SG11201906133PA - Gallium nitride expitaxial structures for power devices - Google Patents

Gallium nitride expitaxial structures for power devices

Info

Publication number
SG11201906133PA
SG11201906133PA SG11201906133PA SG11201906133PA SG11201906133PA SG 11201906133P A SG11201906133P A SG 11201906133PA SG 11201906133P A SG11201906133P A SG 11201906133PA SG 11201906133P A SG11201906133P A SG 11201906133PA SG 11201906133P A SG11201906133P A SG 11201906133PA
Authority
SG
Singapore
Prior art keywords
international
qromis
walsh
santa clara
california
Prior art date
Application number
SG11201906133PA
Inventor
Vladimir Odnoblyudov
Steve Lester
Ozgur Aktas
Original Assignee
Qromis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qromis Inc filed Critical Qromis Inc
Publication of SG11201906133PA publication Critical patent/SG11201906133PA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/157Doping structures, e.g. doping superlattices, nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Title: GALLIUM NITRIDE EXPITAXIAL STRUCTURES FOR POWER DEVICES .1 09p:ea. AlGaN or InAIN 16 1 / 6 —j ' 6 %.:///; 4/ ././ .frter /0/0A Undeped GaN Buffer : Si 120 Conducting Channel (2DEG) 1Q structure (102) FIG. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date 26 July 2018 (26.07.2018) WIP0 I PCT ill IIIIIl °mons °nolo VIII imio oimIE (10) International Publication Number WO 2018/136278 Al (51) International Patent Classification: C30B 2 9 / 4 0 (2006.01) C30B 29/68 (2006.01) (21) International Application Number: PCT/US2018/013206 (22) International Filing Date: 10 January 2018 (10.01.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/447,857 18 January 2017 (18.01.2017) US 62/591,016 27 November 2017 (27.11.2017) US 15/864,977 08 January 2018 (08.01.2018) US (71) Applicant: QROMIS, INC. [US/US]; 2306 Walsh Av- enue, Santa Clara, California 95051 (US). (72) Inventors: ODNOBLYUDOV, Vladimir; c/o Qromis, Inc., 2306 Walsh Avenue, Santa Clara, California 95032 (US). LESTER, Steve; c/o Qromis, Inc., 2306 Walsh Av- enue, Santa Clara, California 95051 (US). AKTAS, Ozgur; c/o Qromis, Inc., 2306 Walsh Avenue, Santa Clara, Califor- nia 95051 (US). (74) Agent: LIU, Rong et al.; Kilpatrick Townsend & Stock- ton LLP, Mailstop: IP Docketing-22, 1100 Peachtree Street, Suite 2800, Atlanta, Georgia 30309 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, GaN Epi (140) 1-1 Engineered substrate N (57) : A method for making a multilayered device on an engineered substrate having a substrate coefficient of thermal ex- pansion includes growing a buffer layer on the engineered substrate, and growing a first epitaxial layer on the buffer layer. The first O epitaxial layer is characterized by an epitaxial coefficient of thermal expansion substantially equal to the substrate coefficient of thermal \" expansion. [Continued on next page] C WO 2018/136278 Al MIDEDIMOHNIMMUMMOMMIIMEDIMMIONEVOIS EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3))
SG11201906133PA 2017-01-18 2018-01-10 Gallium nitride expitaxial structures for power devices SG11201906133PA (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762447857P 2017-01-18 2017-01-18
US201762591016P 2017-11-27 2017-11-27
US15/864,977 US10355120B2 (en) 2017-01-18 2018-01-08 Gallium nitride epitaxial structures for power devices
PCT/US2018/013206 WO2018136278A1 (en) 2017-01-18 2018-01-10 Gallium nitride expitaxial structures for power devices

Publications (1)

Publication Number Publication Date
SG11201906133PA true SG11201906133PA (en) 2019-08-27

Family

ID=62841145

Family Applications (1)

Application Number Title Priority Date Filing Date
SG11201906133PA SG11201906133PA (en) 2017-01-18 2018-01-10 Gallium nitride expitaxial structures for power devices

Country Status (8)

Country Link
US (4) US10355120B2 (en)
EP (1) EP3571336A4 (en)
JP (2) JP7105239B2 (en)
KR (4) KR102458634B1 (en)
CN (2) CN110177905B (en)
SG (1) SG11201906133PA (en)
TW (2) TW202305205A (en)
WO (1) WO2018136278A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355120B2 (en) * 2017-01-18 2019-07-16 QROMIS, Inc. Gallium nitride epitaxial structures for power devices
US10720520B2 (en) 2017-06-21 2020-07-21 Infineon Technologies Austria Ag Method of controlling wafer bow in a type III-V semiconductor device
FR3071854A1 (en) * 2017-10-03 2019-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR MANUFACTURING A HETEROJUNCTION ELECTRONIC COMPONENT HAVING AN ENTERREE BARRIER LAYER
CN111146282B (en) * 2018-11-06 2023-03-28 世界先进积体电路股份有限公司 High electron mobility transistor device and method of manufacturing the same
TWI706563B (en) * 2019-03-25 2020-10-01 世界先進積體電路股份有限公司 Semiconducotr structure, high electron mobility transistor, and method for fabricating semiconductor structure
US11380763B2 (en) * 2019-04-29 2022-07-05 Arizona Board Of Regents On Behalf Of Arizona State University Contact structures for n-type diamond
US11114555B2 (en) * 2019-08-20 2021-09-07 Vanguard International Semiconductor Corporation High electron mobility transistor device and methods for forming the same
WO2021243653A1 (en) * 2020-06-04 2021-12-09 英诺赛科(珠海)科技有限公司 Semiconductor apparatus and manufacturing method therefor
US11670505B2 (en) * 2020-08-28 2023-06-06 Vanguard International Semiconductor Corporation Semiconductor substrate, semiconductor device, and method for forming semiconductor structure
CN116783719A (en) * 2020-12-31 2023-09-19 华为技术有限公司 Integrated circuit, power amplifier and electronic equipment
CN112956029B (en) * 2021-01-26 2022-07-08 英诺赛科(苏州)科技有限公司 Semiconductor device and method for manufacturing the same
WO2022168572A1 (en) 2021-02-05 2022-08-11 信越半導体株式会社 Nitride semiconductor substrate and method for producing same
CN113948391B (en) * 2021-08-30 2023-11-21 西安电子科技大学 Silicon-based AlGaN/GaN HEMT device and preparation method thereof
WO2023047864A1 (en) 2021-09-21 2023-03-30 信越半導体株式会社 Nitride semiconductor substrate and method for producing same
CN114262937B (en) * 2021-12-20 2023-03-28 中电化合物半导体有限公司 Preparation method of gallium nitride epitaxial structure
CN116072724B (en) * 2023-03-07 2023-06-27 珠海镓未来科技有限公司 Semiconductor power device and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082892B2 (en) 2007-06-11 2015-07-14 Manulius IP, Inc. GaN Based LED having reduced thickness and method for making the same
US20090278233A1 (en) 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US8030666B2 (en) 2008-04-16 2011-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Group-III nitride epitaxial layer on silicon substrate
JP2010192745A (en) * 2009-02-19 2010-09-02 Rohm Co Ltd Nitride semiconductor element, and method of manufacturing the same
US9012253B2 (en) * 2009-12-16 2015-04-21 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
US8264047B2 (en) * 2010-05-10 2012-09-11 Infineon Technologies Austria Ag Semiconductor component with a trench edge termination
US20130157445A1 (en) * 2010-08-10 2013-06-20 Kimiya Miyashita POLYCRYSTALLINE ALUMINUM NITRIDE BASE MATERIAL FOR CRYSTAL GROWTH OF GaN-BASE SEMICONDUCTOR AND METHOD FOR MANUFACTURING GaN-BASE SEMICONDUCTOR USING THE SAME
CN102544086B (en) * 2010-12-24 2015-04-01 山东华光光电子有限公司 GaN-based high-electron-mobility transistor and manufacturing method thereof
WO2014001954A1 (en) * 2012-06-25 2014-01-03 Koninklijke Philips N.V. System and method for 3d ultrasound volume measurements
US9147803B2 (en) 2013-01-02 2015-09-29 Micron Technology, Inc. Engineered substrates having epitaxial formation structures with enhanced shear strength and associated systems and methods
US9082692B2 (en) 2013-01-02 2015-07-14 Micron Technology, Inc. Engineered substrate assemblies with epitaxial templates and related systems, methods, and devices
KR20150085724A (en) * 2014-01-16 2015-07-24 엘지전자 주식회사 Nitride semiconductor and method thereof
JP2016035949A (en) * 2014-08-01 2016-03-17 日本電信電話株式会社 Nitride semiconductor device manufacturing method
JP2016058693A (en) * 2014-09-12 2016-04-21 株式会社東芝 Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
CN105047695B (en) * 2015-06-10 2018-09-25 上海新傲科技股份有限公司 High resistivity substrate and growing method for high electron mobility transistor
KR20180095560A (en) * 2015-12-04 2018-08-27 큐로미스, 인크 Wideband-gap device integrated circuit architecture on fabricated substrates
KR102403038B1 (en) * 2016-08-23 2022-05-27 큐로미스, 인크 Electronic Power Device Integrated with Machined Substrate
US10355120B2 (en) * 2017-01-18 2019-07-16 QROMIS, Inc. Gallium nitride epitaxial structures for power devices

Also Published As

Publication number Publication date
KR20230164103A (en) 2023-12-01
TW202305205A (en) 2023-02-01
KR20220156035A (en) 2022-11-24
EP3571336A1 (en) 2019-11-27
KR20190104060A (en) 2019-09-05
KR20240052943A (en) 2024-04-23
JP2022165964A (en) 2022-11-01
JP2020505767A (en) 2020-02-20
JP7105239B2 (en) 2022-07-22
US10833186B2 (en) 2020-11-10
US20190371929A1 (en) 2019-12-05
CN110177905B (en) 2021-12-10
CN110177905A (en) 2019-08-27
US20230261101A1 (en) 2023-08-17
US10355120B2 (en) 2019-07-16
TWI781132B (en) 2022-10-21
US20210057563A1 (en) 2021-02-25
KR102645364B1 (en) 2024-03-07
TW201842242A (en) 2018-12-01
KR102595284B1 (en) 2023-10-26
US11699750B2 (en) 2023-07-11
EP3571336A4 (en) 2020-10-07
WO2018136278A1 (en) 2018-07-26
KR102458634B1 (en) 2022-10-25
CN114156181A (en) 2022-03-08
US20180204941A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
SG11201906133PA (en) Gallium nitride expitaxial structures for power devices
SG11201810919UA (en) Engineered substrate structure for power and rf applications
SG11201907481PA (en) Rf device integrated on an engineered substrate
SG11201906017UA (en) Support for a semiconductor structure
SG11201811295TA (en) Polycrystalline ceramic substrate and method of manufacture
SG11201804490VA (en) Wide band gap device integrated circuit architecture on engineered substrate
SG11201805324SA (en) Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems
SG11201805186VA (en) Compositions and methods for immune cell modulation in adoptive immunotherapies
SG11201805792PA (en) Chimeric proteins and methods of regulating gene expression
SG11201901450QA (en) Methods of forming semiconductor device structures including two-dimensional material structures
SG11201807252QA (en) Anti-lag-3 antibodies
SG11201903278YA (en) Methods and apparatus for a distributed database including anonymous entries
SG11201807421TA (en) The use of glucocorticoid receptor modulators to potentiate checkpoint inhibitors
SG11201809874SA (en) Systems and methods for locating a wireless device
SG11201809635SA (en) Fracturing system with flexible conduit
SG11201811019TA (en) Device for cardiac valve repair and method of implanting the same
SG11201805048SA (en) Bispecific anti-cd20/anti-cd3 antibodies to treat acute lymphoblastic leukemia
SG11201805103VA (en) Method and system for service enablement
SG11201806553WA (en) Device and arrangement for controlling an electromagnetic wave, methods of forming and operating the same
SG11201907023UA (en) Method of reducing neutropenia
SG11201407839PA (en) Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
SG11201810385TA (en) Electrosurgical device with integrated microwave source
SG11201805069WA (en) Method and system for determining terminal location
SG11201806788TA (en) Endoscopic systems, devices, and methods
SG11201809473QA (en) Humanized anti-basigin antibodies and the use thereof