SI21092A - Plunger buffer - Google Patents

Plunger buffer Download PDF

Info

Publication number
SI21092A
SI21092A SI200120040A SI200120040A SI21092A SI 21092 A SI21092 A SI 21092A SI 200120040 A SI200120040 A SI 200120040A SI 200120040 A SI200120040 A SI 200120040A SI 21092 A SI21092 A SI 21092A
Authority
SI
Slovenia
Prior art keywords
moving part
guide sleeve
telescopic
deformation
plunger
Prior art date
Application number
SI200120040A
Other languages
Slovenian (sl)
Other versions
SI21092B (en
Inventor
Sieghard Schneider
Original Assignee
Sieghard Schneider
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sieghard Schneider filed Critical Sieghard Schneider
Publication of SI21092A publication Critical patent/SI21092A/en
Publication of SI21092B publication Critical patent/SI21092B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G11/00Buffers
    • B61G11/16Buffers absorbing shocks by permanent deformation of buffer element

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Valve Device For Special Equipments (AREA)
  • Lubricants (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The invention relates to a plunger buffer for mobile support structures (2), in particular for rail vehicles, comprising a buffer housing (10), a baseplate (11) that is fastened to the support structure (2) in a fixed manner, a guide plunger (12) attached to the baseplate (11) and a displacement member (13) that can be displaced in relation to said guide plunger (12). The displacement member (13) is directed in its displacement by the guide plunger (12). The plunger buffer also comprises a force transmission member (20) for flexibly coupling the displacement member (13) to the support structure (2). The buffer housing (10) is configured in such a way that the guide plunger (12) or the displacement member (13) is deformed in a controlled manner above a threshold value for the displacement of said displacement member (13) or for the forces to be transmitted, without deforming or altering the bedding of the baseplate (11). The aim of the invention is to ensure that the plunger buffer (1) can absorb energy by deformation and nevertheless be configured with the same dimensions and fittings as known plunger buffers, thus enabling plunger buffers to be interchangeable in existing rail vehicles. To achieve this, the force transmission member (20) is configured in such a way that in addition to the controlled deformation of the guide plunger (12) or the displacement member (13), the function of the force transmission member (20) is overridden above the threshold value for the displacement of the displacement member (13) or for the forces to be transmitted.

Description

Teleskopski odbijačTelescopic bumper

Izum se nanaša na teleskopski odbijač po uvodnem delu patentnega zahtevka 1.The invention relates to a telescopic bumper according to the introductory part of claim 1.

Teleskopski odbijač te vrste je znan iz patentnega spisa DE 462 539.This type of telescopic bumper is known from DE 462 539.

Pri teleskopskih odbijačih za tovorne vagone ali lokomotive, kakršni so znani denimo iz knjige Elektrische Triebfahrzeuge avtorja K. Sachsa., zvezek 1 - Allgemeine Grundlagen und mechanischer Teil - zal. Springer-Verlag Wien, New York, 1973, str. 656 in sledeče, gre za prevzemanje ne le sunkov v vzdolžni smeri vozila, ampak tudi prečnih sil v prečni smeri vozila. Znani teleskopski odbijači imajo ohišje, ki ima na okvir vozila pritrdljivo podno ploščo (dno odbijača) in v enem kosu z njo na njej nahajajoč se vodilni tulec kot negibljiv sestavni del ter glede na vodilni tulec premakljiv dročnik z na čelni strani odbijača nahajajočim se krožnikom odbijača kot gibljivim sestavnim delom. Dročnik drsi po zunanji ali notranji ploskvi vodilnega tulca, ki ga vodi. Med krožnikom odbijača in dnom odbijača je v notranjosti ohišja odbijača razporejen bodisi vzmetni element ali element kot vzmetni blažilnik. Vzmetna pot tipičnih teleskopskih odbijačev znaša 100 do 105 mm, izjemoma 150 mm. Dolžina ohišja znaša običajno od 620 do 650 mm. Tako se torej samo majhen del skupne konstrukcijske dolžine izkoristi za vzmetno pot za skrajšanje odbijača. Pri obremenitvi odbijača z močnim sunkom, ko gre za preseženje njegove zmogljivosti sprejetja energije, lahko pride do preboja odbijača s temu sledečo preobremenitvijo in deformacijo nosilne zgradbe timičnega vozila.For telescopic bumpers for freight wagons or locomotives, such as those known from, for example, the book Elektrische Triebfahrzeuge by K. Sachs., Volume 1 - Allgemeine Grundlagen und mechanischer Teil - Zal. Springer-Verlag Wien, New York, 1973, p. 656 et seq., It is a matter of taking over not only gusts in the longitudinal direction of the vehicle but also transverse forces in the transverse direction of the vehicle. Known telescopic bumpers have a housing that has a base plate (bottom of the bumper) attached to the vehicle frame and a guide sleeve in one piece with it, which is a fixed component and a movable bar with a bumper plate on the front of the bumper. as a moving component. The handpiece slides along the outer or inner surface of the guide sleeve that guides it. Between the bumper plate and the bottom of the bumper, either a spring element or a spring damper element is arranged inside the bumper housing. The spring path of typical telescopic bumpers is 100 to 105 mm, exceptionally 150 mm. The length of the housing is typically 620 to 650 mm. Thus, only a small fraction of the total construction length is used for the spring path to shorten the bumper. When the bumper is loaded with a high impact, when it comes to exceeding its energy absorption capacity, the bumper may break with the subsequent overload and deformation of the thymic vehicle's load-bearing structure.

Da se tudi pri obremenitvah teleskopskih odbijačev, ko gre za močne sunke, v kar največji meri izognejo deformacijam nosilne zgradbe, je iz objavljene patentne prijave EP 0 826 569 A2 znano, da se med okvirom vozila in slehernim teleskopskim odbijačem predvidi udarno škatlo za sipanje energije, ki se pri prekoračitvi dopustne mejne vrednosti obremenjevanja s sunki deformira. Pomanjkljivost te znane udamozaščitne priprave je ta, da le-ta za naknadno opremljanje razpoložljivih tovornih vagonov in lokomotiv ni primerna, saj skupna dolžina udarne škatle in odbijača presega vgraditveno dolžino in velikost pritrdilne plošče pri razpoložljivih teleskopskih odbijačih.In order to avoid deformation of the load-bearing structure as much as possible in the case of heavy-duty bumper loads, it is known from published patent application EP 0 826 569 A2 that a power box is provided between the frame of the vehicle and each telescopic bumper. , which deforms when exceeding the permissible limit for shock loads. The disadvantage of this known damper device is that it is not suitable for retrofitting available freight wagons and locomotives, since the total length of the impact box and bumper exceeds the mounting length and size of the mounting plate of the available telescopic bumpers.

