SI25778A - Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food - Google Patents

Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food Download PDF

Info

Publication number
SI25778A
SI25778A SI201900039A SI201900039A SI25778A SI 25778 A SI25778 A SI 25778A SI 201900039 A SI201900039 A SI 201900039A SI 201900039 A SI201900039 A SI 201900039A SI 25778 A SI25778 A SI 25778A
Authority
SI
Slovenia
Prior art keywords
self
sufficiency
buildings
container
technological
Prior art date
Application number
SI201900039A
Other languages
Slovenian (sl)
Inventor
Gojko StaniÄŤ
Original Assignee
G. STANIÄŚ-SVETOVANJE d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G. STANIÄŚ-SVETOVANJE d.o.o. filed Critical G. STANIÄŚ-SVETOVANJE d.o.o.
Priority to SI201900039A priority Critical patent/SI25778A/en
Priority to PCT/SI2020/050007 priority patent/WO2020171781A1/en
Publication of SI25778A publication Critical patent/SI25778A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/02Methods or installations for obtaining or collecting drinking water or tap water from rain-water
    • E03B3/03Special vessels for collecting or storing rain-water for use in the household, e.g. water-butts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/02Dwelling houses; Buildings for temporary habitation, e.g. summer houses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Abstract

Predmet izuma je sovplivanje tehnoloških sistemov, ki omogočajo samooskrbo zgradb s sončno energijo v soskladju z javnim elektroenergetskim sistemom in biotehnološkimi sistemi samooskrbe stanovalcev urbanih in ruralnih naselij s sonaravno pridelano hrano. Uresničevanje zastavljenega cilja je omogočeno s samooskrbo zgradbe s sončno energijo v soskladju z javnim elektroenergetskim sistemom, ki je zagotovljena s tehnološko rešitvijo samooskrbe zgradb s sončno in električno energijo, ki temelji na izvedbi prikateri so na strehi zgradbe oz. zgradb na severni strani montirani fotovoltaični hibridni toplotni paneli (1) pod kotom, ki je optimalen za geografsko širino, pri čemer fotovoltaični hibridni toplotni paneli (1) poleti spravljajo toploto v zemljino 5 do 7 metrov globoko tako, da se zemlja segreje na več kot 45 stopinj C in se toplota uporablja za ogrevanje vode namenjeno umivanju, kuhanju, pranju, pomivanju posode, za ogrevanje rastlinjakov in bazenov za aquaponsko vzgojo sladkovodnih rib in še za drugepotrebe ter na ta način uresničevanje biotehnoloških sistemov samooskrbe stanovalcev urbanih in ruralnih naselij s sonaravno pridelano hrano.The subject of the invention is the interaction of technological systems that enable self-sufficiency of buildings with solar energy in accordance with the public electricity system and biotechnological systems of self-sufficiency of residents of urban and rural settlements with sustainably produced food. The realization of the set goal is enabled by the self-supply of the building with solar energy in accordance with the public electricity system, which is provided by the technological solution of self-supply of buildings with solar and electricity, based on the implementation of which are on the roof. buildings on the north side of the mounted photovoltaic hybrid thermal panels (1) at an angle optimal for latitude, with photovoltaic hybrid thermal panels (1) in the summer to store heat in the ground 5 to 7 meters deep so that the ground heats up to more than 45 degrees C and the heat is used to heat water intended for washing, cooking, washing, dishwashing, heating greenhouses and pools for aquapone breeding of freshwater fish and other needs, and thus the implementation of biotechnological systems of self-sufficiency of urban and rural settlements with sustainable production food.

Description

SOVPLIVANJE TEHNOLOŠKIH SISTEMOV, KI OMOGOČAJO ENERGETSKO SAMOOSKRBO ZGRADB IN SAMOOSKRBO STANOVALCEV SCONFLICTING TECHNOLOGICAL SYSTEMS THAT ENABLE ENERGY SELF-SUPPLY OF BUILDINGS AND SELF-SUPPLY OF RESIDENTS WITH

SONARAVNO PRIDELANO HRANOSUSTAINABLE FOOD

Predmet izuma je sovplivanje tehnoloških sistemov, ki omogočajo samooskrbo zgradb s sončno energijo v soskladju z javnim elektroenergetskim sistemom in biotehnološkimi sistemi samooskrbe stanovalcev urbanih in ruralnih naselij s sonaravno pridelano hrano. Tehnološki sistemi lokalne in javne elektroenergetike in biotehnološki sistemi samooskrbe stanovalcev bodo podrobneje obrazloženi v nadaljevanju.The subject of the invention is the interaction of technological systems that enable self-sufficiency of buildings with solar energy in accordance with the public electricity system and biotechnological systems of self-sufficiency of residents of urban and rural settlements with sustainably produced food. Technological systems of local and public electricity and biotechnological systems of self-sufficiency of residents will be explained in more detail below.

Problem, ki ga predložen izum uspešno rešuje, je konstrukcija in izvedba tehnoloških rešitev in njihovo medsebojno delovanje in dopolnjevanje v namen medsebojnega sovplivanja pri energetski samooskrbi zgradb in samooskrbi stanovalcev s sonaravno pridelano hrano.The problem that the present invention successfully solves is the construction and implementation of technological solutions and their interaction and complementarity for the purpose of mutual interaction in the energy self-sufficiency of buildings and self-sufficiency of residents with sustainably produced food.

Pri pregledu stanja trajnostnega graditeljstva, sodelovanja in kolizij sončnih malih elektrarn in javnega elektro sistema in urbanega vrtnarjenja sem ugotovil, da so v nadaljevanju opisane rešitve izvirne in predstavljajo novost na zadevnem področju.When reviewing the state of sustainable construction, cooperation and collisions of solar small power plants and public electricity system and urban gardening, I found that the solutions described below are original and represent a novelty in the field.

Zamisel in izvedba tehnoloških rešitev, ki omogočajo izvedbo samooskrbe zgradb s sončno energijo v soskladju z javnim elektroenergetskim sistemom in biotehnološkimi sistemi samooskrbe stanovalcev urbanih in ruralnih naselij s sonaravno pridelano hrano bo prikazana na slikah, od katerih kaže:The idea and implementation of technological solutions that enable the implementation of self-sufficiency of buildings with solar energy in accordance with the public electricity system and biotechnological systems of self-sufficiency of residents of urban and rural settlements with sustainably grown food will be shown in the figures:

slika 1 shematski prikaz zgradbe, ki omogoča samooskrbo s sončno energijo in biotehnološkimi sistemi samooskrbe s sonaravno pridelano hrano, ter sistemom ogrevanja in hlajenja;Figure 1 is a schematic representation of a building that enables self-sufficiency in solar energy and biotechnological self-sufficiency systems with sustainably produced food, as well as a heating and cooling system;

slika 2 tlorisni prikaz trisobne hiše z razmestitvijo prostorov;Figure 2 is a plan view of a three-room house with the layout of the premises;

slika 3 tlorisni prikaz umestitve trisobne hiše v okolje;Figure 3 is a plan view of the location of a three-room house in the environment;

slika 4 shematski prikaz trajne zelenjavne visoke grede iz lesa; slika 5 a prikaz postavitve trajne visoke grede v prostor s strani;Figure 4 is a schematic representation of a permanent vegetable high wooden beam; Figure 5a shows the placement of a permanent high beam in the space from the side;

slika 5b prikaz postavitve trajne visoke grede v prostor v pogledu od zgoraj.Figure 5b shows the placement of a permanent high beam in space in a top view.

