SE7905005L - CONTROL DEVICE FOR WIND TURBINE POWER GENERATOR IN WIND POWER PLANT - Google Patents

CONTROL DEVICE FOR WIND TURBINE POWER GENERATOR IN WIND POWER PLANT

Info

Publication number
SE7905005L
SE7905005L SE7905005A SE7905005A SE7905005L SE 7905005 L SE7905005 L SE 7905005L SE 7905005 A SE7905005 A SE 7905005A SE 7905005 A SE7905005 A SE 7905005A SE 7905005 L SE7905005 L SE 7905005L
Authority
SE
Sweden
Prior art keywords
generator
wind
speed
wind velocity
blade angle
Prior art date
Application number
SE7905005A
Other languages
Swedish (sv)
Other versions
SE444599B (en
Inventor
K I Harner
J M Kos
J P Patrick
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/916,329 external-priority patent/US4189648A/en
Priority claimed from US05/916,321 external-priority patent/US4160170A/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of SE7905005L publication Critical patent/SE7905005L/en
Publication of SE444599B publication Critical patent/SE444599B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7064Application in combination with an electrical generator of the alternating current (A.C.) type
    • F05B2220/70642Application in combination with an electrical generator of the alternating current (A.C.) type of the synchronous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/102Purpose of the control system to control acceleration (u)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • F05B2270/706Type of control algorithm proportional-integral-differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The pitch angle of the wind turbine blades (10) is controlled in closed loop manner to maintain either constant electrical generator (26) speed, for isolated power generating stations or when the generator is synchronized to the load, or constant generator (26) output power or shaft torque when the generator is connected to an electrical grid. Open loop acceleration and deceleration schedules are provided to minimize blade stress and shaft torque variations during start up and shutdown transients, limiting blade angle excursions as a function of wind velocity and speed. The gains in the speed (60), torque (64) and power (66) loop controls are scheduled as a function of average wind velocity to optimize stability and response. An anticipatory blade angle schedule responsive to instantaneous wind velocity is added to the desired blade angle reference from the closed loop controls to minimize transient excursions in output power or generator speed resulting from wind gusts. <IMAGE>
SE7905005A 1978-06-15 1979-06-08 REGULATORY DEVICE FOR WIND TOUR DRIVE GENERATOR IN AN ELECTRIC PRODUCING WIND POWER PLANT SE444599B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/916,329 US4189648A (en) 1978-06-15 1978-06-15 Wind turbine generator acceleration control
US05/916,321 US4160170A (en) 1978-06-15 1978-06-15 Wind turbine generator pitch control system

Publications (2)

Publication Number Publication Date
SE7905005L true SE7905005L (en) 1979-12-16
SE444599B SE444599B (en) 1986-04-21

Family

ID=27129689

Family Applications (1)

Application Number Title Priority Date Filing Date
SE7905005A SE444599B (en) 1978-06-15 1979-06-08 REGULATORY DEVICE FOR WIND TOUR DRIVE GENERATOR IN AN ELECTRIC PRODUCING WIND POWER PLANT

Country Status (5)

Country Link
DE (1) DE2922972C2 (en)
DK (1) DK243579A (en)
FR (1) FR2428749A1 (en)
GB (1) GB2023237B (en)
SE (1) SE444599B (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2496773A2 (en) * 1980-12-24 1982-06-25 Aeropower Wind-driven generator with controlled axis of orientation - has rotor speed control provided by varying angle of attack of rotor plane w.r.t. to wind velocity
EP0033258B1 (en) * 1980-01-16 1984-11-21 Ste Aeropower S.A.R.L. Wind turbine with an adjustably orientable rotor axis
US4339666A (en) * 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
DE19758857B4 (en) * 1997-07-25 2013-08-08 Aloys Wobben Wind generator - has instantaneous stress on rotor blade monitored with control system to adjust position of blade to position appropriate for that stress
DE19731918B4 (en) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Wind turbine
DE19832207A1 (en) * 1998-07-17 2000-01-27 Rolf Hoffmann Determining wind speed communicated across rotor of wind power plant using rotor torque and windspeed and alteration of torque by disturbance of windflow through tower of wind plant
GB2364401B (en) * 2000-07-06 2004-07-14 Turbo Genset Company Ltd The Distributed control method
US6921985B2 (en) 2003-01-24 2005-07-26 General Electric Company Low voltage ride through for wind turbine generators
DE10323785B4 (en) * 2003-05-23 2009-09-10 Wobben, Aloys, Dipl.-Ing. Method for detecting an ice accumulation on rotor blades
DE10361443B4 (en) * 2003-12-23 2005-11-10 Voith Turbo Gmbh & Co. Kg Control for a wind turbine with hydrodynamic transmission
DK175892B1 (en) 2004-03-17 2005-05-30 Arne Johansen Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor
AT504818A1 (en) * 2004-07-30 2008-08-15 Windtec Consulting Gmbh TRANSMISSION TRAIL OF A WIND POWER PLANT
DE102005029000B4 (en) * 2005-06-21 2007-04-12 Repower Systems Ag Method and system for regulation of rotational speed of rotor on wind energy unit with generator and energy blade using pitch angle control device and torque control device to determine rotational speed set values
DE102006007919B4 (en) * 2006-02-21 2008-01-24 Nordex Energy Gmbh Method for operating a wind energy plant
ES2301400B1 (en) * 2006-11-17 2009-05-01 GAMESA INNOVATION &amp; TECHNOLOGY S.L. METHOD OF REDUCTION OF LOADS IN AN AEROGENERATOR.
US7883317B2 (en) 2007-02-02 2011-02-08 General Electric Company Method for optimizing the operation of a wind turbine
WO2009033484A2 (en) * 2007-09-13 2009-03-19 Vestas Wind Systems A/S A method of controlling a wind turbine, a wind turbine and use of a method
ES2723877T3 (en) * 2007-11-15 2019-09-03 Siemens Gamesa Renewable Energy Innovation & Technology SL Method and system for the operation of a wind turbine
WO2009082204A1 (en) * 2007-12-21 2009-07-02 2-B Energy Holding B.V. Wind turbine park, wind turbine
DE102008007519A1 (en) * 2008-02-05 2009-08-13 Nordex Energy Gmbh Device for monitoring the speed in a wind turbine
DE102008010466A1 (en) * 2008-02-21 2009-09-03 Nordex Energy Gmbh Wind turbine with blade pitch regulator
DE102008011139A1 (en) * 2008-02-26 2009-08-27 Nordex Energy Gmbh Controller for a blade pitch of at least one rotor blade of a wind turbine
CN101970866B (en) * 2008-03-07 2013-03-06 维斯塔斯风力系统有限公司 A control system and a method for redundant control of a wind turbine
DE102008044652A1 (en) * 2008-08-27 2010-03-04 Nordex Energy Gmbh Method for operating a wind turbine with a wind speed measuring device
EP2333330B1 (en) 2009-12-10 2017-01-18 Centa-Antriebe Kirschey GmbH Wind turbine with coupling with overload clutch and method
US8489246B2 (en) 2010-02-26 2013-07-16 Pratt & Whitney Canada Corp. Hybrid control system
DK2386751T3 (en) 2010-05-12 2016-11-28 Siemens Ag Windmill
DE102010044433A1 (en) * 2010-09-06 2012-03-08 Nordex Energy Gmbh Method for controlling the speed of a wind turbine
US8344550B2 (en) 2010-12-21 2013-01-01 General Electric Company Power conversion control with energy storage
EP2481917A1 (en) * 2011-01-26 2012-08-01 Chapdrive As A wind turbine with hydrostatic transmission and lvrt control
EP2481915A1 (en) * 2011-01-26 2012-08-01 Chapdrive As A method and system for connecting a wind turbine system to an electric grid
EP2514926B1 (en) * 2011-04-17 2018-07-04 Pratt & Whitney Canada Corp. Hybrid control system
EP2784303B1 (en) * 2013-03-27 2016-11-02 Alstom Renovables España, S.L. Method of operating a wind turbine
EP2818698B1 (en) * 2013-06-28 2017-08-09 Alstom Renovables España, S.L. Methods of operating a wind turbine
CN108223268B (en) * 2016-12-14 2019-07-23 北京金风科创风电设备有限公司 The method for controlling number of revolution and device of wind power generating set
CN107630785B (en) * 2017-09-11 2019-04-02 大连国通电气有限公司 Wind turbines Protection control system under one kind of multiple operating conditions
CN113048009B (en) * 2019-12-27 2022-11-29 新疆金风科技股份有限公司 Variable pitch control method, device and system of wind generating set
CN113217277B (en) * 2021-05-13 2022-03-15 中国华能集团清洁能源技术研究院有限公司 Variable pitch execution tracking supervision control system and method for wind generating set

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2363850A (en) * 1941-11-22 1944-11-28 Gen Electric Control equipment for prime mover electric generating plants
US2547636A (en) * 1946-12-11 1951-04-03 Fumagalli Charles Windmill electric generating and storage system, including controlling means
US2583369A (en) * 1948-05-21 1952-01-22 Fumagalli Charles Wind-driven turbine or propeller with electric generator and control devices
US2795285A (en) * 1953-07-29 1957-06-11 Westinghouse Electric Corp Electrical control apparatus for variable pitch propellers
US2832895A (en) * 1956-01-31 1958-04-29 Allgaier Werke Gmbh Control apparatus for wind motors
US3639076A (en) * 1970-05-28 1972-02-01 Gen Electric Constant power control system for gas turbine
US3932058A (en) * 1974-06-07 1976-01-13 United Technologies Corporation Control system for variable pitch fan propulsor
FR2313576A1 (en) * 1975-06-06 1976-12-31 Buys Victor Wind powered turbine driving generator or pump - has variable pitch blades adjusted automatically to maintain constant speed through electric motor powered gear mechanism

Also Published As

Publication number Publication date
FR2428749B1 (en) 1984-10-19
DE2922972A1 (en) 1980-01-03
DK243579A (en) 1979-12-16
FR2428749A1 (en) 1980-01-11
SE444599B (en) 1986-04-21
GB2023237A (en) 1979-12-28
GB2023237B (en) 1982-01-06
DE2922972C2 (en) 1986-11-13

Similar Documents

Publication Publication Date Title
SE7905005L (en) CONTROL DEVICE FOR WIND TURBINE POWER GENERATOR IN WIND POWER PLANT
US4584486A (en) Blade pitch control of a wind turbine
US4189648A (en) Wind turbine generator acceleration control
US4160170A (en) Wind turbine generator pitch control system
US4161658A (en) Wind turbine generator having integrator tracking
EP0223729B1 (en) Torque control for a variable speed wind turbine
US4193005A (en) Multi-mode control system for wind turbines
Battaiotto et al. A wind turbine emulator based on a dual DSP processor system
US4420692A (en) Motion responsive wind turbine tower damping
KR830008030A (en) Blade Pitch Angle Adjuster for Windmill Turbine Generator
ATE220762T1 (en) CONTROL LOGIC FOR A WIND TURBINE
GB1374809A (en) Gas turbine electric power plant control system
ES8405109A1 (en) Blade feathering system for wind turbines
BR9811873A (en) Variable speed system, wind turbine and variable speed wind turbine system, process and apparatus for controlling generator power and processes for controlling the generator torque of a variable speed system and for synchronizing a variable speed system
MY124581A (en) Method for controlling the power of a turbine plant and device for implementing the method
Andrzej et al. Laboratory setup with squirrel-cage motors for wind turbine emulation
ES8407557A1 (en) Blade pitch angle control for large wind turbines.
Spichartz et al. Advanced primary control structure for variable speed wind turbines with regard to wind fluctuations
Chauhan et al. Maximum Power Point Tracking scheme for variable speed wind generator
ES8203465A1 (en) Wind turbine
JPS5237644A (en) Windmill fan rotation control system and device for a wind po wer plant
JPS5776272A (en) Output controlling system for water-turbine generator
JPS6314196B2 (en)
JPS5627079A (en) Wind-power generator having electric motor
MILLER Summary of NASA/DOE Aileron-Control Development Program for Wind Turbines(Final Report)

Legal Events

Date Code Title Description
NAL Patent in force

Ref document number: 7905005-0

Format of ref document f/p: F

NUG Patent has lapsed

Ref document number: 7905005-0

Format of ref document f/p: F