Iz patenta DE 462 539 je že znan teleskopski odbijač za timična vozila z ohišjem odbijača, ki sestoji iz na nosilni zgradbi krajevnofiksno pritrjene podne plošče, na podni plošči nahajajočega se vodilnega tulca in glede na vodilni tulec premakljivega gibalnega dela. Gibalni del pri premikalnem gibanju vodi vodilni tulec. Znani teleskopski odbijač ima nadalje siloprenašajoč del v obliki vzmeti za podajno spojitev gibalnega dela z nosilno zgradbo. Stena gibalnega dela je na enem mestu oslabljena, tako da pri naslonitvi gibalnega dela na podno ploščo pride do kontrolirane deformacije gibalnega dela brez deformiranja ali spremembe položaja podne plošče. Siloprenašajoči del pa se pri deformaciji gibalnega dela nadalje stiska, posledica česar je to, da vzmetna sila še naprej raste in se prišteva k porastu sile, ki povzroča deformacijo gibalnega dela. V seštevku pa slejkoprej pride do sunkovito naraščajočega poteka sile, katerega vrh sile se edinole zmanjša. Nadalje je deformacijska pot v primerjavi z vzmetno potjo zelo majhna, tako daje pri deformaciji razsipana energija sorazmerno majhna. Slednjič se mora pri znani konstrukciji dodatno k normalni poti premika gibalnega dela vodilni tulec skrajšati za deformacijsko pot, kar ima nadalje za posledico, daje dolžina prekritja med gibalnim delom in vodilnim delom zmanjšana.DE 462 539 already discloses a telescopic bumper for thymic vehicles with a bumper housing, consisting of a fixedly fixed floor panel on the load-bearing structure, on the base plate of the guiding sleeve and with respect to the guide sleeve of the movable moving part. The moving part is guided by the guide sleeve in the moving motion. The well-known telescopic bumper further comprises a spring-loaded spring-shaped part for the feed connection of the moving part with the supporting structure. The wall of the moving part is weakened in one place, so that the leaning of the moving part on the base plate results in a controlled deformation of the movement part without deforming or changing the position of the floor panel. In the deformation of the moving part, the load-bearing part is further compressed, which results in the fact that the spring force continues to grow and is added to the increase in the force causing the deformation of the moving part. In the aggregate, however, there is a sudden increase in force, whose peak force only decreases. Furthermore, the deformation path is very small compared to the spring path, so that the energy dissipated during deformation is relatively small. Lastly, in the known construction, in addition to the normal movement path of the moving part, the guide sleeve must be shortened by the deformation path, which further results in the reduction of the length of the overlap between the moving part and the guiding part.

Naloga izuma je, teleskopski odbijač uvodoma omenjene vrste tako zgraditi, da pri opazno razsežnejšem prevzemu energije dodatno skrajšanje odbijača leži v velikostnem redu vzmetne poti in do premika gibalnega dela pride na v bistvu nespremenljivi ravni sile.It is an object of the invention to construct a telescopic bumper of the aforementioned type in such a way that, with a significantly larger energy uptake, the additional shortening of the bumper lies in the size of the spring path and the movement of the moving part occurs at a substantially constant level of force.

Ta naloga je po izumu rešena z značilnostmi značilnostnega dela patentnega zahtevka 1.The present invention is solved by the features of the characteristic part of claim 1.

Prednostne podrobnosti in nadaljnje izvedbene značilnosti izumskega teleskopskega odbijača so razvidne iz podzahtevkov.The preferred details and further performance features of the inventive telescopic bumper can be seen in the sub-claims.

Izum je v nadaljnjem pobliže obrazložen na osnovi v priloženih skicah predstavljenih izvedbenih primerov. Pri tem kažejo:The invention will now be further explained on the basis of the accompanying drawings of the embodiments presented. In doing so, they show:

SL. 1 prvi primer izvedbe izumskega teleskopskega odbijača v raztegnjenem osnovnem stanju, shematično v vzdolžnem prerezu,FIG. 1 is a first exemplary embodiment of an inventive telescopic bumper in extended ground state, schematically in longitudinal section,

SL. 2 teleskopski odbijač s SL. 1 v stanju največjega premika brez deformacije,FIG. 2 is a telescopic bumper of FIG. 1 in the state of maximum displacement without deformation,

SL. 3 teleskopski odbijač s SL. 1-2 v stanju največjega premika pri deformaciji,FIG. 3 is a telescopic bumper of FIG. 1-2 in the state of maximum displacement at deformation,

SL. 4 diagram sila/pot za v skicah SL. 1-3 predstavljena stanja izumskega teleskopskega odbijača, inFIG. 4 is a force / path diagram for FIGS. 1-3 presents states of an inventive telescopic bumper, and

SL. 5 do 7 tri različice izumskega teleskopskega odbijača vsakokrat shematično v vzdolžnem prerezu.FIG. 5 to 7 three variants of the inventive telescopic bumper are schematically in longitudinal section each.

Prvi primer izvedbe teleskopskega odbijača 1 po izumu, ki ga kažejo skice SL. 1 do 3, sestoji iz ohišja 10 odbijača, ki ima fiksen del in gibljiv del. Skica SL. 1 pri tem kaže teleskopski odbijač 1 v raztegnjenem osnovnem položaju, ki na SL. 4 ustreza položaju A.A first embodiment of the telescopic bumper 1 of the invention shown in FIGS. 1 to 3, consists of a housing 10 of the bumper having a fixed part and a movable part. Sketch of FIG. 1 shows a telescopic bumper 1 in the extended basic position, which in FIG. 4 corresponds to position A.

Negibljivi del ohišja 10 odbijača obsega podno ploščo 11 (dno odbijača), ki je pritrjena, denimo privijačena, na nosilno zgradbo 2, predvsem na okvir tu neprikazanega timičnega vozila. Podna plošča 11 nosi cevast vodilni tulec 12 in je prednostno z eno od čelnih stranic vodilnega tulca 12 povezana, na primer zvarjena, v en kos. Gibljivi del ohišja 10 odbijača sestoji iz gibalnega dela 13 v obliki dročnika, ki je v notranjosti vodilnega tulca 12 premakljiv z drsenjem po notranji steni le-tega. Notranja stena vodilnega tulca 12 pri tem sprejme vodilne sile za drsno vodenje gibalnega dela 13 v radialni smeri. Čelno stranico gibalnega dela 13, ki štrli ven iz vodilnega tulca 12, zapira krožnik 14 odbijača, ki zlasti pri ranžiranju timičnega vozila sprejema sile sunkov.The non-moving part of the bumper housing 10 comprises a base plate 11 (the bottom of the bumper) which is attached, for example, screwed, to the load-bearing structure 2, in particular to the frame of the non-shown thymic vehicle. The base plate 11 carries a tubular guide sleeve 12 and is preferably connected in one piece to one of the front faces of the guide sleeve 12, for example. The movable part of the housing 10 of the bumper consists of a movable part 13 in the form of a rod, which is movable inside the guide sleeve 12 by sliding along the inner wall thereof. The inner wall of the guide sleeve 12 in this case receives the guiding forces for sliding movement of the moving part 13 in the radial direction. The front side of the moving part 13 projecting out of the guide sleeve 12 is closed by the bumper plate 14, which, in the shunting of the thymic vehicle, receives shock forces.