Predmet izuma bo prikazan na izvedbi trisobne hiše, kot samostojne zgradbe ali ene izmed zgradb v strnjeni postavitvi, pri čemer je na sliki 1 shematski prikaz zgradbe, ki omogoča samooskrbo s sončno energijo in biotehnološkimi sistemi samooskrbe s sonaravno pridelano hrano, ter sistemom ogrevanja in hlajenja.The subject of the invention will be shown on the implementation of a three-room house, as a detached building or one of the buildings in a compact layout, where Figure 1 is a schematic representation of a building that allows self-sufficiency in solar energy and biotechnological systems of self-sufficiency with sustainable food and heating and cooling .

Samooskrba zgradbe s sončno energijo v soskladju z javnim elektroenergetskim sistemom je zagotovljena s tehnološko rešitvijo samooskrbe zgradb s sončno in električno energijo, ki temelji na izvedbi pri kateri so na strehi zgradbe oz. zgradb na severni strani montirani fotovoltaični hibridni toplotni paneli 1 pod kotom, ki je optimalen za geografsko širino (npr. v Ljubljani pod kotom 32°). Fotovoltaični hibridni toplotni paneli 1 so na strehi na severni strani in kot streha nad stopnicami in ganki, ki so odmaknjeni od severne stene zgradbe za 1,6 m do 3,6 m. Pri izkoristku sončne energije v višini 20% za proizvodnjo elektrike se montira za pokrivanje potreb enega prebivalca stanovanja najmanj 8 m2 fotovoltaičnih hibridnih toplotnih panelov 1. Za potrebe poslovnih prostorov se površina določi glede na energetske potrebe poslovnega subjekta. Na enega stanovalca se proizvede za potrebe gospodinjstva, računalništva, ogrevanja, hlajenja, rekuperacije zraka v zgradbi in za hladilnice, ogrevanje gredic, rastlinjaka in pokritega vrta zaradi preprečevanje pozebe, za osvetljevanje z LED sijalkami in za pogon aquaponskega sistema najmanj 600 kWh električne lastne energije in za potrebe polnjenja baterij osebnih avtomobilov in drugih vozil najmanj 3200 kWh na leto.Self-sufficiency of the building with solar energy in accordance with the public electricity system is ensured by a technological solution of self-sufficiency of buildings with solar and electricity, which is based on the implementation in which the roof of the building or. buildings on the north side of the mounted photovoltaic hybrid thermal panels 1 at an angle that is optimal for latitude (eg in Ljubljana at an angle of 32 °). Photovoltaic hybrid thermal panels 1 are on the roof on the north side and as a roof over the stairs and porches, which are 1.6 m to 3.6 m away from the north wall of the building. At a solar energy efficiency of 20% for electricity production, at least 8 m 2 of photovoltaic hybrid thermal panels 1 shall be installed to cover the needs of one resident. For the needs of business premises, the area shall be determined according to the energy needs of the business entity. It is produced per capita for household, computer, heating, cooling, air recovery in the building and cold stores, heating beds, greenhouses and covered gardens to prevent frost, for lighting with LED lamps and to power the aquapone system at least 600 kWh of electricity own and for the purpose of recharging the batteries of passenger cars and other vehicles at least 3200 kWh per year.

Fotovoltaični hibridni toplotni paneli 1 poleti na podlagi tehnoloških rešitev SOLINTERRA (sistem ogrevanja, hlajenja in prezračevanja objektov z izkoriščanjem sonca in zemlje) spravljajo toploto v zemljino 5 do 7 metrov globoko tako, da se zemlja segreje na več kot 45°C. Toplota se uporablja za ogrevanje vode namenjeno umivanju, kuhanju, pranju, pomivanju posode, za ogrevanje rastlinjakov in bazenov za aquaponsko vzgojo sladkovodnih rib in še za druge potrebe. Toplota namenjena ogrevanju cirkulira po ceveh talnega gretja in po ovoju zgradbe tako, da z 18°C ustvari toplotno pregrado med zunanjostjo zgradbe in notranjostjo zgradbe.Photovoltaic hybrid thermal panels 1 in the summer on the basis of SOLINTERRA technological solutions (heating, cooling and ventilation system of buildings using the sun and the earth) store heat in the ground 5 to 7 meters deep by heating the ground to more than 45 ° C. The heat is used to heat water intended for washing, cooking, washing, washing dishes, to heat greenhouses and pools for aquaponic breeding of freshwater fish and for other purposes. The heat intended for heating circulates through the underfloor heating pipes and around the building envelope, creating a thermal barrier between the exterior of the building and the interior of the building at 18 ° C.

Pod zunanjo izolacijo je 3cm širok kanal 9 za toploto bariero po vsem ovoju zgradbe z zrakom 18°C do 20 °C pozimi in 20°C do 24°C poleti. Vodne cevi 6 so v 50 cm jaških zalite z rahlim betonom 5-7 m globoko in povezane preko cevi 5 z rezervoarjem za deževnico J.Beneath the external insulation is a 3cm wide duct 9 for a heat barrier throughout the building envelope with air 18 ° C to 20 ° C in winter and 20 ° C to 24 ° C in summer. The water pipes 6 are filled in 50 cm shafts with light concrete 5-7 m deep and connected via a pipe 5 with a rainwater tank J.

Znotraj zgradbe ogrevajo zrak tudi ljudje ter gospodinjski stroji ter računalniki tako, da je temperatura v prostorih v hladnih dnevih vedno od 20°C do 22°C .Inside the building, people also heat the air, as well as household machines and computers, so that the temperature in the rooms on cold days is always between 20 ° C and 22 ° C.

Samooskrbna elektrarna lahko elektriko shranjuje v lastne baterije in v baterije osebnih avtomobilov zato je lahko zgradba glede elektrike popolnoma samozadostna.A self-sufficient power plant can store electricity in its own batteries and in the batteries of passenger cars, so the building can be completely self-sufficient in terms of electricity.

Lokalna samooskrbna elektrarna, ki nima lastne baterije za shranjevanje elektrike je priključena po sistemu izmenjave elektrike na javni elektro energetski sistem tako, da so stanovalci oskrbljeni z elektriko tudi takrat, ko sončne elektrarne ne proizvajajo elektrike.A local self-sufficient power plant, which does not have its own battery for storing electricity, is connected to the public electricity system through the electricity exchange system, so that residents are supplied with electricity even when solar power plants do not produce electricity.

Uvedba pametnega javnega omrežja ali pogodbeno dogovorjeno ravnanje omogoča plodno sodelovanje obeh tehnoloških sistemov. Nuklearne elektrarne se težko prilagajajo trenutni porabi elektrike. Zato je interes javnega omrežja, da se zlasti ponoči vključuje večje število načrtovanih porabnikov. Uvedba pametnega omrežja bo omogočila načrtovano in pogodbeno dogovorjeno vključevanje porabnikov.The introduction of a smart public network or contractually agreed conduct enables the fruitful cooperation of both technological systems. Nuclear power plants find it difficult to adapt to current electricity consumption. Therefore, it is in the interest of the public network to include a larger number of planned consumers, especially at night. The introduction of a smart grid will enable the planned and contractually agreed involvement of consumers.

