult and the reliability is low, the accurate emissivity is unknown, and high-precision comparative calibration with a reference standard thermometer is impossible. .
The inventors have developed and manufactured an air-circulating temperature-variable blackbody furnace that can be used at 50 ° C to 500 ° C and that has a highly uniform graphite cavity that can reliably evaluate the temperature distribution of the cavity wall surface. However, a patent application has already been filed (see Patent Document 1). In this technology, a transparent glass window for measuring the cavity temperature distribution with a non-contact thermometer such as a radiation thermometer or a thermal imager is provided in the transverse direction of the furnace body, and the window is non-contact and highly reliable. The temperature distribution can be easily measured in real time. This makes it possible to accurately estimate the effective emissivity, but the emissivity is still insufficient to calibrate radiation thermometers of different wavelengths.
Therefore, in these prior arts, high-accuracy comparative calibration between radiation thermometers having different wavelengths in a single furnace in a wide temperature range up to 1000 ° C. is impossible.
On the other hand, a film-forming technique for high-quality vertically aligned carbon nanotubes (hereinafter, carbon nanotubes may be abbreviated as “CNT” in the present specification) can be implemented relatively easily. It is known that the emissivity is as high as about 0.98 in a wide wavelength range from 1 to far infrared, and there is almost no wavelength dependency (see Non-Patent Document 1).

特開2012−145343号公報JP 2012-145343 A

Kohei Mizuno他7名、“A black body absorber from verticallyaligned single−walled carbon nanotubes”、PNAS vol.106,no.15,p.6044−6047(April,14,2009)Kohei Mizuno et al., “A black body absorber from vertically aligned single-walled carbon nanotubes”, PNAS vol. 106, no. 15, p.6044-6047A (p.6044-6047A).

従来の電気炉などの温度可変黒体炉は、一般に空洞の均熱性が不十分であり、しかも空洞壁面の温度分布を評価するために、測定が困難かつ信頼性が低く、正しい温度分布情報が得られない。結果として、正確な放射率を決定することができないため、波長の異なる放射温度計同士の高精度な比較校正ができない。ヒートパイプ炉は、空洞の均熱性は上記電気炉などに比べて高いものの、温度分布の評価方法には接触式温度計しか利用できず、結果として正確な放射率を決定することができない。さらに、1台で広い温度範囲をカバーすることができず、しかも連続して必要な温度範囲をカバーすることができない。   In general, temperature-variable blackbody furnaces such as conventional electric furnaces have insufficient temperature uniformity in the cavities, and in order to evaluate the temperature distribution of the cavity wall surface, it is difficult to measure and has low reliability. I can't get it. As a result, since accurate emissivity cannot be determined, high-accuracy comparative calibration between radiation thermometers having different wavelengths cannot be performed. Although the heat pipe furnace has a higher temperature uniformity in the cavity than the above electric furnace or the like, only a contact-type thermometer can be used for the temperature distribution evaluation method, and as a result, an accurate emissivity cannot be determined. Furthermore, a single device cannot cover a wide temperature range, and cannot continuously cover a necessary temperature range.

