JP3873943B2 - Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus - Google Patents

Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus Download PDF

Info

Publication number
JP3873943B2
JP3873943B2 JP2003275124A JP2003275124A JP3873943B2 JP 3873943 B2 JP3873943 B2 JP 3873943B2 JP 2003275124 A JP2003275124 A JP 2003275124A JP 2003275124 A JP2003275124 A JP 2003275124A JP 3873943 B2 JP3873943 B2 JP 3873943B2
Authority
JP
Japan
Prior art keywords
processing
gas
plasma
amount
dissociation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003275124A
Other languages
Japanese (ja)
Other versions
JP2005039079A (en
Inventor
哲也 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003275124A priority Critical patent/JP3873943B2/en
Priority to US10/877,391 priority patent/US7439068B2/en
Priority to TW093121170A priority patent/TWI249974B/en
Priority to KR1020040055686A priority patent/KR20050009243A/en
Publication of JP2005039079A publication Critical patent/JP2005039079A/en
Application granted granted Critical
Publication of JP3873943B2 publication Critical patent/JP3873943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/12Condition responsive control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、特定ラジカルを高精度に検出可能なプラズマモニタ方法、プラズマ処理方法、半導体装置の製造方法、およびプラズマ処理装置に関する。   The present invention relates to a plasma monitoring method, a plasma processing method, a semiconductor device manufacturing method, and a plasma processing apparatus that can detect specific radicals with high accuracy.

近年のULSIデバイスの開発においては、高速・低消費電力の実現を念頭においた各社各様の検討が進められている。このような中、低誘電率材料膜(いわゆるLow−k膜)と銅(Cu)を用いた多層配線技術が一般的となっており、配線信頼性の確保が非常に重要な課題となってきている。   In recent developments of ULSI devices, various companies are studying with the realization of high speed and low power consumption in mind. Under such circumstances, multilayer wiring technology using a low dielectric constant material film (so-called low-k film) and copper (Cu) has become common, and ensuring wiring reliability has become a very important issue. ing.

例えば、SiOCH系の低誘電率材料を層間絶縁膜として使用する工程では、図6(1)に示すように、基板101上のSiOCH系膜102とSiO2膜103とに、レジスト104をマスクに用いたエッチングによって溝105を形成した後、このレジスト105を除去するアッシング工程を行っている。このアッシング工程においては、SiOCH系膜102にアッシングダメージが加わり、溝105の側壁に酸化層106が形成される場合がある。これは、SiOCH系膜102の材料自体が非常に不安定であって、過剰な酸素(O)ラジカル等の存在によって容易に酸化が進むためと考えられている。そして、このようなアッシングダメージが加わった状態で、図6(2)に示すように、後処理として湿式処理を行うと酸化層106が削れ、不必要な寸法変換差、あるいは溝105側壁の段差等を生じさせ、この溝105内に埋め込まれるCu配線(図示省略)に所望の特性が得られなくなるということが報告されている。 For example, in the process of using a SiOCH-based low dielectric constant material as an interlayer insulating film, as shown in FIG. 6A, the SiOCH-based film 102 and the SiO 2 film 103 on the substrate 101 and the resist 104 as a mask are used. After the groove 105 is formed by the etching used, an ashing process for removing the resist 105 is performed. In this ashing step, ashing damage may be applied to the SiOCH-based film 102 and an oxide layer 106 may be formed on the sidewall of the groove 105. This is presumably because the material of the SiOCH-based film 102 is very unstable, and oxidation proceeds easily due to the presence of excess oxygen (O) radicals or the like. In the state where such ashing damage is applied, as shown in FIG. 6B, when wet processing is performed as post-processing, the oxide layer 106 is scraped, and unnecessary dimensional conversion differences or steps on the side walls of the grooves 105 are obtained. It has been reported that the desired characteristics cannot be obtained in the Cu wiring (not shown) embedded in the groove 105.

このため、上述したアッシング工程においては、有機材料からなるレジストパターンの除去を行いつつ、アッシングダメージを抑制する手法の確立が求められている。これには、アッシング工程において酸素(O)ラジカル量を精度良くモニターすることが必要である。   For this reason, in the ashing process described above, establishment of a technique for suppressing ashing damage while removing a resist pattern made of an organic material is required. For this purpose, it is necessary to accurately monitor the amount of oxygen (O) radicals in the ashing process.

従来、Oラジカル量のモニターには、アクチノメトリ法が適用されている。このアクチノメトリ法は、酸素の発光強度と、酸素と共に導入されるアルゴン(Ar)の発光強度との比率から、Oラジカル量の絶対値を求める方法である(下記非特許文献1参照)。   Conventionally, the actinometry method has been applied to monitor the amount of O radicals. This actinometry method is a method for obtaining the absolute value of the O radical amount from the ratio between the emission intensity of oxygen and the emission intensity of argon (Ar) introduced together with oxygen (see Non-Patent Document 1 below).

「Plasma Source Sci. Technol.」,(英),1994年,第3巻,p.154−161“Plasma Source Sci. Technol.” (English), 1994, Vol. 3, p. 154-161

しかしながら、上述したアクチノメトリ法では、Oラジカル量を正確にモニターすることはできなかった。図7には、アクチノメトリ法で求めた酸素ラジカル量を横軸に、レジストのアッシングレートを縦軸にしたグラフを示す。ここで、レジストのアッシングレートは、Oラジカル量に比例する量となるはずであるが、アクチノメトリ法によって求められたOラジカル濃度は、アッシングレートに対して比例した値とはなっておらず、正確なOラジカル濃度がモニタできていないことがわかる。   However, the actinometry method described above cannot accurately monitor the amount of O radicals. FIG. 7 shows a graph in which the horizontal axis represents the amount of oxygen radicals determined by the actinometry method and the vertical axis represents the ashing rate of the resist. Here, the ashing rate of the resist should be an amount proportional to the amount of O radicals, but the O radical concentration determined by the actinometry method is not a value proportional to the ashing rate, It can be seen that an accurate O radical concentration cannot be monitored.

これは、通常測定される酸素の発光強度(波長λ=777nm)には、O原子ラジカルの発光だけではなく、酸素分子(O2)の解離性発光が含まれるにもかかわらず、アクチノメトリ法においては、測定された波長λ=777nmの発光強度をOラジカルのみの発光とみなしてOラジカル濃度を求めるためである。 This is because, in spite of the fact that the emission intensity of oxygen (wavelength λ = 777 nm) usually measured includes not only O atom radical emission but also dissociative emission of oxygen molecules (O 2 ), the actinometry method This is for determining the O radical concentration by regarding the measured emission intensity at the wavelength λ = 777 nm as the emission of only O radicals.

そこで本発明は、簡便な方法でかつ精度良く特定の原子ラジカル量をモニターすることが可能なプラズマモニタ方法、および確実に処理制御を行うことが可能なプラズマ処理方法、半導体装置の製造方法、およびプラズマ処理装置を提供することを目的としている。   Accordingly, the present invention provides a plasma monitoring method capable of monitoring a specific atomic radical amount with high accuracy and a simple method, a plasma processing method capable of reliably performing processing control, a semiconductor device manufacturing method, and An object of the present invention is to provide a plasma processing apparatus.