Gibalni del 13 in vodilni tulec 12 potrebujeta za potrebe omejitve trenja in zaščite pred samozapomostjo zaradi zatikanja določeno minimalno dolžino prekritja, da se vodenje zagotovi tudi pri stranskih obratovalnih bremenih, do katerih pride zaradi trenja na krožniku 14 odbijača, ali pri izsrednih ali poševnih obratovalnih bremenih (npr. pri vožnji timičnih vozil v ovinek/S-ovinek). Obenem pa oba dela 12, 13 pri medsebojnem premiku potrebujeta potrebno zračnost kot predpogoj za prostost gibanja. Zahteva po kar se da veliki dolžini prekritja vodilnega tulca 12 in gibalnega dela 13 pa nasprotuje zahtevi, da se dela 12, 13 pri določeni deformaciji lahko premakneta jasno onstran normalne vzmetne poti (hoda), ne da se s tem skupna konstrukcijska dolžina odbijača poveča. To pomeni, da izumski teleskopski odbijač 1 gledano od zunaj zgleda in ima dimenzije kot znani teleskopski odbijač.The movable part 13 and the guide sleeve 12 require a certain minimum length of cover for the purpose of limiting friction and self-restraint protection due to pinching, to provide guidance also for lateral operating loads caused by friction on the bumper plate 14, or for exceptional or oblique operating loads. (e.g., when driving team vehicles in a corner / S-turn). At the same time, both parts 12, 13 need to be provided with the necessary clearance as a prerequisite for freedom of movement. The requirement for as long as possible the overlap of the guide sleeve 12 and the moving part 13 contradicts the requirement that the parts 12, 13 be able to move clearly beyond the normal spring path (stroke) in a given deformation without increasing the overall structural length of the bumper. This means that the inventive telescopic bumper 1 looks from the outside and has dimensions like a known telescopic bumper.

Da sta nasprotujoči si zahtevi obe izpolnjeni, sta dela ohišja odbijača, ko je prekoračena normalna vzmetna pot, prek deformacije uporabljena - izven njune normalne vodilne funkcije - za sprejem energije. V poštev pride bodisi vodilni tulec 12 ali gibalni del 13 ali oba sestavna dela 12, 13 in sicer oba obenem ali časovno zamaknjeno. Deformacija je pri tem take vrste, da se dolžinska dela teh sestavnih delov 12, 13, ki v normalnem obratovanju prispevata k prekritju in s tem k vodenju, skrajšata.In order for the opposing requirements to be fulfilled, both parts of the bumper housing, when the normal spring path is exceeded, are used to deform energy beyond its normal guiding function through deformation. Suitably, either the guide sleeve 12 or the moving part 13 or both components 12, 13 are both simultaneously or temporally offset. The deformation is of such a nature that the lengths of these components 12, 13, which in normal operation contribute to the overlay and thus to the control, are shortened.

Nadaljnji pogoj za razširjeno premakljivost pri omejeni ravni sil je ta, da siloprenašajoči člen 20, kije razporejen med gibalnim delom 13 in vodilnim tulcem 12 in v normalnem obratovanju služi za prenašanje vzdolžne sile, dopušča dodatno skrajšanje in pri tem ne vzpostavlja nikakršne nedopustno visoke ravni sil.A further condition for widespread displacement at a limited force level is that the load-bearing member 20, which is disposed between the movement member 13 and the guide sleeve 12 and which in normal operation serves to transmit longitudinal force, permits additional shortening without establishing any unacceptably high force level. .

Pri znanih odbijačih za timična vozila pa navadno uporabljani deli za prenašanje sil, na primer obročaste vzmeti, elastomeme vzmeti, gumijaste vzmeti z vzporedno razporejenimi hidravličnimi blažilnimi elementi ali brez njih, v velikostnem razredu, za kakršnim se stremi, vsled blokovne gradnje ne dopuščajo nikakršnega skrajšanja.In the case of known bumpers for thymic vehicles, commonly used force transfer components, such as ring springs, elastomy springs, rubber springs with or without parallel hydraulic damping elements, in the aspirated size class, do not allow any shortening due to block construction. .

Pri izumskem odbijaču 1 sta v nasprotju s tem v notranjosti ohišja 10 kot siloprenašajoči del 20 med deloma 12, 13 drug za drugim razporejena in prek premostitvenega dela 23 medsebojno vezana dva vzmetna elementa 21, 22 različnih premerov. Premostitveni del 23 je tako zgrajen, da se pri prekoračitvi mejne obremenitve na primer na mestu, predvidenem za hoteno prelomitev, strižno zlomi in tako dopusti, da vzmetna elementa 21, 22 teleskopsko zdrsneta drug v drugega, ne da bi prenašala vzdolžne sile.In the invention bumper 1, in contrast, inside the housing 10, as a silo-bearing part 20, two suspension elements 21, 22 of different diameters are arranged one by one and connected to each other by bridging part 23. The bridging portion 23 is so constructed that, when the limit load is exceeded, for example, at the site intended for the intended fracture, the shear breaks, allowing the suspension elements 21, 22 to slide telescopically into each other without transmitting longitudinal forces.

Premostitveni del 23 ima v predstavljenem primeru izvedbe (SL. 1 do 3) obliko koluta z ravnim profilom. Namesto ravnega profila se da za kolut premostitvenega dela 23 na neprikazan način uporabiti tudi profil, podoben loncu ali klobuku. Levi konec prvega vzmetnega elementa 21 se opira na notranjo ploskev krožnika 14 odbijača, medtem ko se desni konec drugega vzmetnega elementa 22 opira na notranjo ploskev podne plošče 11. Premostitveni del 23 ima v bližini svojega zunanjega roba mesto 24 hotenega loma v obliki drug nasproti drugemu ležečih obročastih utorov. Položaj teh obročastih utorov je tako izbran, da se na premostitveni del 23 prvi vzmetni element 21 radialno gledano opira onstran obročastih utorov in drugi vzmetni element 22 tostran obročastih utorov. Premostitveni del 23 se, kot se vidi s skice SL. 3, ko je prekoračena maksimalna obremenitev ali ko je dosežena maksimalna pot premika, znotraj ohišja 10 odbijača prelomi na mestu 24 hotenega loma. Zlom premostitvenega dela 23 pomeni, da med vzmetnima elementoma 21, 22 ni več premostitve in s tem skupnega učinka. Vzmetni element 22 manjšega premera se tedaj pomakne v vzmetni element 21 večjega premera.In the embodiment shown (FIGS. 1 to 3), the bridging portion 23 has the shape of a flat profile disc. Instead of a straight profile, a profile similar to a pot or hat may also be used for the disc of bridging part 23 in a non-shown manner. The left end of the first spring element 21 rests on the inner surface of the bumper plate 14, while the right end of the second spring element 22 rests on the inner surface of the floor plate 11. The bridging portion 23 has a point 24 of the desired fracture in the shape of one another near its outer edge. recessed annular grooves. The position of these annular grooves is so selected that the first spring element 21 is radially supported beyond the annular grooves and the second spring element 22 by the lateral annular grooves on the bridging portion 23. Bridging section 23 is, as shown in FIG. 3, when the maximum load is exceeded or when the maximum travel path is reached, it breaks inside the housing 10 of the bumper at the point 24 of the desired fracture. The fracture of the bridging portion 23 means that there is no more bridging between the suspension elements 21, 22 and thus the joint effect. The smaller diameter spring element 22 then moves to the larger diameter spring element 21.