図4(側面図)、図5(正面図)は、本発明者らが先に出願した特許文献1記載の空気循環式の温度可変黒体炉を示しており、炉内に設置した空洞1と、空洞温度を均一かつ一定に保つための熱媒体循環用ファン3、熱媒体加熱用のヒーター2、炉の温度制御用の温度計5を備えたことを特徴とする温度標準用気体循環式温度可変恒温炉装置であって、好ましくは、炉壁に空洞に沿った透明窓を設け、透明窓をとおして空洞の温度分布を放射温度計などの非接触式温度計で測定できるようにして空洞の温度を極力均熱に近づけるように制御する。また、空洞は、放射率を高めるためにグラファイト製あるいは内面に黒色塗料を施してある。このような構成により、従前のヒートパイプ炉、電気炉等に比べて、1台の装置で50℃から600℃程度の広範な温度域をカバーすることができ、熱媒体が気体(例えば空気)のため危険を伴わず、気体を炉内に循環させ、空洞を均熱にする気体の流路を形成することにより均一な温度分布を実現でき、結果として高放射率な空洞を持つ黒体炉により安全で信頼性の高い校正が実現できるものであった。
しかしながら、一般に空洞の長さLが短くなると放射率が低くなるので、空洞の放射率を1に近づけるには空洞を出来る限り長くする必要があり、装置が長大化していた。また、10μm帯の放射温度計は視野が広角なため、比較炉で校正するためには大きな開口Dが必要となるが、開口Dを大きくすると、当然放射率が下がるので、今度は放射率を下げないように空洞の長さLを長くする必要(L/Dを大きくする)がでてくることとなり、装置の長大化の一因となっていた。また、空洞材質の固有放射率が十分高くないため、装置が長大化されてもまだ、波長の異なる放射温度計同士を比較校正するために十分な放射率が、実現されていなかった。さらに、空洞底部は、放射率を高めるために、コーン型や三角型が採用されており、加工が簡単な平底(放射率が一般的に低い)を採用することは出来なかった。
FIG. 4 (side view) and FIG. 5 (front view) show an air circulation type temperature variable blackbody furnace described in Patent Document 1 previously filed by the present inventors, and includes a cavity 1 installed in the furnace. And a heat circulation fan 3 for keeping the cavity temperature uniform and constant, a heater 2 for heating the heat medium, and a thermometer 5 for temperature control of the furnace. A temperature-variable constant-temperature oven apparatus, preferably provided with a transparent window along the cavity on the furnace wall so that the temperature distribution of the cavity can be measured with a non-contact thermometer such as a radiation thermometer through the transparent window. The temperature of the cavity is controlled to be as close as possible to soaking. The cavity is made of graphite or black paint on the inner surface to increase the emissivity. With such a configuration, compared with conventional heat pipe furnaces, electric furnaces, etc., a single device can cover a wide temperature range of about 50 ° C. to 600 ° C., and the heat medium is a gas (for example, air) Therefore, it is possible to achieve a uniform temperature distribution by forming a gas flow path that circulates gas in the furnace and soaks the cavity so that there is no danger. Therefore, safe and reliable calibration can be realized.
However, since the emissivity generally decreases as the cavity length L decreases, the cavity needs to be as long as possible in order to bring the cavity emissivity closer to 1, and the apparatus has become longer. Also, since the radiation thermometer in the 10 μm band has a wide field of view, a large opening D is necessary for calibration with a comparative furnace. However, increasing the opening D naturally reduces the emissivity, so this time the emissivity is increased. As a result, the length L of the cavity needs to be increased (L / D is increased) so as not to lower it, and this contributes to an increase in the length of the apparatus. In addition, since the intrinsic emissivity of the cavity material is not sufficiently high, an emissivity sufficient for comparative calibration of radiation thermometers having different wavelengths has not yet been realized even when the apparatus is lengthened. Furthermore, in order to increase the emissivity, a cone type or a triangular type is adopted for the bottom of the cavity, and a flat bottom (generally low emissivity) that can be easily processed cannot be adopted.

上記従来技術の問題点を解決するために、本発明は、空洞を備えた標準黒体炉装置において、前記空洞底部にカーボンナノチューブの表面処理をした部材を配置したことを特徴とするカーボンナノチューブ標準黒体炉装置である。
また、本発明は、前記カーボンナノチューブ標準黒体炉において、前記空洞及び前記カーボンナノチューブの表面処理をした部材の材質は高融点物質であることを特徴とする。
また、本発明は、上記カーボンナノチューブ標準黒体炉装置を用いて、放射温度計や熱画像装置等の校正を行う放射温度計の校正方法である。
In order to solve the above-mentioned problems of the prior art, the present invention provides a standard carbon nanotube standard characterized in that, in a standard blackbody furnace apparatus having a cavity, a carbon nanotube surface-treated member is disposed at the bottom of the cavity. It is a blackbody furnace device.
In the carbon nanotube standard blackbody furnace, the present invention is characterized in that the material of the cavity and the surface-treated member of the carbon nanotube is a high melting point material.
Further, the present invention is a radiation thermometer calibration method for calibrating a radiation thermometer, a thermal imaging apparatus, etc., using the carbon nanotube standard black body furnace apparatus.

本発明では、CNTの表面処理をした部材を空洞底部に配置することにより空洞の放射率を1に近づけることができ、室温から1000℃付近の広範な温度範囲において1台で、波長の異なる放射温度計の高精度な比較校正を可能とする。さらに、空洞の長さを短くしても(L/Dが小さくても)放射率が1に近い標準黒体炉装置を実現でき、小型化が計れ、産業現場での高精度な放射温度計の校正も可能とする。
本発明では、空洞底部にCNTの表面処理をした部材を配置するだけの簡単な構成で放射率を1に近づけることができるので製作が容易であり、また、既存の黒体炉装置の空洞にCNTの表面処理をした部材を装着するだけでも放射率が1に近い黒体炉装置を実現できる。
また、本発明のカーボンナノチューブ標準黒体炉装置を用いれば、波長依存性が大幅に低減され、波長の異なる放射温度計の校正が高精度に実現可能である。
In the present invention, the emissivity of the cavity can be made close to 1 by arranging the member subjected to the surface treatment of CNT at the bottom of the cavity, and radiation with different wavelengths can be performed by a single unit in a wide temperature range from room temperature to 1000 ° C. Enables high-precision comparative calibration of thermometers. Furthermore, even if the length of the cavity is shortened (L / D is small), a standard blackbody furnace device with an emissivity close to 1 can be realized, miniaturization can be achieved, and a highly accurate radiation thermometer at the industrial site Can be calibrated.
In the present invention, since the emissivity can be made close to 1 with a simple configuration in which a member subjected to the surface treatment of CNT is arranged at the bottom of the cavity, it is easy to manufacture, and the existing blackbody furnace apparatus has a cavity. A blackbody furnace apparatus having an emissivity close to 1 can be realized simply by mounting a member subjected to the surface treatment of CNT.
Further, if the carbon nanotube standard blackbody furnace apparatus of the present invention is used, the wavelength dependency is greatly reduced, and calibration of radiation thermometers having different wavelengths can be realized with high accuracy.