このような目的を達成するための本発明のプラズマモニタ方法は、分子性原料ガスと希ガスとを処理雰囲気内に導入して行われるプラズマ処理の際に、前記分子性原料ガスの解離によって生じた原子ラジカル量を検知するプラズマモニタ方法であり、処理雰囲気内における前記分子性原料ガスの分圧と、前記希ガスの発光強度と、前記処理雰囲気内における当該希ガスの分圧とから当該分子性原料ガスの解離度を求め、この解離度から前記原子ラジカル量を予測することを特徴としている。   The plasma monitoring method of the present invention for achieving such an object is caused by dissociation of the molecular source gas during the plasma processing performed by introducing the molecular source gas and the rare gas into the processing atmosphere. Monitoring method for detecting the amount of atomic radicals, and the molecular pressure of the molecular source gas in the processing atmosphere, the emission intensity of the rare gas, and the partial pressure of the rare gas in the processing atmosphere. It is characterized in that the degree of dissociation of the organic source gas is obtained and the amount of the atomic radical is predicted from the degree of dissociation.

本来、原子ラジカル量は、処理レートに比例するべき値である。今回、分子性原料ガスの解離度は、プラズマ処理における処理レートに非常に良く比例することが見いだされた。   Originally, the atomic radical amount is a value that should be proportional to the treatment rate. It has now been found that the degree of dissociation of molecular source gas is very well proportional to the processing rate in plasma processing.

具体的には、分子性原料ガスの解離度は、分子性原料ガスの分圧P1と、希ガスの発光強度Iと、処理雰囲気内における当該希ガスの分圧P2とから、解離度E=P1×(I/P2)として求められる。図1には、分子性原料ガスとして酸素分子ガスを用い、希ガスとしてアルゴンを用いた場合のアッシング処理(プラズマ処理)において、このようにして求めた酸素分子ガスの解離度Eを横軸にとり、アッシングレート(処理レート)を縦軸に取ったグラフを示す。このグラフに示すように、本発明により求められた解離度Eは、アッシングレート(すなわち酸素ラジカル量)に非常に良く比例する精度の良い値となっていることが分かる。   Specifically, the dissociation degree of the molecular raw material gas is determined by the dissociation degree E = the partial pressure P1 of the molecular raw material gas, the emission intensity I of the rare gas, and the partial pressure P2 of the rare gas in the processing atmosphere. It is calculated as P1 × (I / P2). In FIG. 1, in the ashing process (plasma process) when oxygen molecular gas is used as the molecular source gas and argon is used as the rare gas, the dissociation degree E of the oxygen molecular gas thus obtained is plotted on the horizontal axis. The graph which took the ashing rate (processing rate) on the vertical axis | shaft is shown. As shown in this graph, it can be seen that the dissociation degree E obtained by the present invention is a highly accurate value that is very well proportional to the ashing rate (that is, the amount of oxygen radicals).

このため、このように処理レートに対して非常によく比例する解離度から原子ラジカル量を予測することで、解離性発光等の他の発光要因に左右されずに、精度良好に原子ラジカル量が予測されることになる。   Therefore, by predicting the amount of atomic radicals from the degree of dissociation that is very well proportional to the treatment rate in this way, the amount of atomic radicals can be accurately determined without being influenced by other light emission factors such as dissociative light emission. Will be predicted.

また本発明は、このようなプラズマモニタ方法によって求められる原子ラジカル量が、所定の原子ラジカル量となるように処理条件を制御するプラズマ処理方法である。さらに本発明は、このようなプラズマ処理によって基板表面の加工を行う半導体装置の製造方法でもある。   The present invention is also a plasma processing method for controlling processing conditions so that the atomic radical amount determined by such a plasma monitoring method becomes a predetermined atomic radical amount. Furthermore, the present invention is also a method for manufacturing a semiconductor device in which a substrate surface is processed by such plasma processing.

このようなプラズマ処理方法では、処理雰囲気内の原子ラジカル量を精度良好に制御しながらプラズマ処理が行われる。したがって、過剰なラジカルの発生を防止したり、処理レートを高精度に制御した処理が行われる。   In such a plasma processing method, plasma processing is performed while accurately controlling the amount of atomic radicals in the processing atmosphere. Therefore, the process which prevented generation | occurrence | production of an excessive radical or controlled the processing rate with high precision is performed.

そして、このようなプラズマ処理を行う半導体装置の製造方法では、過剰ラジカルによるダメージを防止したり、処理レートが高精度に制御された処理によって形状精度の良好な加工が行われる。   And in the manufacturing method of the semiconductor device which performs such a plasma process, the process with favorable shape precision is performed by the process by which the damage by excess radical was prevented or the process rate was controlled with high precision.

さらに、本発明は、上述したプラズマ処理方法を行うためのプラズマ処理装置であり、内部でプラズマ処理が行われる処理室と、この処理室内における特定波長の発光を検出する発光検出手段を備えている。さらに、この発光検出手段で測定された希ガスの発光強度と、処理室内における希ガスの密度と、処理室内における分子性原料ガスの分圧とから、当該分子性原料ガスが解離して発生した原子の原子ラジカル量を求める演算手段が設けられ、この演算手段で求めた原子ラジカル量に基づいて、処理条件を制御するプロセス制御手段とを備えている。   Furthermore, the present invention is a plasma processing apparatus for performing the above-described plasma processing method, and includes a processing chamber in which plasma processing is performed, and a light emission detecting means for detecting light emission of a specific wavelength in the processing chamber. . Furthermore, the molecular source gas is generated by dissociation from the emission intensity of the rare gas measured by the luminescence detection means, the density of the rare gas in the processing chamber, and the partial pressure of the molecular source gas in the processing chamber. Calculation means for obtaining the atomic radical amount of the atom is provided, and process control means for controlling processing conditions based on the atomic radical amount obtained by the calculation means.

このような構成のプラズマ処理装置によれば、上述した本発明のプラズマ処理が行われる。   According to the plasma processing apparatus having such a configuration, the above-described plasma processing of the present invention is performed.

以上説明したように、本発明のプラズマモニタ方法によれば、処理レートに対して非常によく比例する解離度から原子ラジカル量を予測することで、解離性発光等の他の発光要因に左右されずに、精度良好に原子ラジカル量を予測することが可能になる。また、本発明のプラズマ処理方法によれば、このようなモニタ方法によって予測された原子ラジカル量に基づいて処理条件を制御することにより、過剰なラジカルの発生を防止したり、処理レートを高精度に制御した処理を行うことが可能になる。そして、このようなプラズマ処理方法を行う本発明の半導体装置の製造方法によれば、過剰ラジカルによるダメージを防止したり、処理レートが高精度に制御された処理によって形状精度の良好な加工を行うことが可能になる。さらに本発明のプラズマ処理装置によれば、上述した本発明のプラズマ処理を実施することが可能になる。   As described above, according to the plasma monitoring method of the present invention, the amount of atomic radicals is predicted from the degree of dissociation that is very proportional to the processing rate, and thus depends on other light emission factors such as dissociative light emission. Therefore, it is possible to predict the atomic radical amount with good accuracy. In addition, according to the plasma processing method of the present invention, by controlling the processing conditions based on the atomic radical amount predicted by such a monitoring method, generation of excessive radicals can be prevented, or the processing rate can be increased with high accuracy. It is possible to perform controlled processing. Then, according to the method for manufacturing a semiconductor device of the present invention that performs such a plasma processing method, damage due to excessive radicals is prevented, or processing with good shape accuracy is performed by processing whose processing rate is controlled with high accuracy. It becomes possible. Furthermore, according to the plasma processing apparatus of the present invention, the above-described plasma processing of the present invention can be performed.