Skica SL. 2 kaže teleskopski odbijač 1 v njegovem skrajno stisnjenem stanju (v skici SL. 4 položaj B). Od tega položaja gibljivega dela 13 dalje lahko do nadaljnjega premika pride edinole ob deformaciji vodilnega tulca 12, kot je ponazorjeno na SL. 3. Ožlebljenost 14a, ki je pri krožniku 14 odbijača predvidena na prehodu k vodilnemu tulcu, olajšuje vstop vodilnega tulca 12 v stanje, ko odbijač odpove, tj. ko se tulec najprej razširi do meje porušenja, nakar se v vzdolžni smeri pojavijo zvezne razpoke in se pri tem nastali posamezni segmenti 12a tulca 12 zavihajo ven. Tako uničenje odbijača ima več prednosti. Na eni strani se deformiranje začne progresivno in brez konice sile. Vodilni tulec 12, ki ima zaradi svojega dimenzioniranja na obratovalna bremena sorazmerno veliko debelino stene, se lahko nato deformira pod ne preveliko, enakomerno ravnijo sil (izvlečena črta med položajema B in C v skici SL. 4). Razen tega se vodilni tulec 12 lahko uniči praktično povsem brez ostanka dolžine. Za ostale ven štrleče segmente 12a ni potrebna nikakršna konstrukcijska dolžina in ti segmenti tudi niso ovira napredujoči deformacijski operaciji. Nadaljnja prednost je ta, da se bočno vodenje proti poševnim ali izsrednim silam ohrani na vsej deformacijski poti nezmanjšano ali se celo povečuje.Sketch of FIG. 2 shows the telescopic bumper 1 in its most compressed state (in FIG. 4, position B). From this position of the movable part 13 further, only the deformation of the guide sleeve 12 can occur, as illustrated in FIG. 3. The groove 14a provided at the passage 14 of the bumper at the passage to the guide sleeve facilitates the entry of the guide sleeve 12 into the condition when the bumper fails, ie. when the sleeve is first extended to the breaking point, then continuous cracks appear in the longitudinal direction and the resulting individual segments 12a of the sleeve 12 swing out. Such destruction of the bumper has several advantages. On the one hand, deformation begins progressively and without a peak of force. The guide sleeve 12, which has a relatively large wall thickness due to its dimensioning to the operating loads, can then deform below a not too large, uniform force level (the drawn line between positions B and C in FIG. 4). In addition, the guide sleeve 12 can be destroyed practically completely without any length remaining. Other outward protruding segments 12a do not require any structural length and these segments also do not impede progressive deformation surgery. A further advantage is that the lateral guidance against oblique or extraordinary forces is maintained throughout the deformation path unchanged or even increased.

Razna stanja izumskega teleskopskega odbijača 1 po skicah SL. 1 do 3 so obrazložena ob pomoči na skici SL. 4 prikazane karakteristike sila/pot. Nadalje k območju normalnega obratovanja med položajema A in B (vzmetna pot 100 do 105 mm) pride v deformacijskem območju (med položajema B in C) do nadaljnjega skrajšanja gibalnega dela 13 za okoli 200 mm pri enakomerno visoki ravni sile. Pri tem se ohrani polna, s standardi predpisana funkcionalnost teleskopskega odbijača. Kot v podrobnostih kaže diagram SL. 4, sledi v območju normalnega obratovanja premik gibalnega dela 13 v skladu s karakteristiko serijsko vezanih vzmetnih elementov 21, 22 vzdolž izvlečene, lomljene krivulje. Do kolena v krivulji pride s tem, ko bolj položna veja krivulje sledi mehkejši vzmetni karakteristiki serijske vezave obeh vzmetnih elementov 21, 22 in ko pri nadaljnjem premiku gibalnega dela 13 mehkejši od obeh vzmetnih elementov 21, 22 pride do naslona, nakar začne delovati trši od obeh vzmetnih elementov s svojo bolj strmo karakteristiko v diagramu sila/pot. S črtkano krivuljo v območju normalnega obratovanja je nakazan dodatni blažilni učinek po potrebi predvidenega hidravličnega dušilca 30. Pri koncu 100-milimetrskega premika (položaj B) premostitveni del 23 med vzmetnima elementoma 21, 22 poči, ko se vzmetni učinek vzmetnih elementov 21, 22 sunkoma konča, kar vidimo pri malem strmem spustu krivulje pri 100 mm premikalne poti. Ker se z lomom premostitvenega dela 23 začne deformacija vodilnega tulca 12 s cepitvijo na segmente 12a, se strmi padec krivulje pri 100 mm takoj spet zaustavi in začne se vzpon krivulje sila/pot na poti premika 200 mm (položaj C), ko je raven sile praktično nespremenjena. Ta nespremenjena raven sile ustreza stanju kontrolirane deformacije s cepljenjem vodilnega tulca 12. Konec premikalne poti pri 200 mm ustreza na skici SL. 3 predstavljenemu stanju, ko gibalni del 13 zadene na podno ploščo 11. Krivulja diagrama SL. 4 gre nato v smeri položaja D strmo gor.Different states of the inventive telescopic bumper 1 according to FIGS. 1 to 3 are explained with the help of FIG. 4 Force / pot characteristics shown. Further to the normal operating range between positions A and B (spring path 100 to 105 mm) in the deformation zone (between positions B and C) there is a further shortening of the moving part 13 by about 200 mm at a uniformly high force level. The full functionality of the telescopic bumper prescribed by the standards is maintained. The diagram of FIG. 4, in the area of normal operation, the movement of the moving part 13 follows in accordance with the characteristic of serially coupled spring elements 21, 22 along a drawn, broken curve. The knee in the curve occurs when a more gentle branch of the curve follows the softer spring characteristics of the series attachment of the two spring elements 21, 22 and when, upon further movement of the moving part 13, the softer than the two spring elements 21, 22, it becomes harder than both spring elements with their steeper characteristic in the force / path diagram. The dashed curve in the normal operating range indicates the additional damping effect of the hydraulic damper provided if necessary. At the end of the 100 mm displacement (position B), the bridging portion 23 between the spring elements 21, 22 bursts when the spring effect of the spring elements 21, 22 strikes. ends what we see with a slight steep descent of the curve at 100 mm of travel path. Since fracture of bridging section 23 deforms the guide sleeve 12 by splitting into segments 12a, the steep decline of the curve at 100 mm immediately stops again and the slope of the force / path along the path of displacement 200 mm begins (position C) when the force level is virtually unchanged. This unchanged force level corresponds to the condition of controlled deformation by splitting of the guide sleeve 12. The end of the travel path at 200 mm corresponds to FIG. 3, when the moving part 13 hits the base plate 11. The diagram of FIG. 4 then goes in the direction of position D steeply up.