図1は性能評価1を説明するための図であって、本発明の一例としてCNTの表面処理をしたグラファイト基板を空洞底部配置したものと、比較例としてCNT無しのグラファイト基板のみを空洞底部に配置したものとで、輝度温度の測定結果を比較したものである。FIG. 1 is a diagram for explaining a performance evaluation 1, and as an example of the present invention, a graphite substrate having a surface treated with CNTs is arranged at the bottom of a cavity, and as a comparative example, only a graphite substrate without CNT is provided at the bottom of the cavity. The measured result of the brightness temperature is compared with the arranged one. 図2は性能評価2を説明するための図であって、本発明の一例としてCNTの表面処理をしたグラファイト基板を空洞に配置したものと、比較例としてCNT無しのグラファイト基板のみを空洞に配置したものとで、それぞれ空洞に基板を配置する位置を変えて輝度温度を測定した結果を比較したものである。FIG. 2 is a diagram for explaining the performance evaluation 2. As an example of the present invention, a graphite substrate with a CNT surface treatment arranged in a cavity and a graphite substrate without CNT as a comparative example are arranged in a cavity. The results of measuring the luminance temperature by changing the position where the substrate is arranged in each cavity are compared. 図3は性能評価3を説明するための図であって、本発明の一例としてCNTの表面処理をしたグラファイト基板を空洞に配置したものと、比較例としてCNT無しのグラファイト基板のみを空洞に配置したものとについて、異なる黒体炉装置を用いて測定した結果を比較したものである。FIG. 3 is a diagram for explaining the performance evaluation 3. As an example of the present invention, a graphite substrate with a CNT surface treatment arranged in a cavity and a graphite substrate without CNT as a comparative example are arranged in a cavity. The results measured using different blackbody furnace devices are compared with those obtained. 従来の空気循環式の温度可変黒体炉を説明するための側面図(断面図)。The side view for demonstrating the conventional air circulation type temperature-variable blackbody furnace (sectional drawing). 図4の従来の空気循環式の温度可変黒体炉を説明するための正面図。The front view for demonstrating the conventional air circulation type temperature variable blackbody furnace of FIG.

垂直配向のCNTは上記したように紫外から遠赤外までの広い波長範囲で放射率が0.98程度と極めて高く、波長依存性がほとんどないが、CNTをそのまま黒体として使用したのでは波長の異なる非接触温度計を校正する比較炉としては放射率や面内温度分布の点で不十分である。そこで、本発明では、CNTと空洞(温度可変黒体炉)を組み合わせ、CNTの黒さを空洞でサポートし、放射率を限りなく1に近づけ、波長の異なる温度計を校正する比較炉を構成した。性能評価をおこなった結果、空洞にCNT基板を配置するだけで異なる波長帯の放射温度計の比較校正が高精度に校正可能であることが判明し、空洞長さも従来技術の半分以下でも波長依存性がない。CNT基板を空洞底部に配置する場合には加工が簡単な平底を採用することが可能である。   As described above, vertically aligned CNTs have a very high emissivity of about 0.98 over a wide wavelength range from ultraviolet to far infrared, and have almost no wavelength dependence. However, if CNTs are used as they are as black bodies, As a comparative furnace for calibrating non-contact thermometers with different emissivities, in-plane temperature distribution is insufficient. Therefore, in the present invention, a CNT and a cavity (temperature-variable blackbody furnace) are combined to support the blackness of the CNT, the emissivity is as close to 1 as possible, and a comparative furnace that calibrates thermometers with different wavelengths is configured. did. As a result of performance evaluation, it was found that comparative calibration of radiation thermometers with different wavelength bands can be calibrated with high accuracy by simply placing a CNT substrate in the cavity, and even if the cavity length is less than half that of the conventional technology, it is wavelength dependent. There is no sex. When the CNT substrate is disposed at the bottom of the cavity, it is possible to adopt a flat bottom that is easy to process.