以下、本発明の実施の形態を、プラズマ処理方法から順に詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail in order from the plasma processing method.

<プラズマモニタ方法>
実施形態で説明するプラズマモニタ方法は、分子性原料ガスと希ガスとを処理雰囲気内に導入して行われるプラズマ処理の際に、分子性原料ガスの解離によって生じた原子ラジカル量を検知するプラズマモニタ方法である。
<Plasma monitor method>
The plasma monitoring method described in the embodiment is a plasma that detects the amount of atomic radicals generated by dissociation of a molecular source gas during plasma processing performed by introducing a molecular source gas and a rare gas into the processing atmosphere. It is a monitoring method.

ここで、分子性原料ガスとは、酸素分子(O2)、水素分子(H2)、窒素分子(N2)、水(H2O)、アンモニア(NH3)等であり、プラズマ処理の目的に応じたガスが用いられる。 Here, the molecular source gas is an oxygen molecule (O 2 ), a hydrogen molecule (H 2 ), a nitrogen molecule (N 2 ), water (H 2 O), ammonia (NH 3 ), etc. A gas suitable for the purpose is used.

一方、希ガスは、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)の中から、分子性原料ガスに応じて選択される。特に、本実施形態のモニタ方法を行うプラズマ処理では、希ガスのうち、分子性原料ガスを解離させて原子ラジカルを得る場合に与えるエネルギーで発光可能な発光衝突断面積を有するものを用いることとする。さらに希ガスは、分子性原料ガスの解離衝突断面積により近い発光衝突断面積を有するものを用いることが好ましい。尚、発光衝突断面積(cross section)とは、原子や分子に電子が衝突して光る確率であり、エネルギーの関数となっている。また同様に、解離衝突断面積とは、分子に電子が衝突して解離する確率であり、エネルギーの関数となっている。   On the other hand, the rare gas is selected from helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) according to the molecular source gas. In particular, in the plasma treatment that performs the monitoring method of the present embodiment, among the rare gases, a gas having a light emission collision cross section that can emit light with energy given when dissociating the molecular source gas to obtain atomic radicals is used. To do. Further, it is preferable to use a noble gas having a light emission collision cross section that is closer to the dissociation collision cross section of the molecular source gas. The light emission collision cross section is the probability that an electron collides with an atom or molecule and shines, and is a function of energy. Similarly, the dissociation collision cross section is the probability that an electron collides with a molecule and dissociates, and is a function of energy.

そして、プラズマ処理の際には、先ず、処理雰囲気内における希ガス(例えばここではAr)の発光強度IArを測定する。これは、発光検出器と分光器とを用いて特定の希ガスの発光強度IArのみ測定する。また、処理雰囲気内に導入した分子性原料ガス(例えばここでは酸素分子O2)の分圧PO2(P2)と希ガスの分圧PAr(P1)とを求める。これらの分圧PO2,PArは、処理雰囲気内に導入する希ガスの流量と分子性原料ガスの流量、および処理雰囲気内の圧力とから求める。 In plasma processing, first, the emission intensity IAr of a rare gas (for example, Ar in this case) in the processing atmosphere is measured. In this method, only the emission intensity IAr of a specific rare gas is measured using a light emission detector and a spectroscope. Further, the partial pressure PO 2 (P2) of the molecular source gas (for example, oxygen molecule O 2 here) introduced into the processing atmosphere and the partial pressure PAr (P1) of the rare gas are obtained. These partial pressures PO 2 and PAr are obtained from the flow rate of the rare gas introduced into the processing atmosphere, the flow rate of the molecular source gas, and the pressure in the processing atmosphere.

そして、希ガスの発光強度IAr、分子性原料ガスの分圧PO2、希ガスの分圧PArとから、分子性原料ガス(O2)の解離度EO2を、次式(1)のように求める。EO2=PO2×(IAr/PAr)…(1) Then, from the emission intensity IAr of the rare gas, the partial pressure PO 2 of the molecular source gas, and the partial pressure PA Ar of the rare gas, the dissociation degree EO 2 of the molecular source gas (O 2 ) is expressed by the following equation (1). Ask for. EO 2 = PO 2 × (IAr / PAr) (1)

ここで、解離することのない希ガス(Ar)の発光IArは、希ガスの分圧PAr、電子密度Ne、上述した発光衝突断面積σAr、および電子エネルギーvを用いて次式(2)のように表現できる。IAr=PAr・Ne<σAr・v>…(2)この式(2)から、式(1)における(IAr/PAr)=Ne<σAr・v>となる。   Here, the emission IAr of the rare gas (Ar) that does not dissociate is expressed by the following equation (2) using the partial pressure PAr of the rare gas, the electron density Ne, the above-described emission collision cross section σAr, and the electron energy v. It can be expressed as follows. IAr = PAr · Ne <σAr · v> (2) From this equation (2), (IAr / PAR) = Ne <σAr · v> in equation (1).

一方、分子性原料ガス(O2)の解離も、上述した発光と度同じく電子衝突によって生じる現象であり、解離度EO2は、分子性原料ガスの分圧PO2、電子密度Ne、上述した解離衝突断面積σO2、および電子エネルギーvを用いて次式(3)のように表現できる。EO2=PO2・Ne<σO2・v>…(3) On the other hand, the dissociation of the molecular source gas (O 2 ) is also a phenomenon caused by electron collision in the same manner as the light emission described above, and the degree of dissociation EO 2 is the partial pressure PO 2 of the molecular source gas, the electron density Ne, The dissociation collision cross section σO 2 and the electron energy v can be used to express the following equation (3). EO 2 = PO 2 · Ne <σO 2 · v> (3)

そこで、プラズマ処理中における分子性原料ガスの解離衝突断面積σO2を、希ガスの発光衝突断面積σArと同等と見なすことにより、式(3)のNe<σO2・v>を、Ne<σAr・v>=(IAr/PAr)と入れ替えると、上記式(1)が得られるのである。このように、プラズマ処理中における分子性原料ガスの解離衝突断面積σO2を、希ガスの発光衝突断面積σArと同等と見なすためには、分子性原料ガスの解離衝突断面積により近い発光衝突断面積を有する希ガスを選択することで、さらに分離性原料ガスの解離度EO2の数値精度が向上する。 Therefore, by considering the dissociation collision cross section σO 2 of the molecular source gas during the plasma treatment to be equivalent to the emission collision cross section σAr of the rare gas, Ne <σO 2 · v> in the equation (3) is expressed as Ne < Replacing σAr · v> = (IAr / PAr) yields the above equation (1). Thus, in order to regard the dissociation collision cross section σO 2 of the molecular source gas during plasma processing as equivalent to the emission collision cross section σAr of the rare gas, the light emission collision closer to the dissociation collision cross section of the molecular source gas By selecting a rare gas having a cross-sectional area, the numerical accuracy of the dissociation degree EO 2 of the separable source gas is further improved.