Da se zagotovi skrajšanje siloprenašajočega dela 20, so pri izvedbenih primerih po SL. 1 do 7 predvideni naslednji ukrepi. Uporabi se dva vzmetna elementa 21, 22 (npr. obročasti vzmeti) različnih premerov. Ploščat premostitven del 23 z mestom 24 hotenega loma tvori silosklepno vez v normalnem obratovanju. Uporabiti je moč dva vzmetna elementa 21, 22 različnih dolžin in/ali različnih togosti in/ali iz različnih gradiv (jeklo/elastomer/guma), tako da se da v normalnem obratovanju dobiti progresivno vzmetno karakteristiko. To utegne imeti voznodinamične prednosti za sklopljena timična vozila (izvlečena črta med položajema A in B v SL. 4).In order to ensure the shortening of the load-bearing part 20, in embodiments according to FIG. 1 to 7 the following measures are envisaged. Two spring elements 21, 22 (eg ring springs) of different diameters are used. The flat bridging portion 23 with the desired fracture site 24 forms a silo-joint in normal operation. It is possible to use the power of two suspension elements 21, 22 of different lengths and / or different rigidity and / or of different materials (steel / elastomer / rubber) so that a progressive spring characteristic can be obtained in normal operation. This may have driving dynamics advantages for coupled thymic vehicles (drawn line between positions A and B in FIG. 4).

Nadaljnja možnost za dosego ugodnih obratovalnih lastnosti je paralelna vezava črtkano vrisanega hidravličnega dušilca 40 npr. v notranjosti vzmetnega elementa 22 z manjšim premerom. Tako se da doseči višji sprejem energije v normalnem obratovanju (črtkana črta med položajema A in B v SL. 4). Za razliko od znanih odbijačev s hidravličnimi blažilniki se s priključitvijo drugega vzmetnega elementa 21 z večjim premerom porast poteka sile pri hitrih sunkih omeji s togostjo tega vzmetnega elementa. To se predvsem pri medsebojnem zadetju odbijačev različnih zasnov (s hidravličnim blažilnikom ali brez njega) na poteku sile/poti izenačujoče odraža.A further possibility of achieving favorable operating characteristics is the parallel connection of the dashed out hydraulic damper 40 e.g. inside the smaller diameter spring element 22. Thus, a higher energy uptake can be achieved in normal operation (dashed line between positions A and B in FIG. 4). Unlike the known bumpers with hydraulic dampers, the attachment of a larger diameter spring 21 is limited by the increase in the force at high gusts by the stiffness of this spring element. This is especially reflected in the impact of bumpers of different designs (with or without hydraulic damper) on the course of the force / path.

Na skici SL. 1 vidimo, da premostitveni del 23 nalega na naslon 30 ali na ohišje dušilca 40. Gibalni del 13 nadalje nalega na dva ali več po zunanjem obodu premostitvenega dela 23 radialno štrlečih čepov 23a. Funkcija naslona 30 in čepov 23a je pomagati premostitvenemu delu 23 pri osamljanju. S primemo izbranimi naležnimi mesti, ki se nahajajo npr. paroma diametralno, se da natanko ob doseženju določene lege premaknitve gibalnega dela 13 v premostitvenem delu 23 vzpostaviti nenadno koncentracijo napetosti, ki vodi k neposredni osamitvi (odpovedi in strižni prekinitvi) premostitvenega dela 23. Osamitev je torej krmiljena s potjo. Smiseln izbor konstrukcijskih odstopkov zagotavlja, da se to zgodi tik pred zadetjem gibalnega dela 13 na vodilni tulec 12. To se na skici SL. 4 vidi pri kratkem vdrtju ravni sile. Zasnova take vrste je ugodna iz razloga, ker se s tem izognemo seštevalnemu prekrivanju prenosa sile prek premostitvenega dela 23 (tipično za normalno obratovanje) in prenosa sile prek v oblikosklepnem ubiranju nahajajočih se ohišnih delov (tipično za deformacijsko območje), s čimer bi utegnila nastati nezaželeno visoka konica sile. Ta varnostna funkcija premostitvenega dela 23 lajša konstrukcijsko zasnovo hidravličnega dušilca 30. Tega se da optimirati prednostno proti nižjim in srednjim obremenitvenim hitrostim in s tem enostavneje izdelati.In the FIG. 1, we see that the bridging part 23 rests on the backrest 30 or on the damper housing 40. The moving part 13 further rests on two or more along the outer circumference of the bridging part 23 of the radially projecting studs 23a. The function of the backrest 30 and the studs 23a is to assist the bridging portion 23 in isolation. By way of example, the selected contact sites located e.g. steaming diametrically, so that, at a certain position of the displacement of the moving part 13 in the bridging portion 23, a sudden concentration of tension is obtained, which leads to the direct isolation (failure and shear interruption) of the bridging part 23. The isolation is thus controlled by the path. A sensible choice of design tolerances ensures that this occurs just before the moving part 13 is hit on the guide sleeve 12. This is shown in FIG. 4 sees at a brief forcing of the force level. The design of this type is advantageous because it avoids the summation of overlapping of the transmission of the force through the bridging part 23 (typical for normal operation) and the transfer of force through the case-forming housing of the adjacent housing parts (typical of the deformation zone), thereby creating unwanted high force peak. This safety function of bridging part 23 facilitates the design of the hydraulic damper 30. This can be optimized preferably against lower and medium load speeds and thus easier to manufacture.

Enemu ali obema geometričnima osamitvenima pripomočkoma se da odreči. V tem primeru premostitveni del 23, krmiljen od sile, odpove, ko je dosežena njegova obremenitvena meja. Do te vrste odpovedi lahko neodvisno od obstoja osamitvenih pripomočkov, npr. hidravličnega dušilca 30, pride tudi pred doseženjem skupne vzmetne poti vzmetnih elementov 21, 22. Četudi je rezultat te operacije prehoden vdor v karakteristiki sila/pot, je to čisto zaželeno, da se prepreči nastanek nedopustno visokih konic sile.One or both geometric isolation aids may be waived. In this case, the force-controlled bridging section 23 fails when its load limit is reached. Independent of the existence of isolation aids, e.g. hydraulic damper 30, even before reaching the common spring path of the spring members 21, 22. Even if the result of this operation is a transient intrusion in the force / path characteristic, it is perfectly desirable to prevent the formation of unacceptably high force peaks.