性能評価に用いた温度可変空洞黒体炉は、本発明者らが先に出願した空気循環式温度可変黒体炉装置(特許文献1)を採用し、空洞長さL=400mm、空洞開口D=10mm(L/D=40)、平底空洞である。本発明のCNTとしては、厚さ1mmの基板状グラファイト部材にCNTの表面処理をしたもので、CNTの全長すなわち高さは100μm、直径は10nmであり、各カーボンナノチューブの間隔は約10nmである。比較例としてCNT無しのグラファイト基板のみを用いたものと比べて性能評価した。
なお、空洞については、本発明者らが先に出願した空気循環式温度可変黒体炉装置を用いて性能評価を行ったが、本発明は空洞に垂直配向CNTを配置する点に特徴があるので、従来のヒートパイプ炉、電気炉などの温度可変黒体炉内に空洞を備えたものにも有効である。これは、垂直配向に限定されるものではなく、CNTの表面処理を施したものであればよい。また、市販の金属に黒化ペイントなどを施した空洞を持つ比較炉(市販の比較炉の空洞はグラファイト製ではなく、金属に黒化ペイントなどを施したものが殆どである)はもちろん、空洞がグラファイトでできている定点黒体炉(各国で使用されている定点黒体炉の空洞はほぼ100%に近くグラファイト製)にも有効である。また、図ではCNTの表面処理をする部材として基板状のものを用いたが、基板状に限定されるものではなく、有底短筒状など他の形状であってもよく、材質についてもグラファイトに限定されるものでなく、高融点物質であれば採用可能である。さらに、配置位置についても必ずしも底部でなくともよい。
The temperature variable cavity blackbody furnace used for the performance evaluation employs the air circulation type temperature variable blackbody furnace apparatus (Patent Document 1) previously filed by the present inventors, and has a cavity length L = 400 mm and a cavity opening D. = 10 mm (L / D = 40), flat bottom cavity. The CNT of the present invention is obtained by subjecting a CNT surface treatment to a substrate-like graphite member having a thickness of 1 mm. The total length of the CNT, that is, the height is 100 μm, the diameter is 10 nm, and the interval between the carbon nanotubes is about 10 nm. . As a comparative example, the performance was evaluated in comparison with a comparative example using only a graphite substrate without CNT.
The performance of the cavity was evaluated using the air circulation type temperature variable blackbody furnace device previously filed by the present inventors. The present invention is characterized in that vertically aligned CNTs are arranged in the cavity. Therefore, the present invention is also effective for a conventional heat pipe furnace, electric furnace, or other temperature variable black body furnace provided with a cavity. This is not limited to the vertical alignment, and any CNT surface treated may be used. In addition, comparison furnaces with cavities made of commercially available metal with blackened paint etc. (the cavities of commercially available comparative furnaces are not made of graphite, but most of them are made of blackened paint etc.) It is also effective for fixed-point blackbody furnaces made of graphite (the cavity of fixed-point blackbody furnaces used in various countries is almost 100% made of graphite). Also, in the figure, the substrate-like member used for the surface treatment of the CNT is used, but it is not limited to the substrate shape, and may be other shapes such as a bottomed short cylinder shape, and the material is also graphite. However, any high-melting point material can be used. Furthermore, the arrangement position is not necessarily the bottom.

(性能評価1)
図1に性能評価1の結果を示す。図1の左上図は、本発明のCNTの表面処理をしたグラファイト基板あるいは比較例としてのグラファイト基板のみを空洞底部に配置した状態を説明しており、右上図は、CNTの表面処理をしたグラファイト基板(左)とCNT無しのグラファイト基板のみ(右)とを示している。空洞底部(L=400mmの一番奥)にグラファイト基板のみを置いて輝度温度を異なる波長の放射温度計(1.6μmと5μmと10μm)で比較し、またグラファイト基板の代わりに、CNTの表面処理をしたグラファイト基板を置いて輝度温度を異なる波長の放射温度計(1.6μmと5μmと10μm)で比較した。
図1のグラフは、横軸が放射温度計の波長を示し、縦軸が輝度温度(の温度差)を示す。グラファイト基板を底部に置いた結果が▲で、CNTの表面処理をしたグラファイト基板を底部に置いた結果が●であり、波長1.6μm、5μm、10μmの放射温度計では、いずれもグラファイト基板のときよりもCNTの表面処理をしたグラファイト基板を置いたときの方が、輝度温度がそれぞれ約0.1℃、0.4℃、0.8℃上昇している。このことから本発明のCNTの表面処理をしたグラファイト基板を入れた●の方が輝度温度が大幅に上昇することがわかる。すなわち、放射率が上がったことに相当する。
なお、グラフの×はモンテカルロ法による理論計算により算出(グラファイト空洞固有放射率0.85、CNT固有放射率0.98)した値を参考に示したものである。計算に使用した固有放射率の値は垂直分光放射率であり実測したものである。
(Performance evaluation 1)
FIG. 1 shows the results of performance evaluation 1. The upper left diagram of FIG. 1 illustrates a state in which only the graphite substrate subjected to the surface treatment of the CNT of the present invention or the graphite substrate as a comparative example is disposed at the bottom of the cavity, and the upper right diagram illustrates the graphite subjected to the surface treatment of CNT. A substrate (left) and only a graphite substrate without CNT (right) are shown. Only the graphite substrate is placed at the bottom of the cavity (L = 400mm deep), and the brightness temperature is compared with radiation thermometers with different wavelengths (1.6μm, 5μm, and 10μm). The processed graphite substrate was placed, and the brightness temperature was compared with radiation thermometers of different wavelengths (1.6 μm, 5 μm, and 10 μm).
In the graph of FIG. 1, the horizontal axis indicates the wavelength of the radiation thermometer, and the vertical axis indicates the luminance temperature (temperature difference). The result of placing the graphite substrate on the bottom is ▲, and the result of placing the graphite substrate with the CNT surface treatment on the bottom is ●, and in radiation thermometers with wavelengths of 1.6 μm, 5 μm, and 10 μm, The brightness temperature rises by about 0.1 ° C., 0.4 ° C., and 0.8 ° C., respectively, when the graphite substrate subjected to the CNT surface treatment is placed. From this, it can be seen that the luminance temperature is greatly increased in the case where the graphite substrate subjected to the surface treatment of the CNT of the present invention is inserted. That is, it corresponds to an increase in emissivity.
In the graph, “x” indicates a value calculated by theoretical calculation by the Monte Carlo method (graphite cavity specific emissivity 0.85, CNT specific emissivity 0.98). The value of the intrinsic emissivity used for the calculation is the vertical spectral emissivity and is actually measured.