そして、以上のようにして求めた分子性原料ガスの解離度EO2から、分子性原料ガスの解離によって生じた原子ラジカル量を予測する。 Then, the amount of atomic radicals generated by the dissociation of the molecular source gas is predicted from the degree of dissociation EO 2 of the molecular source gas obtained as described above.

図1には、分子性原料ガスとして酸素分子ガス(O2)を用い、希ガスとしてアルゴン(Ar)を用いた場合のアッシング処理(プラズマ処理)において、以上のようにして求めた解離量E(EO2)を横軸にとり、Oラジカル量に比例するアッシングレートを縦軸に取ったグラフを示す。尚、このアッシング処理においては処理条件の各因子(圧力、Power、流量)を、次の範囲で変化させている。ガスの流量:O2/Ar=200/10sccm〜5000/250sccm、処理雰囲気内圧力:1〜100Pa、高周波電力(Power):500〜5000W。ただし基板温度は30℃である。 FIG. 1 shows the dissociation amount E obtained as described above in the ashing process (plasma process) when oxygen molecular gas (O 2 ) is used as the molecular source gas and argon (Ar) is used as the rare gas. A graph with (EO 2 ) on the horizontal axis and the ashing rate proportional to the amount of O radicals on the vertical axis is shown. In this ashing process, each factor (pressure, power, flow rate) of the processing conditions is changed within the following range. Gas flow rate: O 2 / Ar = 200/10 sccm to 5000/250 sccm, processing atmosphere pressure: 1 to 100 Pa, high frequency power (Power): 500 to 5000 W. However, the substrate temperature is 30 ° C.

このグラフに示すように、本発明により求められた解離量Eは、アッシングレート(すなわち酸素ラジカル量)に非常に良く比例する精度の良い値となっていることが分かる。このため、このようにして得られた解離量Eから非常に精度高くOラジカル量(原子ラジカル量)量を予測することが可能になる。   As shown in this graph, it can be seen that the dissociation amount E obtained by the present invention is a highly accurate value that is very well proportional to the ashing rate (that is, the amount of oxygen radicals). For this reason, it becomes possible to predict the amount of O radicals (amount of atomic radicals) with very high accuracy from the dissociation amount E thus obtained.

<プラズマ処理方法>
そして、実施形態のプラズマ処理方法では、上述したプラズマモニタ方法によって予測した原子ラジカル量、例えば酸素(O)ラジカル量に基づき、処理雰囲気内の原子ラジカル量を精度良好に制御しながらプラズマ処理を行う。この場合、予め設定された原子ラジカル量となるように、または所定の処理レートとなるように処理条件を制御することとする。
<Plasma treatment method>
In the plasma processing method of the embodiment, the plasma processing is performed while accurately controlling the atomic radical amount in the processing atmosphere based on the atomic radical amount predicted by the above-described plasma monitoring method, for example, the oxygen (O) radical amount. . In this case, the processing conditions are controlled so as to achieve a predetermined atomic radical amount or a predetermined processing rate.

これにより、精度良好に予測されたラジカル量(処理レート)に基づいて、ラジカル量(処理レート)の制御が行われることになり、過剰なラジカルの発生を防止したり、処理レートを高精度に制御したプラズマ処理を行うことが可能になる。この結果、過剰ラジカルによるダメージを生じさせず、また処理量が高精度に制御されることで例えば形状精度の良好なプラズマ処理を行うことが可能になる。   As a result, the amount of radicals (treatment rate) is controlled based on the amount of radicals (treatment rate) predicted with good accuracy, thereby preventing the generation of excessive radicals and increasing the treatment rate with high precision. Controlled plasma processing can be performed. As a result, it is possible to perform plasma processing with good shape accuracy, for example, without causing damage due to excessive radicals and controlling the processing amount with high accuracy.

<プラズマ処理装置>
図2には、上述したプラズマ処理法を行うためのプラズマ処理装置の一例を示す構成図である。次に、この図に用いてプラズマ処理装置の実施形態を説明する。
<Plasma processing equipment>
FIG. 2 is a configuration diagram illustrating an example of a plasma processing apparatus for performing the above-described plasma processing method. Next, an embodiment of the plasma processing apparatus will be described with reference to this drawing.

この図に示すプラズマ処理装置1は、内部でプラズマ処理が行われる処理室3を備えている。この処理室3内には、被処理基板Wを載置するステージ4が設けられ、このステージ4には電圧が印加される構成となっている。また処理室3には、この処理室3内に処理ガスを導入するガス導入管5が設けられ、このガス導入管5には処理室3内に所定流量で複数のガスを導入するための流量制御部6が設けられている。さらに、処理室3の外周には、処理室3内にプラズマを発生させるためのコイル7が配置されている。尚、以上の構成は、通常のプラズマ処理装置と同様であり、また、処理室3内においてプラズマ処理が可能であればこのような構成に限定されることはない。   The plasma processing apparatus 1 shown in this figure includes a processing chamber 3 in which plasma processing is performed. In the processing chamber 3, a stage 4 for placing the substrate W to be processed is provided, and a voltage is applied to the stage 4. Further, the processing chamber 3 is provided with a gas introduction pipe 5 for introducing a processing gas into the processing chamber 3. The gas introduction pipe 5 has a flow rate for introducing a plurality of gases into the processing chamber 3 at a predetermined flow rate. A control unit 6 is provided. Further, a coil 7 for generating plasma in the processing chamber 3 is disposed on the outer periphery of the processing chamber 3. The above configuration is the same as that of a normal plasma processing apparatus, and is not limited to such a configuration as long as plasma processing can be performed in the processing chamber 3.

さらにこのプラズマ処理装置1には、処理室3内における特定波長の発光を検出する発光検出手段8が設けられている。この発光検出手段8は、処理室3内における発光を検出するための発光検出部8aと、発光検出部8aで検出された光の分光部8bとで構成されている。   Further, the plasma processing apparatus 1 is provided with a light emission detecting means 8 for detecting light emission of a specific wavelength in the processing chamber 3. The light emission detecting means 8 includes a light emission detection unit 8a for detecting light emission in the processing chamber 3, and a light spectral unit 8b detected by the light emission detection unit 8a.

