SG10201706295QA - A Method and A Device for Measuring Gas Dissociation Degrees with an Optical Spectrometer - Google Patents

A Method and A Device for Measuring Gas Dissociation Degrees with an Optical Spectrometer

Info

Publication number
SG10201706295QA
SG10201706295QA SG10201706295QA SG10201706295QA SG10201706295QA SG 10201706295Q A SG10201706295Q A SG 10201706295QA SG 10201706295Q A SG10201706295Q A SG 10201706295QA SG 10201706295Q A SG10201706295Q A SG 10201706295QA SG 10201706295Q A SG10201706295Q A SG 10201706295QA
Authority
SG
Singapore
Prior art keywords
present application
gas dissociation
degrees
industries
measuring gas
Prior art date
Application number
SG10201706295QA
Inventor
Jui-Pao Pan
Original Assignee
Fairtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairtech Corp filed Critical Fairtech Corp
Publication of SG10201706295QA publication Critical patent/SG10201706295QA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N2021/258Surface plasmon spectroscopy, e.g. micro- or nanoparticles in suspension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Abstract

P00353C01 FRT-SGI 2 15 A METHOD AND A DEVICE FOR MEASURING GAS DISSOCIATION DEGREES WITH AN OPTICAL SPECTROMETER 5 A primary objective of the present application is to provide a method and a device for measuring gas dissociation degrees. The principle of the present application is to detect the gas dissociation degree in a tube body and to calculate the relative dissociation quantity value by means of a device according to the present application. When the contamination value in a primary path. 10 The present application may be applied to any device and/or any apparatus that requires measuring of gas dissociation degrees, including but not limited to physical vapor deposition device, chemical vapor deposition device, etching device and any other relevant device in the semiconductor, photoelectric, panel industries and any 15 other relevant industry. The present application may also be directly disposed in a remote plasma source device. Further, the present application may be applied in any inspection examination device in the biotechnology, chemistry, applied physics industries and any other relevant industry. Still further, the present application may be applied to any inspection apparatus or testing platform in the equipment maintenance 20 industry for any of the foregoing industries. [Figure 3]
SG10201706295QA 2017-01-05 2017-08-02 A Method and A Device for Measuring Gas Dissociation Degrees with an Optical Spectrometer SG10201706295QA (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106100285A TWI636253B (en) 2017-01-05 2017-01-05 Measuring device using spectrometer to measure gas dissociation state
JP2017141027A JP6601779B2 (en) 2017-01-05 2017-07-20 Method and apparatus for measuring gas dissociation state using a spectrometer

Publications (1)

Publication Number Publication Date
SG10201706295QA true SG10201706295QA (en) 2018-08-30

Family

ID=60094642

Family Applications (1)

Application Number Title Priority Date Filing Date
SG10201706295QA SG10201706295QA (en) 2017-01-05 2017-08-02 A Method and A Device for Measuring Gas Dissociation Degrees with an Optical Spectrometer

Country Status (9)

Country Link
US (1) US10204840B2 (en)
JP (2) JP6601779B2 (en)
KR (1) KR102088084B1 (en)
CN (2) CN207300868U (en)
DE (1) DE102017129785B4 (en)
FR (1) FR3061548B1 (en)
GB (1) GB2559245B (en)
SG (1) SG10201706295QA (en)
TW (1) TWI636253B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636253B (en) * 2017-01-05 2018-09-21 富蘭登科技股份有限公司 Measuring device using spectrometer to measure gas dissociation state
TWI792161B (en) * 2021-01-26 2023-02-11 富蘭登科技股份有限公司 Apparatus and method for measuring physical state of matter by spectroscopy