Električna vozila se zato polnijo iz javnega omrežja v dnevnih razdobjih najnižje porabe torej predvsem ponoči med 22.uro in 6.uro zjutraj. Ponoči se elektrika v električno samooskrbni zgradbi uporablja za pogon pralnih in pomivalnih strojev, za hladilnike in zamrzovalnike, za ogrevanje gredic rastlinjaka in pokritega vrta ob pozebah, za osvetljevanje rastlinjaka z LED sijalkami pozimi za pogon sistema kapljičnega namakanja itd..Electric vehicles are therefore charged from the public network during the lowest consumption periods during the day, especially at night between 10 pm and 6 am. At night, electricity in an electrically self-sufficient building is used to power washing machines and dishwashers, refrigerators and freezers, to heat greenhouse beds and a covered garden during frosts, to illuminate a greenhouse with LED lamps in winter to drive a drip irrigation system, etc.

Lokalna fotovoltaična elektrarna pošilja večino proizvedene elektrike v javni sistem poleti, ko sije sonce zelo močno in se v drugih zgradbah množično vklapljajo hladilne naprave. Tedaj se za hlajenje lastnih zgradb, ki imajo lokalno elektrarno potrebuje zelo malo elektrike. Poganja se le črpalka, ki hladino iz zemljine okoli zgradbe in iz velikih rezervoarjev J za deževnico, ki so pod zemljo potiskajo preko tekočinskega medija v talno hlajenje prostorov.The local photovoltaic power plant sends most of the electricity produced to the public system in the summer, when the sun shines very brightly and cooling devices are switched on en masse in other buildings. Then very little electricity is needed to cool their own buildings that have a local power plant. Only the pump is driven, which pushes the cold from the ground around the building and from the large rainwater tanks J, which are underground, through the liquid medium into the floor cooling of the rooms.

.Konično porabo pokrivajo praviloma povsod predvsem hidroelektrarne in plinske elektrarne. Ker se bo podnebje segrevalo in bo več suš, bodo reke poleti tekle z manj vode. Množično vključevanje lokalnih sončnih elektrarn, ki bodo lahko veliko večino elektrike posredovale javnemu sistemu, bo pomagalo javnemu sistemu pri obvladovanju največje poletne konice porabe..The peak consumption is generally covered by hydroelectric and gas power plants everywhere. As the climate warms and there will be more droughts, rivers will flow with less water in the summer. The massive integration of local solar power plants, which will be able to supply the vast majority of electricity to the public system, will help the public system manage its maximum summer peak consumption.

Pozimi v razdobjih, ko padejo temperature pod minus 10°C morajo uporabniki toplotnih črpalk vključevati električne grelne naprave. V času najhujšega mraza običajno sije sonce in takrat lahko podnevi lokalne fotovoltaične elektrarne pošiljajo elektriko za pokrivanje dnevne porabe elektrike. Hidroelektrarne pa se tedaj lahko vključujejo s svojo proizvodnjo le ponoči. Ker bodo imele pozimi hidroelektrarne več vode bo mogoče v sožitju lokalnega in javnega sistema z brezogljično energetiko obvladovati delno probleme konične porabe v takih razdobjih.In winter, during periods when temperatures fall below minus 10 ° C, users of heat pumps must switch on electric heating devices. During the worst of the cold, the sun usually shines and then during the day, local photovoltaic power plants can send electricity to cover daily electricity consumption. Hydropower plants, however, can then be included in their production only at night. As hydropower plants will have more water in winter, it will be possible to partially manage the problems of peak consumption in such periods in the coexistence of the local and public system with carbon-free energy.

Ker se bo vse termoelektrarne čimprej zaprlo bo ostalo človeštvu le sožitje jedrske energetike, vodne energetike, uporaba vetra in predvsem sonca ter geotermalnih virov. Kurjenje lesa in plina ne bo več sprejemljivo. Jedrska energetika bo za to sožitje brezogljičnih elektrarn primerna s postavitvijo večjega števila vgradnje mestnih malih fleksibilnih elektro toplovodnih jedrskih central in zgraditve velikih jedrskih central, ki bodo uporabile tudi toploto za ogrevanje rastlinjakov, jezer in mest.As all thermal power plants will be closed as soon as possible, humanity will be left with only the coexistence of nuclear energy, hydropower, the use of wind and especially the sun and geothermal resources. Burning wood and gas will no longer be acceptable. Nuclear energy will be suitable for this coexistence of carbon-free power plants by setting up a larger number of urban small flexible electric hot water nuclear power plants and large nuclear power plants, which will also use heat to heat greenhouses, lakes and cities.

Prometno javno omrežje se bo lahko oskrbovalo z elektriko tudi iz baterij, ki se jih bo zgradilo v stanovanjsko poslovnih naselij in drugih naselij in iz baterij elektro vozil. Sožitje lokalnih brezogljičnih elektrarn in javnih jedrskih in hidro elektrarn, vetrnih elektrarn, geotermalnih elektrarn bo ustvarilo pogoje za preživetje človeštva.The public transport network will also be able to be supplied with electricity from batteries that will be built in residential and commercial settlements and other settlements, and from the batteries of electric vehicles. The coexistence of local carbon-free power plants and public nuclear and hydro power plants, wind power plants, geothermal power plants will create the conditions for human survival.

Ekonomski učinki so izjemni. Financirati je treba začetno naložbo, obnavljati baterije, na 25 let zamenjati panele. Veliko večino materiala ostarelih panelov in baterij se bo lahko recikliralo za ponovno uporabo.The economic effects are remarkable. It is necessary to finance the initial investment, renew the batteries, replace the panels every 25 years. The vast majority of obsolete panel and battery material will be recyclable for reuse.

Po sistemu net metering plačujejo uporabniki elektrike iz javnega omrežja stroške za uporabo omrežja SPTE in prispevek za subvencije brezogljično elektriko OVE. Na električno samooskrbne zgradbe se montira toliko panelov, da se bo javnemu sistemu letno dobavilo več elektrike kakor se je bo iz javnega sistema dobavilo uporabnikom stanovanj in poslovnih prostorov.Under the net metering system, electricity users from the public network pay the costs for the use of the CHP network and the contribution for subsidies for carbon-free RES electricity. So many panels are installed on self-sufficient buildings that more electricity will be supplied to the public system annually than will be supplied to users of apartments and business premises from the public system.

Lokalni proizvajalci bi lahko zahtevali, da konično elektriko zaračunavajo javnemu sistemu.Local producers could require them to charge conical electricity to the public system.

Izdatki stanovalcev se bodo znižali ker ne bo več stroškov za porabo elektrike za ogrevanje, hlajenje, potrebe gospodinjstva in ne za nakup bencina, plina ali dizelskega goriva. Ta letni prihranek za štiri člansko družino znaša v Sloveniji okoli 4000 evrov letno.Residents' spending will be reduced because there will be no more costs to consume electricity for heating, cooling, household needs and not to buy petrol, gas or diesel. This annual savings for a family of four in Slovenia amounts to around 4,000 euros per year.

Na sliki 2 je prikazana razmestitev prostorov v trisobni hiši. Trisobna hiša na sliki 2 obsega spalnico A, dnevno sobo B s kuhinjo, delavnico C, garažo D, prostor E za akvaplaniko z rezervoarji E1 za vodo in ribnikom E2, otroško spalnico F, ložo G, teraso H z rastlinjakom I, rezervoarjem J za deževnico, kletjo K, kopalnico L in WC M.Figure 2 shows the layout of the rooms in a three-room house. The three-room house in Figure 2 comprises bedroom A, living room B with kitchen, workshop C, garage D, space E for aquaplanics with reservoirs E1 for water and pond E2, children's bedroom F, loggia G, terrace H with greenhouse I, reservoir J for rainwater, basement K, bathroom L and toilet M.