そして、この分光部8bには、演算手段9が接続されている。この演算手段9は、処理室3内における分子性原料ガスの分圧P1と、発光検出手段8で測定された希ガスの発光強度Iと、処理室3内における希ガスの分圧P2とから、当該分子性原料ガスの解離度Eを求めるものであり、上述したプラズマモニタ方法で説明したように解離度Eを算出する。尚、この演算手段9は、次に説明するプロセス制御手段10から、処理室3内における分子性原料ガスの分圧P1と、処理室3内における希ガスの分圧P2に関する情報を得ることとする。   And the calculating means 9 is connected to this spectroscopy part 8b. This calculating means 9 is based on the partial pressure P1 of the molecular source gas in the processing chamber 3, the emission intensity I of the rare gas measured by the luminescence detection means 8, and the partial pressure P2 of the rare gas in the processing chamber 3. The degree of dissociation E of the molecular source gas is obtained, and the degree of dissociation E is calculated as described in the plasma monitoring method described above. The calculation means 9 obtains information on the partial pressure P1 of the molecular source gas in the processing chamber 3 and the partial pressure P2 of the rare gas in the processing chamber 3 from the process control means 10 described below. To do.

そして、この演算手段9に接続された上記プロセス制御手段10は、コイル7の電源7a、流量制御部6、ここでの図示を省略した処理室3の排気部や外部入力手段に接続されている。そして、電源7aおよび流量制御部6を調整することによって、演算手段9で求めた解離度Eから予測される原子ラジカル量に基づいて処理条件を制御する。ここで制御される処理条件は、例えば、流量制御部6で制御されるガス流量および処理室3内の圧力、電源7aから印加される高周波電力(Power)、であることとする。この際、原子ラジカル量が、外部入力手段から入力設定された所定の原子ラジカル量となるように、処理条件の制御がなされることとする。   The process control means 10 connected to the calculation means 9 is connected to the power source 7a of the coil 7, the flow rate control part 6, the exhaust part of the processing chamber 3 and the external input means not shown here. . Then, by adjusting the power source 7 a and the flow rate control unit 6, the processing conditions are controlled based on the atomic radical amount predicted from the dissociation degree E obtained by the calculation means 9. The processing conditions controlled here are, for example, the gas flow rate controlled by the flow rate control unit 6, the pressure in the processing chamber 3, and the high-frequency power (Power) applied from the power source 7a. At this time, the processing conditions are controlled such that the atomic radical amount becomes a predetermined atomic radical amount input and set from the external input means.

このようなプラズマ処理装置1によれば、分子性原料ガスおよび希ガスをそれぞれ流量制御しながらガス導入管5から処理室3内に導入することで、上述したように高精度にラジカル量が制御されたプラズマ処理を行うことが可能である。   According to such a plasma processing apparatus 1, the radical amount is controlled with high accuracy as described above by introducing the molecular source gas and the rare gas into the processing chamber 3 from the gas introduction pipe 5 while controlling the flow rates of the molecular raw material gas and the rare gas, respectively. Plasma treatment can be performed.

<半導体装置の製造方法−1>
ここでは、上述したプラズマ処理方法を、低誘電率膜であるSiOCH膜33に孔形成する場合に適用した実施形態を製造方法の第1例として説明する。
<Semiconductor Device Manufacturing Method-1>
Here, an embodiment in which the above-described plasma processing method is applied when holes are formed in the SiOCH film 33 which is a low dielectric constant film will be described as a first example of the manufacturing method.

先ず、図3(1)に示すように、基板30上に、SiC膜31を介してSiOCH膜33を形成し、さらにSiO2膜35を形成する。そして、レジスト37をマスクにしたエッチングにより、SiO2膜35およびSiOCH膜33に孔39を形成する。しかる後、マスクに用いたレジスト37を除去するためのアッシング処理をプラズマ処理として行う。 First, as shown in FIG. 3A, a SiOCH film 33 is formed on a substrate 30 via a SiC film 31, and a SiO 2 film 35 is further formed. Then, holes 39 are formed in the SiO 2 film 35 and the SiOCH film 33 by etching using the resist 37 as a mask. Thereafter, an ashing process for removing the resist 37 used for the mask is performed as a plasma process.

このアッシング処理においては、分子性原料ガスとして酸素分子(O2)を用い、希ガスとしてアルゴン(Ar)を用いる。そして、酸素分子(O2)の解離量EO2を求め、この解離量EO2から予測されるアッシングレート(Oラジカル量)が低い領域A(図1参照)となるように、処理条件を制御しながらアッシング処理を行う。このように、処理条件を制御しながらアッシング処理を行うことにより、過剰のOラジカルによるダメージを抑える。 In this ashing process, oxygen molecules (O 2 ) are used as the molecular source gas, and argon (Ar) is used as the rare gas. Then, the dissociation amount EO 2 of oxygen molecules (O 2 ) is obtained, and the processing conditions are controlled so that the ashing rate (O radical amount) predicted from the dissociation amount EO 2 is in the region A (see FIG. 1). While performing the ashing process. In this way, the ashing process is performed while controlling the processing conditions, thereby suppressing damage due to excessive O radicals.

次に、図3(2)に示すように、後処理として、希フッ酸を用いた湿式処理を行う。   Next, as shown in FIG. 3B, wet processing using dilute hydrofluoric acid is performed as post-processing.

以上の手順によれば、O2の解離量EO2から予測されるアッシングレート(Oラジカル量)が低い領域でアッシング処理を行うことにより、確実に過剰のOラジカルの発生を防止できる。したがって、過剰のOラジカルによるSiOCH膜33のダメージが抑えられ、変質層厚さを10nm以下に小さく抑えることが可能になる。これにより、SiOCH膜33に対して、形状精度良好に孔39形成を行うことが可能になる。 According to the above procedure, by performing the ashing process in a region where the ashing rate (O radical amount) predicted from the O 2 dissociation amount EO 2 is low, it is possible to reliably prevent the generation of excessive O radicals. Therefore, damage to the SiOCH film 33 due to excessive O radicals can be suppressed, and the altered layer thickness can be suppressed to 10 nm or less. As a result, the holes 39 can be formed in the SiOCH film 33 with good shape accuracy.

<半導体装置の製造方法−2>
ここでは、第1例と同様に、上述したプラズマ処理方法を、低誘電率膜であるSiOCH膜33に孔形成する場合に適用した他の実施形態を製造方法の第2例として説明する。
<Semiconductor Device Manufacturing Method-2>
Here, as in the first example, another embodiment in which the above-described plasma processing method is applied when holes are formed in the SiOCH film 33, which is a low dielectric constant film, will be described as a second example of the manufacturing method.

先ず、上述した第1例で図3(1)を用いて説明したと同様に、SiO2膜35およびSiOCH膜33に孔39を形成する。 First, the holes 39 are formed in the SiO 2 film 35 and the SiOCH film 33 in the same manner as described with reference to FIG.