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891176U (en) * 1981-12-14 1983-06-20 日本電気株式会社 Semiconductor device characteristic measurement equipment
US5565114A (en) * 1993-03-04 1996-10-15 Tokyo Electron Limited Method and device for detecting the end point of plasma process
JP2002517740A (en) * 1998-06-12 2002-06-18 オン−ライン テクノロジーズ インコーポレーテッド Method and apparatus for identifying process chamber clean or wafer etching endpoints
JP4363861B2 (en) * 2003-02-04 2009-11-11 株式会社日立ハイテクノロジーズ Semiconductor manufacturing equipment
US7067432B2 (en) * 2003-06-26 2006-06-27 Applied Materials, Inc. Methodology for in-situ and real-time chamber condition monitoring and process recovery during plasma processing
JP3873943B2 (en) * 2003-07-16 2007-01-31 ソニー株式会社 Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus
US7261745B2 (en) * 2003-09-30 2007-08-28 Agere Systems Inc. Real-time gate etch critical dimension control by oxygen monitoring
US6950178B2 (en) * 2003-10-09 2005-09-27 Micron Technology, Inc. Method and system for monitoring plasma using optical emission spectroscopy
US7460225B2 (en) * 2004-03-05 2008-12-02 Vassili Karanassios Miniaturized source devices for optical and mass spectrometry
JP2006066536A (en) * 2004-08-25 2006-03-09 Hitachi High-Technologies Corp Plasma processing device and its processing method
US20060118240A1 (en) * 2004-12-03 2006-06-08 Applied Science And Technology, Inc. Methods and apparatus for downstream dissociation of gases
RU2008108010A (en) * 2005-08-02 2009-09-10 Массачусетс Инститьют Оф Текнолоджи (Us) METHOD OF APPLICATION OF SULFUR FLUORIDE FOR REMOVING SURFACE SEDIMENTS
US8382909B2 (en) * 2005-11-23 2013-02-26 Edwards Limited Use of spectroscopic techniques to monitor and control reactant gas input into a pre-pump reactive gas injection system
GB2441582A (en) * 2006-09-01 2008-03-12 Gencoa Ltd Process monitoring and control
AT504466B1 (en) 2006-10-25 2009-05-15 Eiselt Primoz METHOD AND DEVICE FOR DEGASSING OBJECTS OR MATERIALS USING THE OXIDATIVE RADICALS
JP5125248B2 (en) * 2007-06-22 2013-01-23 株式会社日立製作所 Ion mobility spectrometer
KR100885678B1 (en) 2007-07-24 2009-02-26 한국과학기술원 Apparatus and Method for Monitoring a Gas Using Gas - Permeable Material
CN201096521Y (en) * 2007-11-06 2008-08-06 南京理工大学 Non-contact type plasma temperature and electron density measuring apparatus
US20100224322A1 (en) * 2009-03-03 2010-09-09 Applied Materials, Inc. Endpoint detection for a reactor chamber using a remote plasma chamber
US8003959B2 (en) * 2009-06-26 2011-08-23 Varian Semiconductor Equipment Associates, Inc. Ion source cleaning end point detection
KR20110069626A (en) 2009-12-17 2011-06-23 한전케이디엔주식회사 Circuit for protecting noise of power equipment
FR2965355B1 (en) * 2010-09-24 2013-05-10 Horiba Jobin Yvon Sas METHOD FOR LUMINESCENT DISCHARGE SPECTROMETRY MEASUREMENT OF AN ORGANIC OR POLYMER SOLID SAMPLE
JP2016025233A (en) * 2014-07-22 2016-02-08 株式会社東芝 Substrate processing apparatus and board processing method
KR20160120382A (en) * 2015-04-07 2016-10-18 삼성전자주식회사 Apparatus for optical emission spectroscopy and apparatus for treating plasma
CN105714270A (en) * 2016-04-15 2016-06-29 信利(惠州)智能显示有限公司 Cleaning finishing monitoring method and system thereof with chemical vapor deposition
TWI636253B (en) * 2017-01-05 2018-09-21 富蘭登科技股份有限公司 Measuring device using spectrometer to measure gas dissociation state
CN107228829B (en) * 2017-06-07 2019-07-16 哈尔滨工业大学 The on-Line Monitor Device and method of electronics and atomic parameter in a kind of krypton working medium hall thruster discharge channel

Also Published As

Publication number Publication date
JP6601779B2 (en) 2019-11-06
TW201825893A (en) 2018-07-16
DE102017129785B4 (en) 2023-03-16
GB2559245B (en) 2020-05-20
FR3061548B1 (en) 2022-03-25
GB2559245A (en) 2018-08-01
DE102017129785A1 (en) 2018-07-05
GB201719832D0 (en) 2018-01-10
FR3061548A1 (en) 2018-07-06
JP2018109598A (en) 2018-07-12
US10204840B2 (en) 2019-02-12
CN107290287A (en) 2017-10-24
CN107290287B (en) 2019-09-24
US20180190548A1 (en) 2018-07-05
JP3213290U (en) 2017-11-02
TWI636253B (en) 2018-09-21
CN207300868U (en) 2018-05-01
KR102088084B1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
AU2018337648A1 (en) Reactive demarcation template for hazardous contaminant testing
WO2015051175A3 (en) Application of electron-beam induced plasma probes to inspection, test, debug and surface modifications
CN103487593A (en) Gas analysis device and method
TW201614250A (en) Wafer inspection apparatus
NZ603471A (en) Vessel outgassing inspection methods
TW200612511A (en) Leak detector and process gas monitor
Zhan et al. Water adsorption dynamics in active carbon probed by terahertz spectroscopy
SG10201706295QA (en) A Method and A Device for Measuring Gas Dissociation Degrees with an Optical Spectrometer
CN204177537U (en) A kind of container helium mass spectrum leak detection device
US10161915B2 (en) In-situ contactless monitoring of photomask pellicle degradation
MX2017010769A (en) Flowmeter measurement confidence determination devices and methods.
US20190219493A1 (en) Calibrated particle analysis apparatus and method
WO2015028338A3 (en) Tightness test during the evacuation of a film chamber
SG10201807414RA (en) Method of inspecting flow rate measuring system
KR101183064B1 (en) Equipment for providing standardized measurement of radon gas
CN105738037A (en) Plasma reaction cavity seepage detection method
KR101425441B1 (en) Apparatus for distributing processing gas having air leakage testing function
CN104748918B (en) Oil leakage detection device for power capacitor
TWM548269U (en) Measuring device using spectrometer to measure dissociation state of plasma gas
JP2019067942A (en) Material evaluation apparatus
JP5985266B2 (en) Measuring method, atmospheric pressure ionization mass spectrometer and destructive inspection device
CN103217470A (en) Quality control of container coatings
Yin et al. Establishment of a New Analysis Method for Trace Nitrogen Trifluoride in Helium detection by Gas Chromatography
WANG et al. APPLICATION OF THE UNCERTAINTY THEORY IN THE LEAK TESTING OF THE SPACECRAFT
RU2013127071A (en) METHOD FOR MEASURING AEROSOL PARTICLE CONCENTRATION AND DEVICE FOR ITS IMPLEMENTATION