(性能評価2)
図2に性能評価2の結果を示す。図2の左上図は、空気循環式温度可変黒体炉装置を用いて波長10μm帯の放射温度計及び波長1.6μmの放射温度計で測定している装置全体写真であり、右上図は、CNTの表面処理をしたグラファイト基板(またはグラファイト基板)の位置を動かすことで空洞長さを変える実験方法を示している。CNTの表面処理をしたグラファイト基板(またはグラファイト基板)の位置を動かすことで、実効的な空洞の長さを変え(400mm、350mm、300mm、250mm、200mm、150mm)、異なる波長の放射温度計(1.6μm、10μm)で輝度温度を比較し、その差を求めた。一般に空洞が短くなると放射率が低くなるので輝度温度が下がる。(したがって、各国の標準研究所では、空洞をできる限り長くし、その結果大がかりなヒートパイプなどの装置を比較炉として使用している。一方、大がかりな装置を導入できない校正事業者やユーザー等は、空洞長が比較的短い150mm〜200mm程度ではあるが、放射率が低い(0.99〜0.993程度)の一般の黒体炉を使用しているため波長の異なる放射温度計の校正ができない。)
図2のグラフは、横軸がCNTの表面処理をしたグラファイト基板(またはグラファイト基板)を置く位置すなわち空洞長さを示し、縦軸が輝度温度(の温度差)を示す。黒のプロット●及び▲が比較例としてのグラファイト基板を入れた結果、白のプロット○及び△が本発明のCNTの表面処理をしたグラファイト基板を入れた結果であり、丸のプロット○及び●が波長1.6μmの放射温度計で測定した結果、三角のプロット△及び▲が波長10μm帯放射温度計で測定した結果である。
比較例としてのグラファイト基板のみの場合には、波長1.6μm放射温度計の測定結果●と波長10μm放射温度計の測定結果▲はいずれの場合もグラファイト基板を置く位置が空洞の開口に近づくにつれて(つまり空洞の長さが短くなるにつれて)輝度温度が大きく下がり、1.6μm●では位置150mmで約5℃低下し、10μm▲では位置150mmで約9℃低下している。さらに、波長1.6μm●と10μm▲の輝度温度の差ΔT(●と▲の間の差)もグラファイト基板を置く位置が空洞の開口に近づくにつれて大きくなっており、位置400mmでは差が無かったものの、位置150mmでは差が約4℃と大きくなっている。このことは、グラファイト基板のみの場合には空洞が短くなるにつれ、実効放射率が低くなり、波長依存性が大きくなることを示している。
一方、本発明のCNTの表面処理をしたグラファイト基板の場合には、波長1.6μm放射温度計の測定結果○と波長10μm帯放射温度計の測定結果△のいずれも、CNTの表面処理をしたグラファイト基板の位置を開口付近に移動させても(つまり空洞の長さが短くなっても)グラファイト基板の場合と比較して、輝度温度はそれほど下がらず、しかも波長1.6μm○と10μm△の輝度温度の差は広がることなく、ほとんど変化がない。つまり、空洞の長さが短くなったとしても、高い実効放射率を保つことができ、波長依存性がほとんどあらわれないことを意味する。
波長1.6μmと10μmの差は、本発明のCNTの表面処理をしたグラファイト基板をいれたものが200mmの位置で波長1.6μm○と10μm△の差が0.03℃、比較例としてのグラファイト基板のみを入れた方が200mmの位置で波長1.6μm●と10μm▲の差が約3℃なので、本発明のCNTの表面処理をしたグラファイト基板を入れた方が比較例のグラファイト基板のみの場合より100分の1も小さくなることがわかる。
(Performance evaluation 2)
FIG. 2 shows the results of performance evaluation 2. The upper left figure of FIG. 2 is a photograph of the whole apparatus measured with a radiation thermometer with a wavelength of 10 μm and a radiation thermometer with a wavelength of 1.6 μm using an air circulation type temperature variable black body furnace apparatus. An experimental method is shown in which the cavity length is changed by moving the position of a graphite substrate (or graphite substrate) that has been subjected to CNT surface treatment. The effective cavity length is changed by moving the position of the graphite substrate (or graphite substrate) that has been surface-treated with CNT (400 mm, 350 mm, 300 mm, 250 mm, 200 mm, 150 mm), and radiation thermometers with different wavelengths ( The luminance temperature was compared at 1.6 μm and 10 μm), and the difference was obtained. In general, the shorter the cavity, the lower the emissivity and the lower the luminance temperature. (Thus, standard laboratories in each country make the cavity as long as possible, and as a result, large heat pipes and other devices are used as comparative furnaces. On the other hand, calibration companies and users who cannot introduce large-scale devices The calibration of radiation thermometers with different wavelengths is possible because a general blackbody furnace having a relatively short cavity length of about 150 mm to 200 mm but a low emissivity (about 0.99 to 0.993) is used. Can not.)
In the graph of FIG. 2, the horizontal axis indicates the position where the graphite substrate (or the graphite substrate) subjected to the CNT surface treatment is placed, that is, the cavity length, and the vertical axis indicates the luminance temperature (temperature difference). The black plots ● and ▲ are the results of putting a graphite substrate as a comparative example, the white plots ○ and △ are the results of putting the graphite substrate surface-treated with the CNT of the present invention, and the circle plots ○ and ● are As a result of measurement with a radiation thermometer with a wavelength of 1.6 μm, triangular plots Δ and ▲ are results of measurement with a radiation thermometer with a wavelength of 10 μm.
In the case of only the graphite substrate as a comparative example, the measurement result ● of the wavelength 1.6 μm radiation thermometer and the measurement result ▲ of the wavelength 10 μm radiation thermometer ▲ are in either case as the position where the graphite substrate is placed approaches the opening of the cavity In other words, the brightness temperature is greatly decreased (as the length of the cavity is shortened), and is decreased by about 5 ° C. at the position 150 mm at 1.6 μm ●, and is decreased by about 9 ° C. at the position 150 mm at 10 μm. Further, the difference ΔT (difference between ● and ▲) between the luminance temperatures of wavelengths of 1.6 μm and 10 μm ▲ increased as the graphite substrate was placed closer to the opening of the cavity, and there was no difference at the position of 400 mm. However, the difference is as large as about 4 ° C. at the position of 150 mm. This indicates that the effective emissivity decreases and the wavelength dependence increases as the cavity becomes shorter in the case of the graphite substrate alone.
On the other hand, in the case of the graphite substrate subjected to the surface treatment of CNT of the present invention, both the measurement result ○ of the wavelength 1.6 μm radiation thermometer and the measurement result Δ of the wavelength 10 μm band radiation thermometer were subjected to the surface treatment of CNT. Even if the position of the graphite substrate is moved to the vicinity of the opening (that is, the length of the cavity is shortened), the luminance temperature does not decrease much compared to the case of the graphite substrate, and the wavelengths of 1.6 μm ○ and 10 μm Δ are reduced. The difference in brightness temperature does not widen and there is almost no change. That is, even if the length of the cavity is shortened, it means that a high effective emissivity can be maintained and wavelength dependency is hardly exhibited.
The difference between the wavelength of 1.6 μm and 10 μm is that the difference between the wavelength of 1.6 μm ○ and 10 μm Δ is 0.03 ° C. at 200 mm when the CNT surface-treated graphite substrate of the present invention is added. If only the graphite substrate is placed, the difference between the wavelength of 1.6 μm ● and 10 μm ▲ is about 3 ° C. at a position of 200 mm, so that the graphite substrate treated with the CNT surface treatment of the present invention is the only graphite substrate of the comparative example. It can be seen that it is 1/100 smaller than the case of.