しかる後、マスクに用いたレジスト37を除去するためのアッシング処理をプラズマ処理として行う。このアッシング処理においては、分子性原料ガスとして酸素よりも反応性の弱い水素分子(H2)を用い、希ガスとして水素分子(H2)の解離衝突断面積により近い発光衝突断面積を有するヘリウム(He)を用いる。尚、このようなガス系によるアッシング処理においても、下記の処理条件の範囲において、分子性原料ガスである水素分子(H2)の解離量EH2が、アッシングレート(すなわちHラジカル量に)非常に良好に比例することが確認されている。ガスの流量:H2/He=200/10sccm〜5000/250sccm、処理雰囲気内圧力:1〜100Pa、高周波電力(Power)500〜5000W。ただし基板温度は30℃である。 Thereafter, an ashing process for removing the resist 37 used for the mask is performed as a plasma process. In this ashing process, hydrogen molecules (H 2 ) that are less reactive than oxygen are used as the molecular source gas, and helium having a light emission collision cross section that is closer to the dissociation collision cross section of the hydrogen molecules (H 2 ) as the rare gas. (He) is used. Even in such an ashing process using a gas system, the dissociation amount EH 2 of the hydrogen molecule (H 2 ), which is a molecular raw material gas, is very low in the ashing rate (that is, the H radical amount) within the range of the following processing conditions. It has been confirmed that it is proportional to Gas flow rate: H2 / He = 200/10 sccm to 5000/250 sccm, processing atmosphere pressure: 1 to 100 Pa, high frequency power (Power) 500 to 5000 W. However, the substrate temperature is 30 ° C.

そして、水素分子(H2)の解離量EH2を求め、この解離量EH2から予測されるアッシングレート(Hラジカル量)が低い領域となるように、処理条件を制御しながらアッシング処理を行う。このように、処理条件を制御しながらアッシング処理を行うことにより、過剰のHラジカルによるダメージを抑える。 Then, a dissociation amount EH 2 of hydrogen molecules (H 2 ) is obtained, and an ashing process is performed while controlling the processing conditions so that the ashing rate (H radical amount) predicted from the dissociation amount EH 2 is low. . In this way, the ashing process is performed while controlling the processing conditions, thereby suppressing damage caused by excessive H radicals.

以上の後、図3(2)に示すように、後処理として、希フッ酸を用いた湿式処理を行うことは、第1例と同様である。   After the above, as shown in FIG. 3 (2), the wet process using dilute hydrofluoric acid is performed as the post process as in the first example.

このような方法であっても、分子性原料ガスであるH2の解離量EH2から予測されるアッシングレート(Hラジカル量)によって処理条件を制御することにより、確実に過剰のHラジカルの発生を防止できる。この結果、第1例と同様に、SiOCH膜33に対して、形状精度良好に孔39の形成を行うことが可能になる。 Even in such a method, by controlling the processing conditions by the ashing rate (the amount of H radicals) predicted from the dissociation amount EH 2 of H 2 which is the molecular raw material gas, the generation of excess H radicals is ensured. Can be prevented. As a result, as in the first example, the hole 39 can be formed in the SiOCH film 33 with good shape accuracy.

<半導体装置の製造方法−3>
ここでは、上述したプラズマ処理方法を、ゲート酸化膜の窒化に適用した実施形態を製造方法の第3例として説明する。
<Semiconductor Device Manufacturing Method-3>
Here, an embodiment in which the above-described plasma processing method is applied to nitridation of a gate oxide film will be described as a third example of the manufacturing method.

先ず、図4(1)に示すように、シリコン基板41上に、酸化シリコン膜43を形成する。そして、この酸化シリコン膜43の表面を、窒素ラジカルに晒すことにより、酸化シリコン膜43の表面を窒素ラジカルにより窒化処理(プラズマ処理)する。この窒化処理においては、分子性原料ガスとして窒素分子(N2)を用い、希ガスとして窒素分子(N2)の解離衝突断面積とより近い発光衝突断面積を有する近いヘリウム(He)を用いる。尚、このようなガス系によるアッシング処理においても、下記の条件の範囲において、分子性原料ガスである窒素分子(N2)の解離量EN2が、アッシングレート(すなわちNラジカル量に)非常に良好に比例することが確認されている。ガスの流量:N2/He=200/10sccm〜5000/250sccm、処理雰囲気内圧力:1〜100Pa、高周波電力(Power)500〜5000W。ただし基板温度は30℃である。これは、酸化膜の窒化が、Nラジカルの供給、および結合のためのダングリングボンド生成に依存しているためと考えられる。 First, as shown in FIG. 4A, a silicon oxide film 43 is formed on a silicon substrate 41. Then, by exposing the surface of the silicon oxide film 43 to nitrogen radicals, the surface of the silicon oxide film 43 is nitrided (plasma treated) with nitrogen radicals. In this nitriding process, using nitrogen molecules (N 2) as the molecular raw material gas, a close helium (He) having a closer emitting collision cross section and dissociation collision cross section of nitrogen molecules (N 2) as the rare gas . Even in the ashing process using such a gas system, the dissociation amount EN 2 of the nitrogen molecule (N 2 ), which is a molecular raw material gas, is very low in the ashing rate (that is, the amount of N radicals) within the range of the following conditions. It has been confirmed that it is in good proportion. Gas flow rate: N 2 / He = 200/10 sccm to 5000/250 sccm, processing atmosphere pressure: 1 to 100 Pa, high frequency power (Power) 500 to 5000 W. However, the substrate temperature is 30 ° C. This is presumably because the nitridation of the oxide film depends on the supply of N radicals and the generation of dangling bonds for bonding.

そして、窒素分子(N2)の解離量EN2を求め、この解離量EN2から予測される窒化レート(Nラジカル量)が低い領域となるように、処理条件を制御しながらアッシング処理を行う。このように、処理条件を制御しながらアッシング処理を行うことにより、過剰のNラジカルによるダメージを抑える。 Then, a dissociation amount EN 2 of nitrogen molecules (N 2 ) is obtained, and an ashing process is performed while controlling the processing conditions so that the nitriding rate (N radical amount) predicted from the dissociation amount EN 2 is in a low region. . In this way, by performing the ashing process while controlling the processing conditions, damage due to excessive N radicals is suppressed.

これにより、図4(2)に示すように、酸化シリコン膜43の表面層に窒化シリコン膜45を形成する。   Thereby, a silicon nitride film 45 is formed on the surface layer of the silicon oxide film 43 as shown in FIG.

このような方法であっても、分子性原料ガスであるN2の解離量EN2から予測される窒化レート(Nラジカル量)によって処理条件を制御することにより、プロセス制御性良好に窒化処理を行うことが可能である。 Even in such a way, by controlling the processing conditions by nitridation rate that is predicted from the dissociation amount EN 2 of N 2 is a molecular raw material gas (N radical amount), process controllability good nitriding Is possible.

<半導体装置の製造方法−4>
ここでは、上述したプラズマ処理方法を、多層レジストの加工に適用した実施形態を製造方法の第4例として説明する。
<Method for Manufacturing Semiconductor Device-4>
Here, an embodiment in which the above-described plasma processing method is applied to processing of a multilayer resist will be described as a fourth example of the manufacturing method.

先ず、図5(1)に示すように、基板50上に酸化シリコン51を介して下層レジスト53を形成し、さらにSOG膜55を形成し、さらにArFエキシマレーザ光用の上層レジスト57をパターン形成する。そして、この上層レジスト57をマスクにしてSOG膜55をエッチング加工する。   First, as shown in FIG. 5A, a lower layer resist 53 is formed on a substrate 50 via silicon oxide 51, an SOG film 55 is further formed, and an upper layer resist 57 for ArF excimer laser light is patterned. To do. Then, the SOG film 55 is etched using the upper layer resist 57 as a mask.