Tlorisi stanovanja je tak, da omogoča na južni strani zgraditev lože G po vsej širini stanovanja, ki je globine 2,5 m. Loža G je tako velika, da omogoča ob intenzivni vzgoji pridelavo sveže zelenjave predvsem za svežo solato skozi vse leto. Poleg tega sta na strehi stanovanja postavljeni nizka pokrita gredica 2 za paradižnik in visoka pokrita gredica 3 ter gredica 4 z jagodičevjem.The floor plan of the apartment is such that it allows the construction of a G lodge on the south side along the entire width of the apartment, which is 2.5 m deep. Lodge G is so large that, with intensive education, it allows the production of fresh vegetables, especially for fresh salad throughout the year. In addition, a low covered bed 2 for tomatoes and a high covered bed 3 and a bed 4 with berries are placed on the roof of the apartment.

Na sliki 3 je prikazana umestitve trisobne hiše v okolje z izvedenimi fotovoltaičnimi hibridnimi toplotnimi paneli 1, nizkimi pokritimi gredicami 2 in visokimi pokritimi gredicami 3.Figure 3 shows the placement of a three-room house in the environment with implemented photovoltaic hybrid thermal panels 1, low covered billets 2 and high covered billets 3.

Temperatura v loži G je lahko v decembru zelo nizka, da pomrznejo škodljivci. Loža G se tedaj razkuži, da se januarja začne nova sezona s saditvijo semen za nove sadike. Prednja pomična steklena ali iz ETFE (Ethylene tetrafluorethylene) plastike stena 17 se zapre, ko je temperatura nizka in lahko mraz spomladi poškoduje rastline. Rastline, ki potrebujejo vsaj 8°C toplote se zadrži v zaprti loži kjer hitro rastejo dokler se temperatura ne dvigne. Tako je mogoče normalno sezono prehiteti in tudi podaljšati za en mesec. Paradižnik, kumare, paprike, jajčevci se lahko obirajo od začetka junija do konca oktobra. Rastline v loži G rastejo hitreje, ker je v zraku precej CO2, bogatijo pa zrak v dnevni sobi z izpusti kisika. Pozimi sonce tako segreje zrak v loži G, da se s to toploto ogreva dnevna soba B. Lahko pa se toplota piha tudi v druge notranje prostore.The temperature in box G can be very low in December to freeze pests. Lodge G is then disinfected to begin a new season in January by planting seeds for new seedlings. The front sliding glass or ETFE (Ethylene tetrafluorethylene) plastic wall 17 closes when the temperature is low and the cold in spring can damage the plants. Plants that need at least 8 ° C of heat are kept in a closed lodge where they grow rapidly until the temperature rises. Thus, the normal season can be overtaken and also extended by one month. Tomatoes, cucumbers, peppers, aubergines can be harvested from early June to late October. The plants in box G grow faster because there is a lot of CO2 in the air and they enrich the air in the living room with oxygen emissions. In winter, the sun heats the air in box G in such a way that this heat heats living room B. However, the heat can also be blown into other indoor spaces.

Na sliki 3 je prikazana umestitve trisobne hiše v okolje. Loža G in dnevna soba B ter otroška soba C so obrnjene proti jugu ker je to optimalno za izkoriščanje neposrednega sevanja sonca v prostore za rast rastlinja v ložah ter za obsevanje fotovoltaičnih hibridnih toplotnih panelov 1. Če ponoči zrak ni toplejši od 18° C se ponoči odpre vsa vrata in okna, da se ohladijo notranje stene in stropi tako, da se v njih akumulira hladina. Zgodaj dopoldan se zapre notranja steklena troslojna drsna vrata 18, ki so vgrajena po standardih za pasivne zgradbe. Sonce na ta vrata z juga ne seva. Zato se sistem hlajenja zgradbe vključuje le ob dolgotrajnih in hudih vročinah. Vgrajuje se take hibridne toplovodne fotovoltaične sisteme, ki ob hudi vročini hladijo površine fotovoltaike in povečujejo učinkovitost panelovFigure 3 shows the location of a three-room house in the environment. Lodge G and living room B and children's room C are facing south as this is optimal for exploiting direct sunlight in the vegetation rooms in the lodges and for irradiating photovoltaic hybrid thermal panels 1. If the air is not warmer than 18 ° C at night, at night opens all doors and windows to cool interior walls and ceilings so that cold accumulates in them. Early in the morning, the internal glass three-layer sliding door 18, which is installed according to the standards for passive buildings, is closed. The sun does not shine on this door from the south. Therefore, the building's cooling system is only switched on during prolonged and severe heat. Such hybrid hot-water photovoltaic systems are installed, which cool the surfaces of photovoltaics in severe heat and increase the efficiency of panels.

Na velikih površinah hibridnih panelov se proizvede toliko toplote, ki se shrani v zemljino pod ali ob zgradbo, da je je dovolj tudi za ogrevanje bazenov sladke vode - ribnikov E2 velikosti 2 m3 v katerih se lahko letno vzgoji 100 kg sladkovodnih rib. Sladkovodne tropske ribe se dobro razvijejo in zelo hitro rastejo le, če je temperatura vode nad 22°C. Najhitreje rastejo tilapije - ostriži, ki so zelo okusni in brez kosti, jedo pa zelenjavno in mesno hrano. Mesojede postrvi, smuči, sulci, ščuke somi rastejo, če je temperatura vode nad 8°C in najbolje, če je okoli 14°C. Krapi rastejo v bazenih hitro in imajo prijeten okus. Obstoječe ribogojnice so odvisne od zunanje temperature okolja in nimajo naprav za ogrevanje vode zato ribe ne rastejo zadosti hitro.On large areas of hybrid panels, so much heat is produced that is stored in the ground under or next to the building that it is enough to heat freshwater pools - E2 ponds of 2 m 3 in which 100 kg of freshwater fish can be raised annually. Freshwater tropical fish develop well and grow very rapidly only if the water temperature is above 22 ° C. The fastest growing tilapia - perch, which are very tasty and boneless, and eat vegetable and meat foods. Carnivorous trout, skis, huchen, pike catfish grow if the water temperature is above 8 ° C and best if around 14 ° C. Carp grow in pools quickly and have a pleasant taste. Existing fish farms depend on the outside temperature of the environment and do not have water heating devices, so fish do not grow fast enough.

Ribe se hranijo s peleti, ki jih proizvajajo na podlagi nalovljenih sardel in drugih rib v oceanih in to zelo daleč večinoma ob zahodnih obalah južne Amerike. V ribji hrani je veliko mesa in kosti živali, ki so krmljene z oporečno gensko spremenjeno hrano in vsebujejo tudi ostanke antibiotikov in hormonskih motilcev. Morske živali uživajo vse več plastike in mikroplastike. Zato se bo ekološko neoporečen sistem aquaponske vzgoje sladkovodnih rib in drugih živali v pogledu prehrane oskrboval le z rastlinjem, ki je pridelano v samooskrbnem naselju iz lastnega pridelka zelenjave in stročnic, z mesom pa se bo oskrboval z ekološko neoporečnim mesom lokalnih kmetovalcev in iz ribnikov v katerih se bo na sonaraven način gojilo zelenike, kleniče in druge ribice, ki se hranijo z žuželkami algami, mikroorganizmi in vodnim rastlinjem. Tak sosistem je pogojen z uporabo toplote za ogrevanje rezervoarjev E1 in z uporabo elektrike za vpihovanje zraka in kroženjem vode v bazenu - ribniku E2. Ker imajo rezervoarji E1 lahko le 2 m3 prostornine lahko cel aquvaponski sistem deluje v manjšem zaprtem prostoru znotraj poslovno stanovanjske zgradbe na toplem.The fish feed on pellets, which are produced on the basis of caught sardines and other fish in the oceans, and this is very far off, mostly off the west coast of South America. Fish food contains a lot of meat and bones of animals that are fed with objectionable genetically modified food and also contain residues of antibiotics and hormone disruptors. Marine animals are enjoying more and more plastic and microplastics. Therefore, the ecologically sound system of aquapone breeding of freshwater fish and other animals in terms of nutrition will be supplied only with plants grown in the self-sufficient settlement from its own vegetable and legume crops, and the meat will be supplied with ecologically sound meat from local farmers and ponds in which will grow in a sustainable way periwinkles, chubs and other fish that feed on insects, algae, microorganisms and aquatic plants. Such a co-system is conditioned by the use of heat to heat the E1 tanks and by the use of electricity to blow air and the circulation of water in the pool - pond E2. Because the E1 tanks can only have a volume of 2 m 3 , the entire aquaponic system can operate in a small enclosed space inside a commercial residential building in a warm place.

Ribji iztrebki se v aquaponskem sistemu pretvarjajo v hranilo za rastlinje. Na levi in desni strani lož so postavljene vertikalne gredice velikosti okoli 4 m2 v katerih raste predvsem zelenjava. Rast je izjemno intenzivna. Tako je mogoče vzgojiti v ložah vsaj toliko zelenjave, da lahko stanovalci uživajo vse leto svežo svojo sezonsko zelenjavo. Rast se pospešuje tudi z uporabo LED razsvetljave kar je mogoče ker se razpolaga z zadostno količino lastne elektrike.Fish droppings are converted into plant nutrients in the aquaponic system. On the left and right side of the lodges there are vertical flower beds of about 4 m 2 in which mainly vegetables grow. Growth is extremely intense. Thus, at least as many vegetables can be grown in the lodges so that residents can enjoy their seasonal vegetables fresh all year round. Growth is also accelerated by the use of LED lighting, which is possible because it has a sufficient amount of its own electricity.

Ker zgradbe razpolagajo z veliko količino deževnice v rezervoarju J za deževnico, se le-ta lahko uporablja za polnjenje rezervoarjev E1 in bazena E2 z ribami, nato pa se ta voda polna hranil uporabi za kapljično namakanje zelenjavnega in sadnega vrta in se umazana ne vrača nazaj v bazen E2 z ribami. Poleti se voda, ko se pretaka po vertikalnih gredicah zelo segreje. Zato ni primerna za vračanje v bazen E2 v katerih se vzgaja postrvi in druge ribe, ki ne prenašajo pretople vode. Optimalna je kombinacija zaprtega aquaponskega sistema in sistema, ki ribam dovaja svežo čisto vodo. Ker gredice zadržujejo vso vodo in deževnico se le ta ne pretaka v javni kanalizacijski sistem in se ne onesnažuje podtalnica.Because the buildings have a large amount of rainwater in the rainwater tank J, it can be used to fill the E1 reservoirs and the E2 basin with fish, and then this nutrient-filled water is used to drip irrigate the vegetable and fruit garden and the dirt does not return. to the E2 pool with fish. In summer, when the water flows through the vertical billets, it gets very hot. Therefore, it is not suitable for returning to the E2 pool where trout and other fish that do not tolerate overheated water are raised. The optimal combination is a closed aquaponic system and a system that supplies the fish with fresh clean water. Because the billets retain all the water and rainwater, it does not flow into the public sewer system and does not pollute groundwater.

Celovit sistem sodelovanja javnega omrežja z disperziranimi sončnimi elektrarnami lahko v primeru, da ga uporablja večina prebivalcev planeta prispeva zelo veliko k zmanjšanju izpustov toplogrednih plinov in zdravemu prehranjevanju s sladkovodnimi ribami.A comprehensive system of public network cooperation with dispersed solar power plants, if used by the majority of the world's population, can make a significant contribution to reducing greenhouse gas emissions and eating freshwater fish healthily.

Na podlagi 24 let eksperimentiranja in vzgoje koristnega rastlinja na strehi štirinadstropne zgradbe v Ljubljani, po stenah zgradbe na gredicah in parkirnih prostorih okoli zgradbe ugotavljam, da je mogoče na ekološko neoporečen način vzgojiti na enega prebivalca na rastni površini okoli 75 m2 4Okg krompirja, 10 kg koruze, 15kg graha, fižola in drugih z beljakovinami bogatih stročnic v zrnju, 120 kg raznovrstne sezonske zelenjave, 5 kg gob, 10 kg jagodičja, 20 kg grozdja, 60 kg sezonskega sadja, 5 kg orehov, lešnikov ali drugih oreškov 3kg kostanja maronija. Vsak stanovalec lahko dnevno zaužije 250 gramov jagodičja, grozdja in sadja in okoli 400 gramov sveže zelenjave, gob in stročnic. Obroki mesa se lahko zmanjšajo na 15 dag in rib na 25 dag. Lahko se bo pridelalo na prebivalca vsaj 5 kg medu tako, da se bo zmanjšala potreba po proizvodnji sladkorja. Ker se za transport sadja in zelenjave porabi več fosilne energije kakor za njeno pridelavo se bo z uveljavitvijo takega vrtnarjenja zelo zmanjšala emisija toplogrednih plinov ter uporaba pesticidov za pridelavo sadja in zelenjave.Based on 24 years of experimentation and growing useful plants on the roof of a four-storey building in Ljubljana, on the walls of the building in flower beds and parking spaces around the building, I find that it is possible to grow in an ecologically sound way per capita on a growing area of about 75 m 2 4Okg potatoes kg of corn, 15kg of peas, beans and other protein-rich legumes, 120 kg of various seasonal vegetables, 5 kg of mushrooms, 10 kg of berries, 20 kg of grapes, 60 kg of seasonal fruit, 5 kg of walnuts, hazelnuts or other nuts 3kg of chestnut . Each resident can consume 250 grams of berries, grapes and fruits daily and about 400 grams of fresh vegetables, mushrooms and legumes. Meat meals can be reduced to 15 dag and fish to 25 dag. It will be possible to produce at least 5 kg of honey per capita, thus reducing the need for sugar production. As more fossil energy is used for the transport of fruit and vegetables than for its production, the introduction of such gardening will greatly reduce greenhouse gas emissions and the use of pesticides for fruit and vegetable production.

Ker bodo v razvitem svetu mnogi zaposleni delali kmalu le štiri dni v tednu bodo imeli zadosti časa za intenzivno sonaravno vrtnarjenje. Število upokojencev, ki so delovno sposobni se povečuje. Z veseljem se ukvarjajo z vrtnarjenjem.Because in the developed world, many employees will soon be working just four days a week, they will have plenty of time for intensive sustainable gardening. The number of able-bodied retirees is increasing. They enjoy gardening.

Sistem samooskrbe s svežo, zdravo in okusno hrano vpliva ugodno na zdravstveno stanje stanovalcev. Sveža zelenjava je najboljši probiotik.The system of self-sufficiency with fresh, healthy and tasty food has a beneficial effect on the health of residents. Fresh vegetables are the best probiotic.

Štiričlanska družina porabi za industrijsko na nezdrav način pridelano hrano letno okoli 1000 evrov v Sloveniji. Stroški samooskrbe v primeru, da se uporablja zajetje deževnice in lastna elektrika za potrebe zamrzovalne skrinje pa ne znašajo več kot 150 evrov. Ta sredstva zadostujejo za nakup semen, sadik, konjskega in drugega gnoja in ekološko neoporečnih gnojil in zaščitnih sredstev. Tržna vrednost pridelane zelenjave in sadja znaša za tako ekološko neoporečne dobrine za štiričlansko družino okoli 3000 evrov na leto.A family of four spends around 1,000 euros a year in Slovenia on food produced industrially in an unhealthy way. The cost of self-sufficiency in the event that rainwater catchment and own electricity are used for the needs of the freezer does not exceed 150 euros. These funds are sufficient for the purchase of seeds, seedlings, horse and other manure and environmentally friendly fertilizers and pesticides. The market value of grown vegetables and fruits for such ecologically sound goods for a family of four is around 3,000 euros per year.

Rastlinje je namakano z avtomatskim kapljičnim sistemom tako, da se za namakanje na osebo v srednjem klimatskem pasu uporabi vsaj 5 m3 deževnice, ki je shranjena v hladnih zaprtih biološko neoporečnih podzemnih rezervoarjih. Rezervoarji so različne velikosti zato ker je treba upoštevati klimatske razmere posameznih dežel. Voda je take kakovosti, da je pitna ker je zlasti pomembno za tiste kraje kjer voda iz javnega vodovoda ni pitna ali pa je hudo klorirana.The plants are irrigated with an automatic drip system so that at least 5 m 3 of rainwater stored in cold closed biologically sound underground reservoirs is used for irrigation per person in the middle climate zone. The reservoirs are of different sizes because the climatic conditions of the individual countries have to be taken into account. The water is of such quality that it is drinkable because it is especially important for those places where the water from the public water supply is not drinkable or is severely chlorinated.

Rastlinje je zaščiteno proti toči, pozebi, orkanskim vetrom, deževju v času cvetenja, prehudi vročini, ptičem in drugim nevarnostim s pomočjo pomične mreže in platnene ali plastične ponjave, ki je razpeta na višini okoli 4 metre nad sadjem, sadnimi pergolami in 2,5 metra nad gredicami zelenjave. Muhasto in nepredvidljivo vreme, ki se je pojavilo zaradi segrevanja ozračja tako ne povzroča škode koristnemu rastlinju.The plant is protected against hail, frost, hurricane winds, rain during flowering, extreme heat, birds and other dangers by means of a movable net and a canvas or plastic tarpaulin stretched at a height of about 4 meters above the fruit, fruit pergolas and 2.5 meters above the vegetable beds. The whimsical and unpredictable weather caused by global warming thus does not cause harm to useful plants.

Pergole kivija, grozdja in drevesne krošnje so le do višine 3 metrov od tal, da se lahko neguje rastlinje in obira plodove iz tal ali pa iz zelo nizkih lestev. Manj bo padcev in poškodb.Kiwi, grape and tree canopy pergolas are only up to 3 meters above the ground so that plants can be nurtured and fruits picked from the ground or from very low ladders. There will be fewer falls and injuries.

Pozeba najbolj prizadene rastlinje, če se zgodi v mesecu marcu, aprilu in še huje v maju. Traja le nekaj ur in naredi nepopisno škodo. Rastlinje se bo prekrilo s ponjavami in ogrevalo ponoči z električnimi grelci ali svečami tako, da pozeba ne naredi škode.Frost most affects plants if it occurs in March, April and even worse in May. It only lasts a few hours and does indescribable damage. The plants will be covered with tarpaulins and heated at night with electric heaters or candles so that the frost does no damage.

Pred 24.leti sem na strehi naredil nizke gredice in pred šestimi leti visoko gredico, ki uspešno zadržuje tudi ob hudem deževju večino deževnice ali vode s katero se iz pipe zaliva rastlinje. Dokler nisem razvil sistema zadrževanja vode je ob spomladanskih, poletnih in jesenskih vročinah velika večina vode nemudoma odtekla iz gredic. Sedaj pa skoraj nikoli ne odteka. Na dnu gredice sem iz izoteka zavaril čez vse dno gredice posodo, ki zadržuje vodo tako, da je voda do višine 5 do 7 cm. Ponvica, ki zadržuje vodo je narejena tako, da pozimi ko voda zamrzne led zdrsi po dnu ponvice ob robovih tako, da jo led ne poškoduje. Ponvica je lahko narejena iz naravne gume tako, da je elastična in zato odporna na zmrzal. Če je vode več se preliva iz ponvice in odteka. Na dno ponvice je položena plast kamene volne debeline najmanj 7 cm. Ta zadržuje vodo. Osmoza deluje tako, da se voda počasi pretaka navzgor k koreninam rastlin. Na kameno volno se položi file, ki preprečuje mešanje zemlje s kameno volno.24 years ago, I made low flowerbeds on the roof and six years ago a high flowerbed, which successfully retains most of the rainwater or water with which the plants are watered from the tap, even in heavy rain. Until I developed a water retention system, in the spring, summer, and fall heat, the vast majority of the water immediately drained from the billets. Now, however, it almost never drains. At the bottom of the billet, I welded a container from the isotec over the entire bottom of the billet, which retains water so that the water is up to a height of 5 to 7 cm. The water-retaining pan is made so that in winter, when the water freezes, the ice slides along the bottom of the pan along the edges so that the ice does not damage it. The pan can be made of natural rubber so that it is elastic and therefore resistant to frost. If there is more water it overflows from the pan and drains. A layer of rock wool at least 7 cm thick is placed on the bottom of the pan. This retains water. Osmosis works by making water slowly flow upwards to the roots of the plants. A fillet is placed on the stone wool to prevent the soil from mixing with the stone wool.

Gredice se lahko po potrebi namaka skozi votlo vertikalno cev s pomočjo katere se tudi ugotavlja višina vode v spodnji ponvici. Spomladi, ko korenine še niso nerazvite se natoči več, kasneje ko korenine zrastejo v globino pa manj vode.If necessary, the billets can be irrigated through a hollow vertical pipe, which is also used to determine the height of the water in the lower pan. In the spring, when the roots are not yet undeveloped, pour more water, and later, when the roots grow to a depth, less water.

Eksperimentiral sem z debelino zemlje oziroma substrata 5 cm, 10 cm, 15 cm. Toda zemlja je bila preveč mokra tako, da so korenine gnile. Uspešno na gredah rastejo rastline z globokimi koreninskimi sistemi npr. radiči če je sloj zemlje substrata debel 30 cm.I experimented with the thickness of the soil or substrate 5 cm, 10 cm, 15 cm. But the soil was too wet so the roots rotted. Plants with deep root systems, e.g. chicory if the soil layer of the substrate is 30 cm thick.

Na sliki 4 je shematsko prikazana trajna zelenjavna visoka gredica 3 iz lesa, ki jo sestavlja posoda 11 z zemljo, pod katero je 5 cm plast 12 kamene volne. Posoda 11 je pokrita s plastično streho iz panelov 10 iz EFTE etile-tetrafluoretilen plastične ali PVC folije debeline 0,2 mm. Paneli 10 so nad posodo 11 postavljeni v obliki dvokapnice. Posoda 11 z zemljo leži na ponvici 13, ki je globoka 5 cm in je namenjena prelivu oz. lovljenju iztekajoče vode iz posode 11. Pod ponvico 13 so prostori 14 za shranjevanje panelov 10, ko le-ti niso v uporabi.Figure 4 schematically shows a permanent vegetable high wooden bed 3, consisting of a container 11 with soil, under which is a 5 cm layer 12 of rock wool. The container 11 is covered with a plastic roof made of EFTA panels 10 made of 0.2 mm thick ethyl-tetrafluoroethylene plastic or PVC foil. The panels 10 are placed above the container 11 in the form of a gable. The container 11 with soil lies on the pan 13, which is 5 cm deep and is intended for overflow or. catching the leaking water from the container 11. Under the pan 13 are spaces 14 for storing the panels 10 when they are not in use.

Visoke gredice so velikosti 170 cm X 170 cm in visoke 85 cm. Pomični paneli 10 se potem, ko ni več nevarnosti za zmrza.l odstranijo in spravijo pod gredice v prostorih 14. Sneg pozimi zdrsi iz gredic.The high billets are 170 cm X 170 cm and 85 cm high. The movable panels 10 are removed and placed under the billets in rooms 14 after the danger of frost is no longer present. Snow slides out of the billets in winter.

Gredica za paradižnike je nizka, je odprta na južni strani, sicer pa je zaprta z vseh drugih strani in na strehi. Na zadnji steni je odprtina, da zrak kroži sicer lahko pride hitreje do napada plesni.The tomato bed is low, open on the south side, otherwise closed on all other sides and on the roof. There is an opening on the back wall to allow air to circulate otherwise mold can attack faster.

Na strehi je tako vroče, da je to zelo ugodno za razvoj plesni in rastlinskih uši. Zato je potrebno na strehi pod nepremočljivo plastično streho gojiti tudi krompir, jajčevce, kumare, buče in druge na plesen zelo občutljive rastline.The roof is so hot that it is very conducive to the development of mold and plant lice. Therefore, it is necessary to grow potatoes, eggplants, cucumbers, pumpkins and other very sensitive to mold plants on the roof under a waterproof plastic roof.

Na slikah 5a in 5b je prikazana postavitev trajne visoke grede v prostoru - loži G s strani in v pogledu od zgoraj. Visoko gredico v loži G predstavlja posoda 17 napolnjena z zemljo, pod katero je 5 cm plast 18 kamene volne ki leži na ponvici 19, ki je globoka 5 cm in je namenjena prelivu oz. lovljenju iztekajoče vode iz posode 17. Posoda 17 ima horizontalno piramidalno obliko zato, ker ima veliko rastlin korenine v gredici, rastejo pa navzdol do tal. Tako dobro uspeva paradižnik, kumare, fižol, grah itd.. Piramidalna oblika omogoča boljše sončno obsevanje visečega rastlinja. Zelo se v loži G poveča rastna površina rastlinja.Figures 5a and 5b show the arrangement of a permanent high beam in the space - box G from the side and in the view from above. The high bed in the lodge G is a container 17 filled with earth, under which is a 5 cm layer 18 of rock wool lying on a pan 19, which is 5 cm deep and is intended for overflow or. catching water leaking from container 17. Container 17 has a horizontal pyramidal shape because many plants have roots in the flowerbed and grow down to the ground. Tomatoes, cucumbers, beans, peas, etc. grow so well. The pyramidal shape allows for better solar irradiation of the hanging vegetation. The growing area of vegetation is greatly increased in box G.

V loži G, ki je pred notranjimi poslovnimi prostori se vse leto vzgaja zelenjavo, jagodičje in mala drevesa tako, da si zaposleni lahko postrežejo s sadno malico ali zelenjavnim obrokom.In the G lodge, which is in front of the indoor business premises, vegetables, berries and small trees are grown all year round so that employees can serve themselves a fruit snack or a vegetable meal.

Claims (7)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Sovplivanje tehnoloških sistemov, ki omogočajo samooskrbo zgradb s sončno energijo v soskladju z javnim elektroenergetskim sistemom in biotehnološkimi sistemi samooskrbe stanovalcev urbanih in ruralnih naselij s sonaravno pridelano hrano, označeno s tem, da povezava, izvedba in medsebojno delovanje tehnoloških rešitev omogoča energetsko tako električno kot ogrevalno/hladilno samooskrbo zgradb in samooskrbo stanovalcev s sonaravno pridelano hrano.1. Interplay of technological systems that enable self-sufficiency of buildings with solar energy in accordance with the public electricity system and biotechnological systems of self-sufficiency of residents of urban and rural settlements with sustainably produced food, characterized by the connection, implementation and interaction of technological solutions as heating / cooling self-sufficiency of buildings and self-sufficiency of residents with sustainably produced food. 2. Sovplivanje tehnoloških sistemov, po zahtevku 1, označeno s tem, da je samooskrba zgradbe s sončno energijo v soskladju z javnim elektroenergetskim sistemom zagotovljena s tehnološko rešitvijo, ki temelji na izvedbi pri kateri so na strehi zgradbe oz. zgradb na severni strani montirani fotovoltaični hibridni toplotni paneli (1) pod kotom, ki je optimalen za geografsko širino.Interaction of technological systems, according to claim 1, characterized in that the self-sufficiency of the building with solar energy in accordance with the public electricity system is provided by a technological solution based on the design in which the roof of the building or. buildings on the north side mounted photovoltaic hybrid thermal panels (1) at an angle optimal for latitude. 3. Sovplivanje tehnoloških sistemov, po zahtevku 2, označeno s tem, da fotovoltaični hibridni toplotni paneli (1) poleti spravljajo toploto v zemljino 5 do 7 metrov globoko tako, da se zemlja segreje na več kot 45°C in se toplota uporablja za ogrevanje vode namenjeno umivanju, kuhanju, pranju, pomivanju posode, za ogrevanje rastlinjakov in bazenov za aquaponsko vzgojo sladkovodnih rib in še za druge potrebe.Technology systems according to claim 2, characterized in that the photovoltaic hybrid thermal panels (1) store heat in the ground 5 to 7 meters deep in the summer by heating the ground to more than 45 ° C and using the heat for heating. water intended for washing, cooking, washing, washing dishes, for heating greenhouses and pools for aquaponic breeding of freshwater fish and for other needs. 4. Sovplivanje tehnoloških sistemov, po zahtevku 2 in 3, označeno s tem, da je za samooskrbo zgradbe s sončno energijo primerna razmestitev prostorov v trisobni hiši, pri kateri trisobna hiša obsega spalnico (A), dnevno sobo (B) s kuhinjo, delavnico (C), garažo (D), prostorom (E) za akvaplaniko z rezervoarji (E1) za vodo in ribnikom (E2), otroško spalnico (F), teraso (H) z rastlinjakom (I), rezervoarjem (J) za deževnico, kletjo (K), kopalnico (L) in WC (M), kjer je tlorisi trisobne hiše tak, da omogoča na južni strani zgraditev lože (G) po vsej širini stanovanja, globine 2,5 m.Interaction of technological systems according to claims 2 and 3, characterized in that for the self-sufficiency of the building with solar energy, the arrangement of rooms in a three-room house is suitable, where the three-room house comprises a bedroom (A), a living room (B) with a kitchen, a workshop (C), garage (D), aquaplanics area (E1) with water tanks and pond (E2), children's bedroom (F), terrace (H) with greenhouse (I), rainwater tank (J) , basement (K), bathroom (L) and toilet (M), where the floor plan of the three-room house is such that it allows the construction of a loggia (G) on the south side along the entire width of the apartment, 2.5 m deep. 5. Sovplivanje tehnoloških sistemov, po zahtevku 2 in 3, označeno s tem, da je umestitev trisobne hiše v okolje z izvedenimi fotovoltaičnimi hibridnimi toplotnimi paneli (1) takšna, da omogoča postavitev nizkih pokritih gredic (2) in visokih pokritih gredic (3).Interplay of technological systems according to claims 2 and 3, characterized in that the placement of the three-room house in the environment with implemented photovoltaic hybrid thermal panels (1) is such that it allows the installation of low covered beds (2) and high covered beds (3) . 6. Sovplivanje tehnoloških sistemov, po zahtevku 5, označeno s tem, da je visoka gredica (3) iz lesa, ki jo sestavlja posoda (11) z zemljo, pod katero je 5 cm plast (12) kamene volne in je posoda (11) je pokrita s plastično streho iz panelov (10) iz EFTE etile-tetrafluoretilen plastične ali PVC folije debeline 0,2 mm, pri čemer so paneli (10) nad posodo (11) postavljeni v obliki dvokapnice in leži posoda (11) z zemljo na ponvici (13), ki je globoka 5 cm in je namenjena prelivu oz. lovljenju iztekajoče vode iz posode (11), pod ponvico (13) pa so prostori (14) za shranjevanje panelov (10), ko le-ti niso v uporabi.Technological systems according to claim 5, characterized in that the high billet (3) is made of wood, consisting of a container (11) with soil, under which there is a 5 cm layer (12) of rock wool and the container is (11). ) is covered with a plastic roof made of EFTA panels (10) made of 0.2 mm thick ethyl tetrafluoroethylene plastic or PVC foil, the panels (10) being placed above the container (11) in the form of a gable and the container (11) lying on the ground. on a pan (13), which is 5 cm deep and is intended for topping or. catching the leaking water from the container (11), and under the pan (13) there are spaces (14) for storing the panels (10) when they are not in use. 7. Sovplivanje tehnoloških sistemov, po zahtevku 5, označeno s tem, visoko gredico v loži (G) predstavlja posoda (17) napolnjena z zemljo, pod katero je 5 cm plast (18) kamene volne ki leži na ponvici (19), ki je globoka 5 cm in je namenjena prelivu oz. lovljenju iztekajoče vode iz posode (17) in ima posoda (17) horizontalno piramidalno obliko, ker ima veliko rastlin korenine v gredici, rastejo pa navzdol do tal.The interaction of technological systems according to claim 5, characterized in that the high bed in the lodge (G) is a container (17) filled with earth, under which is a 5 cm layer (18) of rock wool lying on a pan (19) which is 5 cm deep and is intended for topping or. catching the leaking water from the container (17) and the container (17) has a horizontal pyramidal shape because many plants have roots in the flowerbed and grow down to the ground.
SI201900039A 2019-02-22 2019-02-22 Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food SI25778A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201900039A SI25778A (en) 2019-02-22 2019-02-22 Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food
PCT/SI2020/050007 WO2020171781A1 (en) 2019-02-22 2020-02-13 System for self-supply of buildings and residents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201900039A SI25778A (en) 2019-02-22 2019-02-22 Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food

Publications (1)

Publication Number Publication Date
SI25778A true SI25778A (en) 2020-08-31

Family

ID=70228776

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201900039A SI25778A (en) 2019-02-22 2019-02-22 Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food

Country Status (2)

Country Link
SI (1) SI25778A (en)
WO (1) WO2020171781A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI26392A (en) * 2022-08-03 2024-02-29 Suligreen, Zadruga Za Trajnostno Prebivanje, Z.O.O. Optimal architectural, energetic and horticultural arrangement of residences that enable a sustainable way of living

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894369A (en) * 1974-02-08 1975-07-15 Robert F Schmitt Building structures
IL96989A0 (en) * 1991-01-21 1992-03-29 Amitec Information Industry Lt Multi-purpose solar energy conversion system
DE20312602U1 (en) * 2003-08-14 2003-11-06 Sandmeir Exclusiv Stahlbau Gmb Kit for a low energy house
ITMI20071335A1 (en) * 2007-07-05 2009-01-06 Federico Pirovano PHOTOVOLTAIC SYSTEM WITH IMPROVED EFFICIENCY AND METHOD OF INCREASING THE PRODUCTION OF ELECTRIC ENERGY OF AT LEAST ONE THERMO-PHOTOVOLTAIC SOLAR MODULE.
CN201141215Y (en) * 2007-08-07 2008-10-29 王宗年 Dwelling type energy-saving environment-protection sightseeing green house
CN201141209Y (en) * 2007-12-26 2008-10-29 北京京鹏环球科技股份有限公司 Ecological folk house
US20110252702A1 (en) * 2010-04-15 2011-10-20 Gazjuk Albert S Raised garden system
FR2996576B1 (en) * 2012-10-05 2015-04-10 Gilles Bousquet INDUSTRIAL CONSTRUCTION OF AN INDEPENDENT ECOLOGICAL UNIT AT THE ENERGY LEVEL
DE202013010457U1 (en) * 2013-06-06 2014-01-28 Ulrich Schlösser System and kit for the tool-less construction of a raised bed with the possibility to maintain the working height, although the filling quantity of the plant substrate is reduced
DE102013111469A1 (en) * 2013-10-17 2015-04-23 Windhager Handelsgesmbh Kit for a raised bed and raised bed
US9585315B2 (en) * 2014-02-28 2017-03-07 Carlos R. Villamar System and method for solar greenhouse aquaponics and black soldier fly composter and auto fish feeder
SE539765C2 (en) * 2015-02-05 2017-11-21 Skanska Sverige Ab Green indoor cultivation structure and method for operating such structure

Also Published As

Publication number Publication date
WO2020171781A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US4077158A (en) Agricultural greenhousing reconciling intensified urban methods
US20140137468A1 (en) Portable Solar Modular Greenhouse
Pattillo An overview of aquaponic systems: hydroponic components
KR20110067684A (en) Green-house system
CN104429694A (en) Household fruit and vegetable production system
CN110178600A (en) Utilize the intelligent greenhouse and ring prosecutor method of greenhouse effects thermal-arrest and fan coil heat exchange
Sabeh Rooftop plant production systems in urban areas
CN207201753U (en) Can free assembled fish and vegetable symbiotic implant system
SI25778A (en) Interaction of technological systems to enable energy self-supply of buildings and self-supply of residents with sustainable produced food
CN102140861B (en) Ecological garden intelligent residence
RU2580583C1 (en) Agro-biocomplex
CN202890079U (en) Greenhouse heating water supply device
CN213881087U (en) House for intercropping
CN211020163U (en) Organic field-imitating cultivation equipment on roof of balcony
CN105052596B (en) A kind of balcony modularization multi-layer stereo plantation system
CN104855176B (en) It is a kind of to plant the primary stance multilayer optical canopy building structure of organic vegetable the four seasons
CN207284724U (en) A kind of knob free-ranging ecology hen coop of wind resistance snow and heat-insulation and heat-preservation
CN204335428U (en) A kind of family fruits and vegetables production system
Strawbridge et al. Practical Self Sufficiency: The Complete Guide to Sustainable Living
WO2021261600A2 (en) Device for promoting environmental beautification
US20230345890A1 (en) N-way redundant air-powered aquaponics system
CN113585815A (en) Sustainable three-dimensional city building system that lives
Marshall The Greenhouse Gardener's Manual
CN111837743A (en) House for intercropping and method for intercropping
Leahy et al. Vignette F: A permaculture design for a Ugandan household

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20200914