(性能評価3)
図3に性能評価3を示す。図3の上段の図は、空気循環式温度可変黒体炉装置(左)と市販の黒体炉装置(右)を用いて波長10μm帯の放射温度計及び波長1.6μmの放射温度計で測定している装置全体図を示しており、図3の中段の図は、空洞底部に本発明のCNTの表面処理をしたグラファイト基板あるいは比較例としてのグラファイト基板を空洞底部に配置した状態を示している。
図3のグラフは、縦軸が放射温度計で測定した温度(℃)、横軸が放射温度計の波長(μm)を示す。点線のプロット●及び▲が比較例としてのグラファイト基板のみを入れた結果、実線のプロット●及び▲が本発明のCNTの表面処理をしたグラファイト基板を入れた結果であり、上の黒丸による点線のプロット●及び実線のプロット●が空気循環式温度可変黒体炉装置を用いて測定した結果、下の三角による点線のプロット▲及び実線のプロット▲が市販の黒体炉装置を用いて測定した結果である。
比較例のグラファイト基板のみを入れた場合には、空気循環式温度可変黒体炉装置(点線のプロット●)と市販の黒体炉装置(点線のプロット▲)のいずれも1.6μmと10μmの波長による差が大きいが、本発明のCNTの表面処理をしたグラファイト基板を入れた場合(実線のプロット●、実線のプロット▲)には、その差が大幅に縮小しており波長依存性がほとんど現れないことがわかる。つまり本発明のCNTの表面処理をしたグラファイト基板を空洞に入れたことによる効果は、市販の黒体炉装置でも顕著に現れるのである。
(Performance evaluation 3)
FIG. 3 shows performance evaluation 3. The upper diagram in FIG. 3 shows a radiation thermometer with a wavelength of 10 μm and a radiation thermometer with a wavelength of 1.6 μm using an air circulation type variable temperature black body furnace device (left) and a commercially available black body furnace device (right). 3 shows an overall view of the apparatus being measured, and the middle diagram of FIG. 3 shows a state in which a graphite substrate having a surface treated with the CNT of the present invention or a graphite substrate as a comparative example is arranged at the bottom of the cavity. ing.
In the graph of FIG. 3, the vertical axis represents the temperature (° C.) measured by the radiation thermometer, and the horizontal axis represents the wavelength (μm) of the radiation thermometer. The dotted line plots ● and ▲ are the results of putting only the graphite substrate as a comparative example, and the solid line plots ● and ▲ are the results of putting the graphite substrate subjected to the surface treatment of the CNT of the present invention. Plots ● and solid line plots ● are measured using an air-circulating temperature-variable black body furnace device, and the dotted triangle plots ▲ and solid line plots ▲ are the results measured using a commercially available black body furnace device. It is.
When only the graphite substrate of the comparative example was inserted, both the air circulation type temperature variable blackbody furnace device (dotted line plot ●) and the commercially available blackbody furnace device (dotted line plot ▲) were 1.6 μm and 10 μm. Although the difference due to the wavelength is large, when the graphite substrate with the surface treatment of the CNT of the present invention is inserted (solid line plot ●, solid line plot ▲), the difference is greatly reduced and the wavelength dependence is almost not. It turns out that it does not appear. In other words, the effect of placing the graphite substrate that has been subjected to the surface treatment of CNTs of the present invention into the cavity appears remarkably even in a commercially available blackbody furnace apparatus.

上記説明では、グラファイト基板にCNTの表面処理をしたもので説明したが、この表面黒化処理はたとえば、CNTを垂直配向させる成膜方法でも、転写法などでもよい。また、基板材料はCNTを配向できるものであればグラファイト以外の材料であってもよい。また、空洞もグラファイト製でなくても金属を酸化させたものや、黒化ペイントを施したものであってもよい。   In the above description, the CNT surface treatment was performed on the graphite substrate. However, this surface blackening treatment may be, for example, a film forming method for vertically aligning CNT or a transfer method. The substrate material may be a material other than graphite as long as it can orient CNTs. Moreover, even if the cavity is not made of graphite, it may be made of oxidized metal or blackened paint.

Claims (3)

空洞を備えた標準黒体炉装置において、
前記空洞底部のみにカーボンナノチューブの表面処理をした部材を配置したことを特徴とするカーボンナノチューブ標準黒体炉装置。
In a standard blackbody furnace device with a cavity,
A carbon nanotube standard blackbody furnace apparatus, wherein a member subjected to a surface treatment of carbon nanotubes is disposed only at the bottom of the cavity.
前記空洞及び前記カーボンナノチューブの表面処理をした部材の材質は高融点物質であることを特徴とする請求項1記載のカーボンナノチューブ標準黒体炉装置。   2. The carbon nanotube standard blackbody furnace apparatus according to claim 1, wherein the material of the cavity and the surface-treated member of the carbon nanotube is a high melting point material. 請求項1または2に記載のカーボンナノチューブ標準黒体炉装置を用いて放射温度計や熱画像装置等の校正を行う放射温度計の校正方法。
A radiation thermometer calibration method for calibrating a radiation thermometer, a thermal imaging apparatus, or the like using the carbon nanotube standard blackbody furnace apparatus according to claim 1 or 2.
JP2014081870A 2014-04-11 2014-04-11 Carbon nanotube standard blackbody furnace equipment Active JP6388784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081870A JP6388784B2 (en) 2014-04-11 2014-04-11 Carbon nanotube standard blackbody furnace equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081870A JP6388784B2 (en) 2014-04-11 2014-04-11 Carbon nanotube standard blackbody furnace equipment

Publications (2)

Publication Number Publication Date
JP2015203589A JP2015203589A (en) 2015-11-16
JP6388784B2 true JP6388784B2 (en) 2018-09-12

Family

ID=54597116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081870A Active JP6388784B2 (en) 2014-04-11 2014-04-11 Carbon nanotube standard blackbody furnace equipment

Country Status (1)

Country Link
JP (1) JP6388784B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716722B (en) * 2016-04-06 2018-11-09 江苏振华新云电子有限公司 A method of being used for the infrared radiation thermometer temperature calibration of sapphire crystal growth
CN110031105A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of cavate blackbody radiation source and cavate blackbody radiation source
CN110031107B (en) * 2018-01-11 2022-08-16 清华大学 Blackbody radiation source and preparation method thereof
CN110031103A (en) * 2018-01-11 2019-07-19 清华大学 The preparation method of face source black matrix and face source black matrix
CN110031109A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of blackbody radiation source and blackbody radiation source
CN110031108A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of blackbody radiation source and blackbody radiation source
CN110031115A (en) 2018-01-11 2019-07-19 清华大学 Face source black matrix
CN110031104A (en) 2018-01-11 2019-07-19 清华大学 Face source black matrix
CN110031118A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of cavate blackbody radiation source and cavate blackbody radiation source
CN110031116A (en) 2018-01-11 2019-07-19 清华大学 Cavate blackbody radiation source
CN110031114A (en) 2018-01-11 2019-07-19 清华大学 Face source black matrix
CN110031117A (en) * 2018-01-11 2019-07-19 清华大学 The preparation method of cavate blackbody radiation source and cavate blackbody radiation source
CN110031106B (en) 2018-01-11 2021-04-02 清华大学 Blackbody radiation source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192581A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Electromagnetic wave radiator and electromagnetic wave absorber
JP5761705B2 (en) * 2011-01-07 2015-08-12 国立研究開発法人産業技術総合研究所 Gas circulation type variable temperature oven for temperature standard
JP5633071B2 (en) * 2011-01-26 2014-12-03 独立行政法人産業技術総合研究所 Calibration method of radiation thermometer using thermal radiation source

Also Published As

Publication number Publication date
JP2015203589A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
JP6388784B2 (en) Carbon nanotube standard blackbody furnace equipment
TWI312861B (en) Standard radiation source
Monte et al. The determination of the uncertainties of spectral emissivity measurements in air at the PTB
WO2015093930A1 (en) System and method for calibrating and characterising instruments for temperature measurement by telemetry
Brandt et al. Emissivity reference paints for high temperature applications
Watanabe et al. Spectral emissivity measurements
JP2012154777A (en) Thermal radiation light source
JP2020046309A (en) Black body furnace
RU2452927C1 (en) Device for calibrating heat flux sensors
Murthy et al. Radiative Calibration of Heat Flux Sensors at NIST: An Overview
WO2017105206A1 (en) Electrical radiation source for the calibration and/or characterisation of instruments for the improved measuring of temperature via telemetry
CN205246576U (en) Black matrix sample integral type emissivity measurement device
JP5761705B2 (en) Gas circulation type variable temperature oven for temperature standard
Heo et al. Evaluation of the blackbody radiation shift of an Yb optical lattice clock at KRISS
McMillan et al. Towards quantitative small-scale thermal imaging
Yoo et al. Realization of a radiation temperature scale from 0 C to 232 C by a thermal infrared thermometer based on a multiple-fixed-point technique
Willmott et al. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory
Machin et al. Bilateral comparison between NPL and INMETRO using a high-temperature fixed point of unknown temperature
Ishii et al. Radiation thermometry standards at NMIJ from− 30° C to 2800° C
Chen et al. Development and testing of a simple heat gauge for the measurement of high-intensity thermal radiation
ITUA20163785A1 (en) TEMPERATURE SENSOR WITHOUT CONTACT FOR COPPER WIRES IN MOVEMENT
Zhang et al. Calibration of a W/Re thermocouple using Pd-C, Pt-C and Ru-C eutectic cells at NIM
Yuan et al. -30\,^ ∘ C-30∘ C to 960\,^ ∘ C 960∘ C Variable Temperature Blackbody (VTBB) Radiance Temperature Calibration Facility
Ongrai et al. Self-calibration of a W/Re thermocouple using a miniature Ru-C (1954 C) eutectic cell
Ulanovskiy et al. Tungsten–Rhenium Thermocouples Calibration in Ultra-High Temperature Range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6388784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250