その後、図5(2)に示すように、SOG膜55をマスクにして下層レジスト53をパターンエッチングするためのエッチング処理をプラズマ処理として行う。   Thereafter, as shown in FIG. 5B, an etching process for pattern etching the lower resist 53 is performed as a plasma process using the SOG film 55 as a mask.

このアッシング処理においては、第1例と同様に、分子性原料ガスとして酸素分子(O2)を用い、希ガスとしてアルゴン(Ar)を用いる。そして、酸素分子(O2)の解離量EO2を求め、この解離量EO2から予測されるエッチングレート(Oラジカル量)が所定のエッチングレートとなるように処理条件を制御しながらエッチング処理を行う。これにより、SOG膜55の下方のサイドエッチ量を制御する。この際、下記の条件の範囲において、処理条件を制御する。ガスの流量:O2/Ar=500/50sccm〜5000/250sccm、処理雰囲気内圧力:1〜100Pa、高周波電力(Power)500〜5000W。ただし基板温度は30℃である。 In this ashing process, as in the first example, oxygen molecules (O 2 ) are used as the molecular source gas and argon (Ar) is used as the rare gas. Then, the amount of dissociation EO 2 of oxygen molecules (O 2 ) is obtained, and the etching process is performed while controlling the processing conditions so that the etching rate (O radical amount) predicted from the amount of dissociation EO 2 becomes a predetermined etching rate. Do. Thereby, the side etch amount below the SOG film 55 is controlled. At this time, the processing conditions are controlled within a range of the following conditions. Gas flow rate: O2 / Ar = 500/50 sccm to 5000/250 sccm, processing atmosphere pressure: 1 to 100 Pa, high frequency power (Power) 500 to 5000 W. However, the substrate temperature is 30 ° C.

以上の手順によれば、O2の解離量EO2から予測されるエッチングレート(Oラジカル量)を制御しながらエッチング処理を行うことで、サイドエッチ量が高精度に制御される。これにより、形状精度良好に下層レジスト53のエッチング加工を行うことが可能になる。 According to the above procedure, the side etching amount is controlled with high accuracy by performing the etching process while controlling the etching rate (O radical amount) predicted from the dissociation amount EO 2 of O 2 . As a result, the lower layer resist 53 can be etched with good shape accuracy.

原子ラジカルの発生量を正確に予測できるので、高精度なプラズマ処理が行われる製造方法に広く適用可能である。   Since the generation amount of atomic radicals can be accurately predicted, it can be widely applied to a manufacturing method in which high-precision plasma processing is performed.

分子性原料ガスの解離度と原子ラジカル量に比例する処理レートと関係を示すグラフである。It is a graph which shows the relationship between the dissociation degree of molecular source gas, and the processing rate proportional to the amount of atomic radicals. 実施形態のプラズマ処理装置の構成図である。It is a block diagram of the plasma processing apparatus of embodiment. 半導体装置の製造方法の第1例および第2例を説明する断面工程図である。It is sectional process drawing explaining the 1st example and 2nd example of the manufacturing method of a semiconductor device. 半導体装置の製造方法の第3例を説明する断面工程図である。It is sectional process drawing explaining the 3rd example of the manufacturing method of a semiconductor device. 半導体装置の製造方法の第4例を説明する断面工程図である。It is sectional process drawing explaining the 4th example of the manufacturing method of a semiconductor device. 従来のプラズマ処理を適用した半導体装置の製造工程の一例を示す断面工程図である。It is sectional process drawing which shows an example of the manufacturing process of the semiconductor device to which the conventional plasma processing is applied. アクチノメトリ法で求めた酸素ラジカル量と、レジストのアッシングレートを縦軸にしたグラフである。It is the graph which made the vertical axis | shaft the amount of oxygen radicals calculated | required by the actinometry method, and the ashing rate of a resist.

符号の説明Explanation of symbols

1…プラズマ処理装置、3…処理室、8…発光検出手段、9…演算手段、10…プロセス制御手段   DESCRIPTION OF SYMBOLS 1 ... Plasma processing apparatus, 3 ... Processing chamber, 8 ... Light emission detection means, 9 ... Calculation means, 10 ... Process control means

Claims (6)