Skica SL. 3 kaže teleskopski odbijač 1 v končni legi pri koncu deformacijskega območja (položaj C v SL. 4). Veliki deli vodilnega tulca 12 so se deformirali in štrlijo kot posamezni segmenti 12a. Vidimo odstrižen premostitveni del 23 in drug v drugega teleskopsko potisnjena vzmetna elementa 21, 22. Teleskopski odbijač 1 je dosegel svoje skrajno možno skrajšanje. Nadaljnja deformacija bo možna le še s skrajnim vložkom sile pri popolnem uničenju in strmo vzpenjajočem se poteku sile (SL. 4, položaj D).Sketch of FIG. 3 shows a telescopic bumper 1 in the final position at the end of the deformation zone (position C in FIG. 4). Large portions of the guide sleeve 12 have deformed and projected as individual segments 12a. We see a bridged part 23 and a telescopically slung spring element 21, 22 being disposed of each other. The telescopic bumper 1 has reached its extreme possible shortening. Further deformation will only be possible with extreme force input with complete destruction and a steeply rising force (Fig. 4, position D).

Vzpon sile se da zavleči s tem, da se gibalni del tako naredi, da gaje moč zbiti, na primer z lokalno oslabitvijo preseka. Tako v zadnji fazi deformacijskega območja pride dodatno še do deformacije dotlej še ne deformiranega gibalnega dela 13, s čimerThe rise of force can be delayed by making the movement part so that it can be compressed, for example by locally weakening the section. Thus, in the last phase of the deformation zone, deformation of the hitherto deformed movement part 13 is further deformed, thereby

-9se omogoči nadaljnjo premikalno rezervo na višji ravni sile (SL. 4, črtkanopikčasta črta C-D’).-9continues a further movement reserve at a higher force level (FIG. 4, dotted line C-D ').

SL. 5 kaže različico na skici SL. 1 prikazanega teleskopskega odbijača, ko je ureditev vzmetnih elementov 21, 22 zamenjana in pomoči do osamitve prek čepov 23a na premostitvenem delu 23 ni. Naslon 30 kot pripomoček za osamitev se tu nahaja na gibalnem delu 13. Funkcija te različice se zaradi zamenjave ureditve vzmetnih elementov 21, 22 ne menja.FIG. 5 shows the version in FIG. 1 of the telescopic bumper shown when the arrangement of the suspension elements 21, 22 is replaced and there is no assistance to isolate via the studs 23a on the bridging portion 23. The backrest 30 as a device for isolation is located here on the moving part 13. The function of this version does not change due to the replacement of the arrangement of the spring elements 21, 22.

Na skici SL. 6 je predstavljen teleskopski odbijač, pri katerem gibalni del 13 vodilni tulec 12 oklepa od zunaj. Prehod med vodilnim tulcem 12 in podno ploščo 11 je lahko zaokrožen, da se olajša pot do odpovedi gibalnega dela 13. Ko je prekoračen skrajni premik normalnega obratovalnega območja (SL. 4), gibalni del 13 naleže na to zaokrožitev in se začne deformirati. Trgajoči se in štrleči segmenti nastajajo v bližini podne plošče 11. Ta ureditev utegne imeti geometrične prednosti za posebne vgraditvene razmere. Vodilni tulec 12 ima lahko dodatno skrčno zmogljivost.In the FIG. 6 is a telescopic bumper in which the moving part 13 guides the guide sleeve 12 from the outside. The passage between the guide sleeve 12 and the base plate 11 may be rounded to facilitate the failure path of the moving part 13. When the extreme movement of the normal operating range (FIG. 4) is exceeded, the moving part 13 rests on this rounding and begins to deform. Tearing and protruding segments occur near floor panel 11. This arrangement may have geometric advantages for special mounting conditions. Guide sleeve 12 may have additional shrinkage capacity.

SL. 7 kaže teleskopski odbijač 1, pri katerem sta v primerjavi z izvedbenim primerom SL. 6 vzmetna elementa 21, 22 zamenjana. Funkcija se s tem ne spremeni.FIG. 7 shows a telescopic bumper 1 in which, in comparison with embodiment FIG. 6 spring elements 21, 22 replaced. This does not change the function.

Alternativno se da za gibalni del 13 namesto kovinskega gradiva vgraditi z vlakni armirano umetno snov ali iz različnih gradiv narejen sklop, s čimer, kar zadeva geometrijo, nastopijo nepravilne, v zadevi poteka sile pa enakomernejše oblike odpovedovanja.Alternatively, a fiber reinforced plastic or assembly made of various materials may be installed in place of the moving part 13 instead of the metallic material, thus making irregularities occur in geometry and more uniform failure modes in the case of forces.

V primerjavi z znanimi teleskopskimi odbijači se pri izumskem teleskopskem odbijaču praktično dobi potrojitev premikalne poti s 100 na 300 mm, ne da se nosilna zgradba 2 (okvir vozila) timičnega vozila poškoduje. Dodatno k elastičnemu, reverzibilnemu sprejemu energije znanega teleskopskega odbijača, ki v odvisnosti od vzmetnoblažilnega elementa leži v območju med 30 in 70 kJ, se da z deformacijo absorbirati okoli 200 kJ gibalne energije. Deformirani teleskopski odbijač je v primeru deformacije le še treba zamenjati z novim teleskopskim odbijačem. Ker imajo izumski teleskopski odbijači enake razsežnosti in pritrditve kot znani, v vsakdanji uporabiCompared to known telescopic bumpers, the inventive telescopic bumper virtually triples the displacement path from 100 to 300 mm without damaging the supporting structure 2 (vehicle frame) of the thymic vehicle. In addition to the elastic, reversible energy absorption of a known telescopic bumper, which, depending on the suspension damping element, lies in the range of 30 to 70 kJ, deformation can absorb about 200 kJ of motion energy. A deformed telescopic bumper only needs to be replaced with a new telescopic bumper in case of deformation. Because inventive telescopic bumpers have the same dimensions and mountings as known, in everyday use

-1010 nahajajoči se teleskopski odbijači, se da obstoječa timična vozila brez nadaljnjega opremiti z izumskimi teleskopskimi odbijači.-1010 telescopic bumpers located, that existing thymic vehicles can be fitted with inventive telescopic bumpers without further ado.

Claims (11)

Patentni zahtevkiPatent claims 1. Teleskopski odbijač (1) za gibljive nosilne strukture (2) predvsem timičnih vozil, z ohišjem (10) odbijača, sestoječim iz krajevno fiksne, na nosilni strukturi (2) pritrdljive podne plošče (11), na podno ploščo (11) nameščenega vodilnega tulca (12) in glede na vodilni tulec (12) premakljivega gibalnega dela (13), ki ga pri njegovem premikalnem gibanju vodi vodilni tulec (12), in s siloprenašajočim delom (20) za podajno sklopitev gibalnega dela (13) z nosilno strukturo (2), pri čemer je ohišje (10) odbijača tako zasnovano, da nad mejno vrednostjo za premik gibalnega dela (13) ali za sile, ki jih je treba prenesti, do kontrolirane deformacije vodilnega tulca (12) ali gibalnega dela (13) pride brez deformacije ali spremembe položaja podne plošče (11), z n a č i 1 e n po tem, daje siloprenašajoči del (20) tako zasnovan, da nad mejno vrednostjo za premik gibalnega dela (13) ali za sile, ki jih je treba prenesti, dodatno h kontrolirani deformaciji vodilnega tulca (12) ali gibalnega dela (13) funkcija siloprenašajočega dela (20) preneha obstajati.1. Telescopic bumper (1) for movable load-bearing structures (2) mainly thymic vehicles, with a body (10) of a bumper consisting of a locally fixed, on a load-bearing structure (2) of a fastening floor plate (11) mounted on a floor plate (11) the guide sleeve (12) and with respect to the guide sleeve (12) of the movable moving part (13), which is guided by the guide sleeve (12) during its movement, and with the silo-carrying part (20) for the coupling of the moving part (13) with the carrier structure (2), wherein the housing (10) of the bumper is designed such that, above the limit, for displacement of the moving part (13) or for the forces to be transmitted, to a controlled deformation of the guide sleeve (12) or the moving part (13) ) occurs without deformation or change of position of the floor panel (11), which means 1 one after the load-bearing part (20) is designed so that it is above the limit for the movement of the moving part (13) or for the forces to be transmitted , in addition to the controlled deformation of the guide sleeve (12 ) or the moving part (13) the function of the silo-carrying part (20) ceases to exist. 2. Teleskopski odbijač po zahtevku 1, značilen po tem, da se pri kontrolirani deformaciji stena vodilnega tulca (12) in/ali gibalnega dela (13) na enem aksialnem koncu raztegne onstran lomne meje in raztrga na segmente (12a).Telescopic bumper according to claim 1, characterized in that in controlled deformation the wall of the guide sleeve (12) and / or the moving part (13) extends beyond the breaking boundary at one axial end and is torn to segments (12a). 3. Teleskopski odbijač po zahtevku 1, značilen po tem, da se pri kontrolirani deformaciji stena vodilnega tulca (12) in/ali gibalnega dela (13) aksialno zbije.Telescopic bumper according to claim 1, characterized in that, in controlled deformation, the walls of the guide sleeve (12) and / or the moving part (13) are axially compressed. 4. Teleskopski odbijač po enem od zahtevkov 1 do 3, značilen po tem, da ima siloprenašajoči del (20) dva v serijo vezana vzmetna elementa (21, 22), ki sta medsebojno povezana prek premostitvenega dela (23), in da je premostitveni del (23) tako zasnovan, da se nad mejno vrednostjo za premik gibalnega dela (13) ali za silo, ki jo je treba prenesti, zveza med vzmetnima elementoma (21, 22) prekine.Telescopic bumper according to one of Claims 1 to 3, characterized in that the silo-bearing part (20) has two spring-connected elements (21, 22) connected to one another by means of a bridging part (23), and is bridged part (23) so designed that, above the limit for the displacement of the moving part (13) or for the force to be transmitted, the connection between the suspension elements (21, 22) is broken. 5. Teleskopski odbijač po zahtevku 4, značilen po tem, da je kot premostitveni del (23) predviden kolut z najmanj enim mestom (24) hotenega loma.Telescopic bumper according to claim 4, characterized in that a disc with at least one desired break point (24) is provided as a bridging portion (23). -1212-1212 6. Teleskopski odbijač po zahtevku 5, značilen po tem, da ima kolut raven ali loncu podoben profil.Telescopic bumper according to claim 5, characterized in that the disc has a straight or pot-like profile. 7. Teleskopski odbijač po enem od zahtevkov 4 do 6, značilen po tem, da je premostitveni del (23) razporejen v premikalni poti gibalnega dela (13) in da se ob zadetju gibalnega dela (13) na premostitveni del (23) slednji poruši in se s tem izključi.Telescopic bumper according to one of Claims 4 to 6, characterized in that the bridging part (23) is arranged in the moving path of the moving part (13) and, when hit by the moving part (13), on the bridging part (23) and is thus excluded. 8. Teleskopski odbijač po enem od zahtevkov 4 do 7, značilen po tem, da je predviden naslon (30) za premostitveni del (23), tako da se pri zadetju premostitvenega dela (23) na naslon (30) prvi izklopi.Telescopic bumper according to one of Claims 4 to 7, characterized in that a support (30) is provided for the bridging part (23) such that when the bridging part (23) is hit on the abutment (30), it first switches off. 9. Teleskopski odbijač po zahtevku 7 ali 8, značilen po tem, da so stična mesta premostitvenega dela (23) za zadetje na gibalni del (13) in/ali končni naslon (30) tako zasnovana, da pri zadetju pride do lokalnih napetostnih koncentracij.Telescopic bumper according to claim 7 or 8, characterized in that the contact points of the bridging part (23) to hit the moving part (13) and / or the end support (30) are so designed that, when hit, local stress concentrations occur . 10. Teleskopski odbijač po enem od zahtevkov 4 do 9, značilen po tem, da je vzporedno k vzmetnemu elementu (21, 22) siloprenašajočega dela (20) razporejen hidravličen dušilec (40).Telescopic bumper according to any one of claims 4 to 9, characterized in that a hydraulic damper (40) is arranged parallel to the spring element (21, 22) of the silo-bearing part (20). 11. Teleskopski odbijač po enem od zahtevkov 1 do 10, značilen po tem, daje tisti del izmed vodilnega tulca (12) in gibalnega dela (13), ki pri deformaciji ni soudeležen, tako zasnovan, da se ob zadetju na oviro pri koncu premikalne poti v sebi zbije.Telescopic bumper according to one of Claims 1 to 10, characterized in that the part between the guide sleeve (12) and the moving part (13) which is not involved in the deformation is designed to be hit on the obstacle at the end of the movable paths within it.
SI200120040A 2000-07-29 2001-07-25 Plunger buffer SI21092B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10037050A DE10037050C2 (en) 2000-07-29 2000-07-29 Plunger buffer
PCT/EP2001/008617 WO2002009996A1 (en) 2000-07-29 2001-07-25 Plunger buffer

Publications (2)

Publication Number Publication Date
SI21092A true SI21092A (en) 2003-06-30
SI21092B SI21092B (en) 2010-09-30

Family

ID=7650685

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200120040A SI21092B (en) 2000-07-29 2001-07-25 Plunger buffer

Country Status (10)

Country Link
EP (1) EP1305199B1 (en)
AT (1) ATE332260T1 (en)
AU (1) AU2001278507A1 (en)
CZ (1) CZ297793B6 (en)
DE (2) DE10037050C2 (en)
ES (1) ES2267798T3 (en)
PL (1) PL199598B1 (en)
SI (1) SI21092B (en)
SK (1) SK287518B6 (en)
WO (1) WO2002009996A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458233A (en) * 2014-05-28 2017-02-22 德尔纳库普勒斯股份公司 Energy dissipating device and connection device comprising such an energy dissipating device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2836108B1 (en) * 2002-02-21 2005-04-15 Acieries De Ploermel ENERGY ABSORBING PAD FOR RAILWAY VEHICLE
ES2305766T3 (en) * 2004-04-27 2008-11-01 Sieghard Schneider BUMPER WITH CONTRATOPE.
DE102004045600A1 (en) * 2004-09-17 2006-04-06 Keystone Bahntechnik Gmbh buffer system
DE102006043982B4 (en) 2006-09-19 2023-06-29 Est Eisenbahn-Systemtechnik Gmbh Side buffers for mobile or fixed supporting structures of rail vehicles
DE102006050028B4 (en) 2006-10-24 2019-05-02 Est Eisenbahn-Systemtechnik Gmbh Device on the vehicle front of rail vehicles
JP4966712B2 (en) * 2007-03-30 2012-07-04 株式会社日立製作所 Transport aircraft
ITTO20110359A1 (en) * 2011-04-22 2012-10-23 Ansaldobreda Spa TRAIN PROVIDED WITH INTERESTABLE INTERFACES AMONG CARRIAGES
GB2517970B (en) 2013-09-06 2016-02-10 T A Savery & Co Ltd A buffer
CN103552527B (en) * 2013-11-09 2016-01-20 卢碧娴 Anti-collision automobile
DE102013225343A1 (en) * 2013-12-10 2015-06-11 Voith Patent Gmbh Energy absorber, clutch and vehicle with an energy absorber and method of making an energy absorber
CN107972613B (en) * 2017-11-16 2020-10-09 华侨大学 High-efficient energy-absorbing device that contracts bursts in grades
DE102018103844A1 (en) 2018-02-21 2019-08-22 Falk Schneider Deformation device with climbing protection for rail vehicles
US12122433B2 (en) * 2021-01-29 2024-10-22 Amsted Rail Company, Inc. Crash energy management systems for car coupling systems of rail cars
CN113335335B (en) * 2021-07-12 2023-01-24 中车制动系统有限公司 Railway vehicle buffer device and coupler buffer system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE462539C (en) * 1927-05-20 1928-07-12 Wilhelm Wurl Railway shell buffer
DE747330C (en) * 1941-07-26 1944-09-20 Karl V Waldstaetten Dipl Ing Sleeve buffer with destructive link, especially for rail vehicles
US2423877A (en) * 1945-02-10 1947-07-15 Miner Inc W H Spring and friction buffer for railway cars
CH265703A (en) * 1948-03-03 1949-12-15 Schweiz Wagons Aufzuegefab Buffers on rail vehicles.
FR1280548A (en) * 1961-02-28 1961-12-29 Opee Ltd Improvements in buffers for railway vehicles, tramways and the like
US4624493A (en) * 1985-09-30 1986-11-25 Chrysler Motors Corporation Self-restoring energy absorbing bumper mount
DE19616944B4 (en) * 1996-04-27 2006-05-18 Suspa Holding Gmbh impact attenuator
DE19635221C1 (en) * 1996-08-30 1998-04-02 Krauss Maffei Verkehrstechnik Impact protection device for rail vehicles
DE19809489A1 (en) * 1998-01-28 1999-07-29 Krauss Maffei Verkehrstechnik Impact protection unit for rail vehicles
FR2775240B1 (en) * 1998-02-25 2000-12-22 Nantes Ecole Centrale IMPROVEMENT IN MOUNTING BUFFER BUFFERS FOR RAIL VEHICLES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458233A (en) * 2014-05-28 2017-02-22 德尔纳库普勒斯股份公司 Energy dissipating device and connection device comprising such an energy dissipating device
US10882542B2 (en) 2014-05-28 2021-01-05 Dellner Couplers Ab Energy dissipating device and connection device comprising such an energy dissipating device

Also Published As

Publication number Publication date
DE50110406D1 (en) 2006-08-17
DE10037050A1 (en) 2002-02-28
PL359387A1 (en) 2004-08-23
SK287518B6 (en) 2010-12-07
ATE332260T1 (en) 2006-07-15
CZ20024271A3 (en) 2003-04-16
WO2002009996A1 (en) 2002-02-07
SI21092B (en) 2010-09-30
DE10037050C2 (en) 2002-10-31
ES2267798T3 (en) 2007-03-16
CZ297793B6 (en) 2007-03-28
SK832003A3 (en) 2003-08-05
EP1305199A1 (en) 2003-05-02
AU2001278507A1 (en) 2002-02-13
EP1305199B1 (en) 2006-07-05
PL199598B1 (en) 2008-10-31

Similar Documents

Publication Publication Date Title
SI21092A (en) Plunger buffer
US8376159B2 (en) Device for damping tractive and compressive forces
KR101156858B1 (en) Replaceable energy absorbing structure, especially for use in combination with a buffer
KR20100052509A (en) Shock-proof device for the front or rear region of a track-guided vehicle having at least one energy consumption device
US8051995B2 (en) Energy dissipation device for a car body of a multi-member rail vehicle
PT1955918E (en) Automatic central buffer coupling
US20120031299A1 (en) Energy-Absorbing Device Particularly For A Shock Absorber For A Track-Guided Vehicle
JP2009528950A (en) Vehicle dive prevention device
KR20100052492A (en) Shock absorber
AU2008248723B2 (en) Energy dissipation device for multi-member vehicle
US5511486A (en) Shock absorbing tow bar
CN211117315U (en) Pressure buffer device
DE102016201733A1 (en) Shock absorber assembly for a motor vehicle
SK51012006A3 (en) Tube bumper
US10773737B2 (en) Traction-impact device and force transmission unit having such a traction-impact device
CN110869574A (en) Furniture buffer
CZ307186B6 (en) A tubular buffer
RU2569880C1 (en) Higher vehicle seat safety system for seat user
PL222340B1 (en) Multilevel rail bumper
IL260472A (en) Load limiter
PL204337B1 (en) Bush bumper
KR970010361B1 (en) Damping apparatus
KR20230014830A (en) furniture shock absorber
EP1599358A2 (en) Device for damped transmission of a load acting thereon, and vehicle seat installation equipped

Legal Events

Date Code Title Description
IF Valid on the event date
OU02 Decision according to article 73(2) ipa 1992, publication of decision on partial fulfilment of the invention and change of patent claims

Effective date: 20100825

SP73 Change of data on owner

Owner name: EST EISENBAHN-SYSTEMTECHNIK GMBH; DE

Effective date: 20190204