分子性原料ガスと希ガスとを処理雰囲気内に導入して行われるプラズマ処理の際に、前記分子性原料ガスの解離によって生じた原子ラジカル量を検知するプラズマモニタ方法であって、
前記処理雰囲気内における前記分子性原料ガスの分圧と、前記希ガスの発光強度と、前記処理雰囲気内における当該希ガスの分圧とから当該分子性原料ガスの解離度を求め、この解離度から前記原子ラジカル量を予測する
ことを特徴とするプラズマモニタ方法。
A plasma monitoring method for detecting the amount of atomic radicals generated by dissociation of the molecular raw material gas during plasma processing performed by introducing a molecular raw material gas and a rare gas into a processing atmosphere,
The degree of dissociation of the molecular source gas is determined from the partial pressure of the molecular source gas in the processing atmosphere, the emission intensity of the noble gas, and the partial pressure of the noble gas in the processing atmosphere. The amount of atomic radicals is predicted from the plasma monitoring method.
請求項1記載のプラズマモニタ方法において、
前記解離度は、前記分子性原料ガスの分圧P1と、前記希ガスの発光強度Iと、前記処理雰囲気内における当該希ガスの分圧P2とから、解離度E=P1×(I/P2)によって求める
ことを特徴とするプラズマモニタ方法。
The plasma monitoring method according to claim 1,
The degree of dissociation is determined by the degree of dissociation E = P1 × (I / P2) from the partial pressure P1 of the molecular source gas, the emission intensity I of the noble gas, and the partial pressure P2 of the noble gas in the processing atmosphere. The plasma monitoring method characterized by calculating | requiring by these.
請求項1記載のプラズマモニタ方法において、
前記希ガスは、希ガスのうち前記分子性原料ガスの解離衝突断面積により近い発光衝突断面積を有するものを用いる
ことを特徴とするプラズマモニタ方法。
The plasma monitoring method according to claim 1,
As the rare gas, a rare gas having a light emission collision cross section closer to the dissociation collision cross section of the molecular source gas is used.
分子性原料ガスと希ガスとを処理雰囲気内に導入して行われるプラズマ処理方法であって、
前記処理雰囲気内における前記分子性原料ガスの分圧と、前記希ガスの発光強度と、前記処理雰囲気内における当該希ガスの分圧とから求めた当該分子性原料ガスの解離度から、前記原子ラジカル量を予測し、
前記原子ラジカル量が所定の原子ラジカル量となるように処理条件を制御する
ことを特徴とするプラズマ処理方法。
A plasma processing method performed by introducing a molecular source gas and a rare gas into a processing atmosphere,
From the dissociation degree of the molecular source gas determined from the partial pressure of the molecular source gas in the processing atmosphere, the emission intensity of the noble gas, and the partial pressure of the noble gas in the processing atmosphere, the atoms Predict the amount of radicals,
Process conditions are controlled so that the amount of atomic radicals becomes a predetermined amount of atomic radicals.
プラズマ処理によって基板表面の加工を行う半導体装置の製造方法であって、
分子性原料ガスと希ガスとをプラズマ処理を行う処理雰囲気内に導入し、
前記処理雰囲気内における前記分子性原料ガスの分圧と、前記希ガスの発光強度と、前記処理雰囲気内における当該希ガスの分圧とから求めた当該分子性原料ガスの解離度から、前記原子ラジカル量を予測し、
前記原子ラジカル量が所定の原子ラジカル量となるように処理条件を制御しながら前記プラズマ処理を行う
ことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device for processing a substrate surface by plasma treatment,
A molecular source gas and a rare gas are introduced into a processing atmosphere for plasma processing,
From the dissociation degree of the molecular source gas determined from the partial pressure of the molecular source gas in the processing atmosphere, the emission intensity of the noble gas, and the partial pressure of the noble gas in the processing atmosphere, the atoms Predict the amount of radicals,
The method of manufacturing a semiconductor device, wherein the plasma processing is performed while controlling processing conditions such that the atomic radical amount becomes a predetermined atomic radical amount.
内部でプラズマ処理が行われる処理室と、
前記処理室内における特定波長の発光を検出する発光検出手段と、
前記処理室内における分子性原料ガスの分圧と、前記発光検出手段で測定された希ガスの発光強度と、前記処理室内における希ガスの分圧とから、当該分子性原料ガスの解離度を求める演算手段と、
前記演算手段で求めた解離度から予測される原子ラジカル量に基づいて、処理条件を制御するプロセス制御手段とを備えた
ことを特徴とするプラズマ処理装置。
A processing chamber in which plasma processing is performed, and
Light emission detection means for detecting light emission of a specific wavelength in the processing chamber;
The degree of dissociation of the molecular source gas is obtained from the partial pressure of the molecular source gas in the processing chamber, the emission intensity of the rare gas measured by the emission detection means, and the partial pressure of the rare gas in the processing chamber. Computing means;
A plasma processing apparatus, comprising: process control means for controlling processing conditions based on the amount of atomic radicals predicted from the degree of dissociation obtained by the computing means.
JP2003275124A 2003-07-16 2003-07-16 Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus Expired - Fee Related JP3873943B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003275124A JP3873943B2 (en) 2003-07-16 2003-07-16 Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus
US10/877,391 US7439068B2 (en) 2003-07-16 2004-06-25 Plasma monitoring method, plasma processing method, method of manufacturing semiconductor device, and plasma processing system
TW093121170A TWI249974B (en) 2003-07-16 2004-07-15 Plasma monitoring method, plasma processing method, method of manufacturing semiconductor device, and plasma processing system
KR1020040055686A KR20050009243A (en) 2003-07-16 2004-07-16 Plasma Monitoring Method, Plasma Processing Method, Manufacturing Method of Semiconductor Device, and Plasma Processing Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275124A JP3873943B2 (en) 2003-07-16 2003-07-16 Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2005039079A JP2005039079A (en) 2005-02-10
JP3873943B2 true JP3873943B2 (en) 2007-01-31

Family

ID=34074537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275124A Expired - Fee Related JP3873943B2 (en) 2003-07-16 2003-07-16 Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus

Country Status (4)

Country Link
US (1) US7439068B2 (en)
JP (1) JP3873943B2 (en)
KR (1) KR20050009243A (en)
TW (1) TWI249974B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250373B2 (en) * 2004-08-27 2007-07-31 Applied Materials, Inc. Method and apparatus for etching material layers with high uniformity of a lateral etch rate across a substrate
JP4484110B2 (en) * 2005-03-29 2010-06-16 国立大学法人名古屋大学 Plasma processing method and plasma processing apparatus
JP2009049383A (en) * 2007-07-26 2009-03-05 Panasonic Corp Manufacturing apparatus of semiconductor device and manufacturing method for semiconductor device
JP5093685B2 (en) * 2008-08-08 2012-12-12 独立行政法人産業技術総合研究所 Equipment for measuring the gas decomposition rate of plasma equipment
JP5476161B2 (en) * 2010-03-02 2014-04-23 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US8396583B2 (en) * 2010-03-25 2013-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for implementing virtual metrology in semiconductor fabrication
JP6220319B2 (en) * 2014-07-17 2017-10-25 株式会社日立ハイテクノロジーズ Data analysis method, plasma etching method, and plasma processing apparatus
TWI636253B (en) * 2017-01-05 2018-09-21 富蘭登科技股份有限公司 Measuring device using spectrometer to measure gas dissociation state
CN114501764B (en) * 2022-01-26 2024-02-09 江苏神州半导体科技有限公司 Gas dissociation circuit control device and system based on multi-coil coupling
CN116133220B (en) * 2023-02-21 2023-08-04 东南大学 Real-time control system and method suitable for high-dissociation-rate remote plasma source

Also Published As

Publication number Publication date
US20050019962A1 (en) 2005-01-27
JP2005039079A (en) 2005-02-10
KR20050009243A (en) 2005-01-24
TW200522802A (en) 2005-07-01
US7439068B2 (en) 2008-10-21
TWI249974B (en) 2006-02-21

Similar Documents

Publication Publication Date Title
KR101056199B1 (en) Plasma oxidation treatment method
JP4579611B2 (en) Dry etching method
KR100411318B1 (en) End point detecting method for semiconductor plasma processing
KR101319797B1 (en) End point detectable plasma etching method and plasma etching apparatus
KR100702290B1 (en) Method of in-situ ashing and processing photoresist and etch residues
JP3873943B2 (en) Plasma monitoring method, plasma processing method, semiconductor device manufacturing method, and plasma processing apparatus
KR100801253B1 (en) Insulating film dry etching method
JP2010199126A (en) Plasma treatment method and plasma treatment device
US6921493B2 (en) Method of processing substrates
US20200203234A1 (en) Method of forming high aspect ratio features in semiconductor substrate
JPH05102089A (en) Dry etching method
JP4700922B2 (en) Manufacturing method of semiconductor device
KR101192613B1 (en) Plasma processing method and plasma processing apparatus
US6749763B1 (en) Plasma processing method
JP2000012527A (en) Method and apparatus for determining etching end point
TWI809602B (en) Plasma treatment device and plasma treatment method
JP2005285942A (en) Method and device for plasma treatment
Liu et al. Study of photoresist plug etching back with CO/O2 plasma for dense-ISO via recess loading tunning
US8846528B2 (en) Method of modifying a low k dielectric layer having etched features and the resulting product
JP2005072352A (en) Dry etching method of interlayer insulating film
KR0166838B1 (en) Metal wiring forming method of semiconductor device
TW201330703A (en) Plasma processing method
JP2006140174A (en) Patterning method and method for manufacturing semiconductor device
JP2006351862A (en) Method of manufacturing semiconductor device
JP2007042979A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees