DK175892B1 - Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor - Google Patents

Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor Download PDF

Info

Publication number
DK175892B1
DK175892B1 DK200400429A DKPA200400429A DK175892B1 DK 175892 B1 DK175892 B1 DK 175892B1 DK 200400429 A DK200400429 A DK 200400429A DK PA200400429 A DKPA200400429 A DK PA200400429A DK 175892 B1 DK175892 B1 DK 175892B1
Authority
DK
Denmark
Prior art keywords
blade
rotor
deflection
axis
rotation
Prior art date
Application number
DK200400429A
Other languages
Danish (da)
Inventor
Arne Johansen
Original Assignee
Arne Johansen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arne Johansen filed Critical Arne Johansen
Priority to DK200400429A priority Critical patent/DK175892B1/en
Priority to PCT/DK2005/000181 priority patent/WO2005088121A2/en
Priority to EP05715102A priority patent/EP1738072A2/en
Priority to CN2005800086637A priority patent/CN101010506B/en
Priority to US10/593,319 priority patent/US20090081042A1/en
Priority to CA002560083A priority patent/CA2560083A1/en
Application granted granted Critical
Publication of DK175892B1 publication Critical patent/DK175892B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1014Purpose of the control system to control rotational speed (n) to keep rotational speed constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/33Proximity of blade to tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/404Type of control system active, predictive, or anticipative
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/50Control logic embodiment by
    • F05B2270/504Control logic embodiment by electronic means, e.g. electronic tubes, transistors or IC's within an electronic circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

The load on a windmill is determined, and wind speed is measured based on deflection of the blades (4) along rotational axis of a rotor (1a). A control signal is provided for adjusting common basic adjustment angle of the blades, based on the measured load and wind speed, for controlling the rotational speed of the rotor. An independent claim is also included for windmill.

Description

i DK 175892 B1in DK 175892 B1

Opfindelsen angår en fremgangsmåde til styring af en vindmølle, navnlig i ø-drift, hvilken vindmølle omfatter en rotor med i det væsentlig vandret omdrejningsakse, mindst to vinger, der hver især i en ende 5 er forbundet med rotoren og strækker sig ud fra denne i det væsentlige langs en vingeakse, omkring hvilken vingen kan drejes til en indstillingsvinkel for vingen, en vingejusteringsindretning til indstilling af en fælles grundindstillingsvinkel for vingerne, mid-10 ler til detektering af grundindstillingsvinklens størrelse, midler til detektering af vindmøllens belastning, midler til detektering af vingens afbøjning i omdrejningsakseretningen, ved hvilken fremgangsmåde møllens rotors omdrejningshastighed styres ved juste-15 ring af grundindstillingsvinklen, idet et styresignal for vingejusteringsindretningen tilvejebringes i afhængighed af belastningen og vindhastigheden.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a method for controlling a wind turbine, especially in island operation, which comprises a rotor having a substantially horizontal axis of rotation, at least two vanes each connected at one end 5 to the rotor and extending therefrom. substantially along a blade axis about which the blade can be rotated to an adjustment angle of the blade, a blade adjusting device for adjusting a common basic adjustment angle of the blades, means for detecting the magnitude of the initial adjustment angle, means for detecting the wind turbine load, means for detecting the blade deflection in the direction of rotation, by which method the rotational speed of the mill rotor is controlled by adjusting the basic setting angle, providing a control signal for the wing adjusting device depending on the load and the wind speed.

Opfindelsen angår endvidere en vindmølle omfattende en rotor med i det væsentlige vandret omdrej-20 ningsakse, mindst to vinger, der hver især i en ende er forbundet med rotoren og strækker sig ud fra denne i det væsentlige langs en vingeakse, omkring hvilken vingen kan drejes gennem et første leje til en indstillingsvinkel for vingen, en vingejusteringsindret-25 ning til indstilling af en fælles grundindstillingsvinkel for vingerne, et hængsel mellem vingen og rotoren med en hængselakse strækkende sig i en retning på tværs af vingeaksen og rotorens omdrejningsakses retning, hvorved vingerne hver især kan afbøjes i ro-30 torens omdrejningsakses retning ved drejning om den respektive hængselakse. En mølle af denne art kendes fra ansøgers eget DK-B-174 346.The invention further relates to a wind turbine comprising a rotor with substantially horizontal axis of rotation, at least two blades each connected at one end to the rotor and extending therefrom substantially along a blade axis about which the blade can be rotated. through a first bearing for a blade setting angle, a blade adjusting device for adjusting a common basic setting angle for the blades, a hinge between the blade and the rotor with a hinge axis extending in a direction transverse to the blade axis and the direction of rotation of the rotor, each of the blades in particular, it can be deflected in the direction of the rotor axis of rotation by rotating the respective hinge axis. A mill of this kind is known from the applicant's own DK-B-174 346.

Et eksempel på en fremgangsmåde af den nævnteAn example of a method of the above

I DK 175892 B1 II DK 175892 B1 I

i 2 Ii 2 I

I art, til styring af en vindmølle findes i GB-A-2 023 HIn kind, for controlling a wind turbine can be found in GB-A-2 023 H

I 237. Ifølge dette skrift måles vindhastigheden ved HI 237. According to this writing, the wind speed at H

I hjælp af en vindmåler, som er placeret på møllens HWith the help of a wind meter, which is located on the wind turbine H

I gondol eller et sted, hvor den ikke påvirkes af vind- IIn a gondola or a place where it is not affected by wind

I 5 turbinens rotation. HIn the rotation of the turbine. H

I US-A-6 619 918 beskriver en mølle, der blandt IIn US-A-6,619,918 discloses a mill which, among other things, I

I andet på vingerne er forsynet med strain-gauges medIn the second on the wings is provided with strain-gauges with

I henblik på overvågning af vingernes udbøjning for at IIn order to monitor the deflection of the wings in order to

I undgå kollision med mølletårnet. Med en hensigtsmæs- IIn avoiding collision with the mill tower. With an intention- I

I 10 sig placering af strain-gaugene vil en sådan mølle IIn placing the strain gauges, such a mill I will

I kunne anvendes til udøvelse af fremgangsmåden ifølge IYou could be used to practice the method of I

I opfindelsen. IIn the invention. IN

I Andre eksempler på kendt teknik findes i: HOther examples of the prior art can be found in: H

I US-A-6 361 275, som angår reduktion af (spids-In US-A-6,361,275, which relates to the reduction of

I 15 )belastninger på en mølles komponenter. Dertil måles HI 15) loads on a mill's components. In addition, H is measured

I spændinger på forskellige komponenter, fx vingerne, HIn voltages on various components, eg the wings, H

I ved hjælp af strain-gauges; en ønsket vinkelstilling HI using strain gauges; a desired angular position H

I for hver enkelt vinge uafhængigt af de øvrige vinger HI for each wing independently of the other wings H

I bestemmes og en justeringsindretning stiller de re- IThey are determined and an adjusting device sets the re- I

20 spektive vinger i de ønskede stillinger for at undgå20 spectral wings in the desired positions to avoid

spidsbelastning og forlænge møllens levetid. Der an- Ipeak load and extend the life of the mill. There- I

vendes også vindfaner eller -indikatorer monteret på Ialso turn wind tabs or indicators mounted on I

I vingerne for at måle vindens indstrømningsvinkel. IIn the wings to measure the wind inflow angle. IN

US-A-4 183 715 beskriver en mølle med vinger, IUS-A-4,183,715 discloses a mill with wings, I

I 25 der drejer op mod vinden som følge af aerodynamisk II 25 turning up to the wind due to aerodynamic I

I løft. Et lod eller en servomotor modvirker drejningen IIn the lift. A solder or servo motor counteracts rotation I

I for at styre møllen. I udførelsesformen med servomo- IIn to control the mill. In the embodiment with servo- I

I tor kan vindhastigheden målt med en vindmåler på møl- IIn tor, the wind speed can be measured with a wind meter on the mill

I lehuset inddrages i styringen. IIn the dormitory is involved in the management. IN

I 30 US-A-4 297 076 beskriver en mølle med strain- I gauges til overvågning af belastningen af vingerne.In US-A-4 297 076, a mill with strain gauge discloses for monitoring the load of the blades.

I Signalerne fra disse strain-gauges anvendes til at HIn the signals from these strain gauges, H is used

I bestemme om møllen peger op i vinden og i givet fald HIn determining whether the turbine points up in the wind and, if so, H

3 DK 175892 B1 tilvejebringe et signal til en krøjemotor. Endvidere anvendes strain-gaugenes signaler til at indstille vinklerne af møllens vingespidser for at undgå vedvarende overbelastning og svingningsbelastning af møl-5 lens nav. Møllens styresystem omfatter en lukket sløjfe baseret på omdrejningstallet og en åben sløjfe baseret på den effekt, som aftages fra møllen af det net, den er tilsluttet, og vindhastigheden målt med en vindmåler. Det fremgår ikke af skriftet, præcis i 10 hvilken retning belastningen på vingerne måles af strain-gaugene. Imidlertid synes strain-gaugene at være placeret midt på vingernes profilerede del et stykke fra vingefoden således, at strain-gaugene vil måle i en retning vinkelret på vingeprofilet, som er 15 skråtstillet i forhold til et plan vinkelret på rotorens omdrejningsakse. Derved vil strain-gaugene måle i en retninger, som ikke er parallelle med rotorens omdrejningsretning.3 DK 175892 B1 provide a signal to a bend motor. In addition, the strain gauge signals are used to adjust the angles of the blade tip of the mill to avoid sustained overload and oscillation load of the mill hub. The wind turbine's control system includes a closed loop based on the speed and an open loop based on the power taken from the mill by the grid to which it is connected and the wind speed measured with a wind meter. It is not clear from the script exactly in which direction the strain on the wings is measured by the strain gauges. However, the strain gauges appear to be located in the middle of the profiled portion a distance from the wing base so that the strain gauges will measure in a direction perpendicular to the blade profile, which is inclined to a plane perpendicular to the axis of rotation of the rotor. Thereby, the strain gauges will measure in directions not parallel to the direction of rotation of the rotor.

DD-A-252 640 beskriver en mølle, som tilsigter 20 ved hjælp af et system til styring af vingernes indstillingsvinkel at udnytte vindkraften optimalt, fastholde et bestemt omdrejningstal og undgå overbelastning. Derfor måles et på vingeroden virkende bøjningsmoment, og et signal proportionalt med bøjnings-25 momentet forarbejdes i afhængighed af et signal fra en omdrejningstal-kontrolindretning til en styreimpuls til en vingeindstillingsmotor. Måling af møllens effekt omtales ikke og bøjningsmomentet synes at blive målt i en retning ca. 45° fra rotorens omdrej-30 ningsakseretning.DD-A-252 640 discloses a turbine which aims to utilize, by means of a system for controlling the setting angle of the blades, to optimally utilize the wind power, maintain a certain speed and avoid overload. Therefore, a bending moment acting on the blade root is measured and a signal proportional to the bending torque is processed in dependence of a signal from a rpm control device to a control pulse to a wing setting motor. The measurement of the mill's power is not mentioned and the bending moment seems to be measured in a direction approx. 45 ° from the rotor axis of rotation.

Ved ø-drift af en mølle, dvs. drift af en mølle, som ikke er koblet på et net med en frekvens, som kan bruges til at styre møllen, er det vanskeligt at iIn island operation of a mill, ie. operation of a mill that is not connected to a grid with a frequency that can be used to control the mill, it is difficult to control

DK 175892 B1 IDK 175892 B1 I

styre møllens omdrejningshastighed præcist, således Iprecisely control the speed of the mill, thus I

at der gennem en vekselstrømsgenerator kan opnås en Ithat through an alternator a 1 may be obtained

vekselstrøm med en i det væsentlige konstant fre- Ialternating current with a substantially constant frequency

kvens. Dette problem omtales blandt andet i ovennævn- Ifrequency. This problem is mentioned, inter alia, in the above-mentioned

5 te GB-A-2 023 237, som anviser en fremgangsmåde til I5 th GB-A-2 023 237, which discloses a method for I

styring af en vindmølle. Icontrol of a wind turbine. IN

En forudsætning for en præcis styring af en IA prerequisite for precise control of an I

vindmølle er imidlertid en præcis og pålidelig måling Ihowever, the wind turbine is an accurate and reliable measurement

af vindbelastningen på møllen, da det er denne be- Iof the wind load on the mill, as it is this

10 lastning, som af møllevingerne omsættes til rotati- I10 loading, which is converted by the milling blades to rotate I

onsenergi, som videre kan omsættes til elektrisk Ionsenergy, which can further be converted into electrical I

energi i en generator.energy in a generator.

Formålet med opfindelsen er under et aspekt atThe object of the invention is in one aspect that

anvise en fremgangsmåde til styring af en vindmølle, Iprovide a method for controlling a wind turbine, I

15 hvorved møllens omdrejningshastighed og dermed fre- I15 whereby the speed of rotation of the mill and thus fre- I

kvensen af en vekselstrøm frembragt af en tilsluttet Ithe number of alternating current generated by a connected I

generator, kan holdes konstant inden for snævre tole-generator, can be kept constant within narrow tolerances.

rancer. Iting. IN

Formålet er under et andet aspekt at anvise en IThe purpose is, in another aspect, to provide an I

20 vindmølle, der kan anvendes til udøvelse af frem- I20 wind turbines which can be used to carry forward

gangsmåden.method.

Formålet opfyldes under det første aspekt ved IThe purpose is fulfilled under the first aspect of I

en fremgangsmåde af den indledningsvis nævnte art, Ia method of the kind mentioned initially, I

som er særegen ved, at der som mål for vindhastighe- Iwhich is peculiar in that as a measure of wind speed I

25 den anvendes vingens afbøjning i rotorens omdrej- I25, the blade deflection is used in the rotor rotation

ningsakses retningen. Iaxis of direction. IN

Formålet opfyldes under det andet aspekt ved en - IThe purpose is fulfilled under the second aspect of a - I

vindmølle af den ovennævnte art, som er særegen ved, Iwind turbine of the aforementioned kind, which is peculiar to, I

at omfatte en indretning til detektering af størrel- Icomprising a device for detecting the magnitude I

30 sen af en vinges afbøjning i rotorens omdrejningsak-30 of a blade deflection in the rotor axis of rotation

ses retning og midler til detektering af grundind- Isee direction and means for detecting basic I

stillingsvinklens størrelse samt midler til overfø- Ithe size of the position angle and the means of transfer

ring af en detekteret vingeafbøjningsstørrelse og en Iring of a detected wing deflection size and an I

5 DK 175892 B1 detekteret grundindstillingsvinkelstørrelse til en styreindretning.5 DK 175892 B1 detected the default setting angle size for a control device.

Opfindelsen bygger på den erkendelse, at fordi vind er en ustabil størrelse med turbulens og vind-5 stød således, at vindbelastningen kan variere betragteligt inden for få meters afstand, skal vindmøllens vinger bruges som vindmåler, hvis der skal opnås et præcist mål for vindbelastningen på møllen. Følgelig anvendes ifølge opfindelsen møllens vinger som vind-10 måler til tilvejebringelse af indgangssignal til møllens styreenhed.The invention is based on the recognition that because wind is an unstable size with turbulence and wind shocks such that the wind load can vary considerably within a few meters distance, the wind turbine's wings must be used as a wind meter if an accurate measure of the wind load is to be achieved. mill. Accordingly, according to the invention, the blades of the turbine are used as wind meters to provide input signal to the turbine controller.

Et præcist mål for vindbelastningen, og navnlig dens ændringer er nødvendig for at kunne styre en mølle med et hurtigt respons, som er en nødvendighed 15 for en præcis styring.An accurate measure of the wind load, and in particular its changes, is necessary to be able to control a mill with a fast response, which is a necessity for precise control.

I foretrukne udførelsesformer for fremgangsmåden ifølge opfindelsen måles rotorens omdrejningshastighed og den målte værdi anvendes i tilvejebringelsen af styresignalet for vingejusteringsindretningen.In preferred embodiments of the method according to the invention, the rotor speed of rotation is measured and the measured value is used in the provision of the control signal for the wing adjusting device.

20 I en praktisk udførelsesform anvendes som mål for vindhastigheden afbøjningen af vingen med den største afbøjning.In a practical embodiment, the deflection of the blade with the largest deflection is used as a measure of the wind speed.

Ved at bruge rotorens omdrejningshastighed ved styringen kan etableres en lukket sløjfe for at sikre 25 at omdrejningshastigheden ikke driver i forhold til den ønskede værdi.By using the rotor speed of rotation in the control, a closed loop can be established to ensure that the speed of rotation does not drift relative to the desired value.

Bruges alene omdrejningshastigheden til styring etableres først et styrerespons når omdrejningshastigheden har ændret sig.If only the speed of control is used for control, a control response is established only when the speed of rotation has changed.

30 Ved at bruge den aktuelle vindbelastning på møllevingerne kan etableres et styrerespons, når vindbelastningen ændrer sig, før denne ændring har resulteret i en ændret omdrejningshastighed.30 By using the current wind load on the wind turbine blades, a control response can be established as the wind load changes before this change has resulted in a changed speed of rotation.

I DK 175892 B1 II DK 175892 B1 I

I en praktisk udførelsesform for vindmøllen IIn a practical embodiment of the wind turbine I

ifølge opfindelsen findes en indretning til detekte- IAccording to the invention there is a device for detecting

ring af afbøjningen af vingen med den største afbøj- Iring of the deflection of the wing with the largest deflection

ning. Endvidere findes fortrinsvis midler til detek- Iequipment. Furthermore, means for detecting are preferably present

5 tering af rotorens omdrejningshastighed og midler til - I5 increasing the rotor speed and means of - I

overføring af den detekterede størrelse til en styre- Itransferring the detected size to a control I

enhed. Iunit. IN

En styreenhed til at tilvejebringe et styresig- IA control unit for providing a control signal

nal til vinge justeringsindretningen kan være en del Inal to the wing adjusting device may be part I

10 af møllen. Alternativt kan en ekstern styreenhed være I10 of the mill. Alternatively, an external controller may be I

forbundet til møllen. Styreenheden vil i praksis om- Iconnected to the mill. In practice, the control unit will re- I

fatte en computer. Igrab a computer. IN

Fremgangsmåden til styring ifølge opfindelsen IThe method of control according to the invention I

er primært tænkt anvendt til styring af en vindmølle Iis intended primarily for the control of a wind turbine I

15 i ø-drift, hvor møllens afgivne effekt skal være sva- I15 in island operation, where the output of the mill must be weak

re til efterspørgslen, da der ikke vil være andre Ito the demand, as there will be no other

kilder at regulere. Fremgangsmåden kan dog også tæn- Isources to regulate. However, the process can also be turned on

kes anvendt på en vindmølle i et net, hvor fremgangs- Ican be used on a wind turbine in a grid where progress I

måden kan anvendes til at tilvejebringe en i det væ- Ithe method can be used to provide one in the tissue

20 sentlige konstant udgangseffekt fra vindmøllen, såle- I20 late constant output from the wind turbine, so I

des at styringen af nettet som helhed lettes. Ithat the management of the network as a whole is facilitated. IN

Opfindelsen vil i det følgende blive forklaret IThe invention will be explained in the following

nærmere ved hjælp af udførelseseksempler under hen- Imore particularly by way of example examples

visning til den skematiske tegning, på hvilken Iview of the schematic drawing on which I

25 fig· 1 viser et snit langs hovedaksen i en IFig. 1 shows a section along the main axis of an I

vindmølles rotorhus som indikeret ved I-I i fig. 2, Iwind turbine rotor housing as indicated by I-I in FIG. 2, I

fig. 2 et snit som indikeret ved II-II i fig. IFIG. 2 is a sectional view as indicated by II-II in FIG. IN

1, og I1 and I

fig. 3 et snit langs hovedaksen gennem styrede- IFIG. 3 is a section along the main axis through guided I

30 len. I30 len. IN

Idet der henvises til fig. l og 2 har en vind- IReferring to FIG. 1 and 2 have a wind I

mølle ifølge opfindelsen en hovedaksel 1 der strækker Imill according to the invention a main shaft 1 extending I

sig langs og kan rotere om en hovedakse la. Hovedaks- Iturns along and can rotate about a major axis la. Main axis I

7 DK 175892 B1 len 1 strækker sig ind i møllens ikke viste gondol til et gear for overføring af rotationsenergi til en vekselstrømsgenerator på i og for sig kendt måde.7 DK 175892 B1 1 extends into the gondola of the mill not shown to a gear for transferring rotational energy to an alternator in a manner known per se.

Hovedakslen 1 er drejefast forbundet med og bæ-5 rer et rotorhus 2, som bærer to lejehuse 3, der hver især bærer en vinge 4. Rotorhuset 2 og dets arrangement og udstyr er symmetrisk om hovedaksen la. Derfor vil i det efterfølgende kun blive beskrevet en vinge 4 og dennes fastgøring til rotorhuset 2.The main shaft 1 is pivotally connected to and carries a rotor housing 2 which carries two bearing housings 3, each carrying a vane 4. The rotor housing 2 and its arrangement and equipment are symmetrical about the main shaft 1a. Therefore, in the following, only a blade 4 and its attachment to the rotor housing 2 will be described.

10 Den her med henvisning til tegningen beskrevne mølle har to vinger, men fagmanden vil forstå at opfindelsen kan anvendes på møller med flere, eksempelvis tre, vinger. Endvidere er den med henvisning til tegningen beskrevne mølle en såkaldt efterløber, dvs.The mill described herein with reference to the drawing has two blades, but those skilled in the art will appreciate that the invention can be applied to mills having multiple, for example, three blades. Furthermore, the mill described with reference to the drawing is a so-called runner, ie.

15 at rotoren med vingerne befinder sig på læsiden af det ikke viste mølletårn. Fagmanden vil forstå at opfindelsen også kan anvendes på en frontløber, dvs. en mølle hvis rotor og vinger befinder sig på vindsiden af mølletårnet.15 that the rotor with its wings is on the reading side of the mill tower not shown. Those skilled in the art will appreciate that the invention may also be applied to a front runner, i.e. a mill whose rotor and wings are on the windward side of the mill tower.

20 Lejehuset 3 er ved hjælp af to lejer 5 hængslet til rotorhuset 2 således, at lejehuset 3 kan svinge om en akse 3a, der strækker sig i et plan vinkelret op hovedaksen la.The bearing housing 3 is hinged to the rotor housing 2 by means of two bearings 5 so that the bearing housing 3 can pivot about an axis 3a extending in a plane perpendicular to the main axis 1a.

I lejehuset 3 er gennem to lejer 6 lejret en 25 vingerod 7, som derved er drejelig om en vingeakse 7a. Vingeroden 7 bærer ved sin ene ende vingen 4 og er ved sin anden ende drej ef ast forbundet med et konisk tandhjul 8, som er indgreb med et andet konisk tandhjul 9. Det andet koniske tandhjul 9 er fastgjort 30 til en indstillingsaksel 10, som bærer et snekkehjul 11. Indstillingsakslen 10 med tandhjulet 9 og snekkehjulet 11 er gennem lejer 12 lejret roterbart om aksen 3a i lejehuset 3.In the bearing housing 3, through two bearings 6 is mounted a 25 wing rod 7, which is thereby rotatable about a wing axis 7a. The blade root 7 carries at its one end the wing 4 and is at its other end pivotally connected to a tapered sprocket 8, which is engaged by another tapered sprocket 9. The second tapered sprocket 9 is fixed 30 to an adjustment shaft 10 which supports a worm wheel 11. The adjusting shaft 10 with the sprocket 9 and worm wheel 11 is mounted rotatably through bearings 12 about the axis 3a of the bearing housing 3.

DK 175892 B1 IDK 175892 B1 I

Snekkehjulet 11 er i indgreb med en snekke 13,The worm wheel 11 engages a worm 13,

som kan drejes ved hjælp af en hul styreaksel 14, der Iwhich can be rotated by means of a hollow guide shaft 14 which I

strækker sig koaksialt gennem hovedakslen 1. Iextends coaxially through the main shaft 1. I

Gennem den hule styreaksel 14 strækker sig en IThrough the hollow guide shaft 14 extends 1

5 trykstang 15, som ved sin i fig. 1 viste ende bærer - I5 is a push rod 15 which, in its position shown in FIG. 1 end bearing - I

en anlægsplade 16. En vippearm 17 kan vippe om et le- Ia contact plate 16. A rocker arm 17 can tilt about a bearing

je 18 og er ved sin ene ende forbundet med lejehuset Iat 18 and is at one end connected to the bearing housing I

3 gennem en konsol 19 på lejehuset 3 og et led 20 som I3 through a bracket 19 on the bearing housing 3 and a joint 20 such as I

gennem hængsler 21 er forbundet til konsollen 19 og Ithrough hinges 21 are connected to bracket 19 and I

10 vippearmen 17. Ved sin ende modsat leddet 20 bærer I10 the rocker arm 17. At its end opposite the joint 20, you carry

vippearmen en trykrulle 22, som kan ligge an mod an- Ithe rocker arm a pressure roller 22 which may abut against one another

lægspladen 16. Icalf plate 16. I

Under drift vil centrifugalkraften søge at IIn operation, the centrifugal force will seek to

stille vingen 4 med vingeaksen 4a vinkelret på hoved- Iposition the wing 4 with the wing axis 4a perpendicular to the main I

15 aksen, medens trykket fra vinden, som er antydet ved I15, while the pressure from the wind indicated by 1

en pil 23 i fig. 1, vil søge at presse vingen bagoveran arrow 23 in FIG. 1, will seek to push the wing backward

omkring aksen 3a til en afbøjningsvinkel a. Ved stil- Iabout the axis 3a to a deflection angle a

stand vil tyngekraften dreje den ene vinge nedad om- kring aksen 3a. Derfor bærer rotorhuset 2 fortrinsvisIn the case of gravity, the force of gravity will rotate one wing down about the axis 3a. Therefore, the rotor housing 2 preferably carries

20 ikke viste stabiliseringsfjedre, som søger at holde I20 not showing stabilizing springs which seek to hold

vingerne 4 vinkelret på hovedaksen la. En sådan sta- Ithe wings 4 perpendicular to the main axis 1a. Such a state I

biliseringsfjeder kan være fastgjort til en konsol 24 Ibilayer spring may be attached to a bracket 24 I

på ivert lejehus 3. Iat ivert rental house 3. I

Det forstås at ved svingning af vingen 4 om ak- IIt is understood that by pivoting the wing 4 about the axis I

25 sen 3a vil vingeroden 7's koniske tandhjul 8 rulle på I25a 3a, the tapered sprocket 8 of the wing root 7 will roll on I

indstillingsakslen 10's koniske tandhjul 9, hvorved Ithe tapered sprocket 9 of the shaft 10, whereby I

vingen 7 vil dreje tilsvarende om vingeaksen 7a. Den- ne drejning påvirker ikke den anden, ikke viste vin-the wing 7 will rotate correspondingly on the wing axis 7a. This rotation does not affect the second, not shown wine,

ge. Ige. IN

30 Det forstås endvidere at drejning af snekken 13 I30 It is further understood that rotation of the worm 13 I

ved hjælp af styreakslen 14 vil resultere i en drej- Iby means of the control shaft 14 will result in a rotation

ning af indstillingsakslen 10 og dermed en drejning Iadjusting the adjusting shaft 10 and thus turning I

af vingen 4. Denne drejning gælder for begge vinger, Iof the wing 4. This rotation applies to both wings, I

9 DK 175892 B1 både den viste og den ikke viste.9 DK 175892 B1 both the one shown and the one not shown.

I fig. 3 er vist møllens styredel. Således viser fig. 3 den i forhold til det i fig. 1 viste modsatte ende af hovedakslen 1, styreakslen 14 og tryk-^ 5 stangen 15.In FIG. 3 is shown the mill part. Thus, FIG. 3 is a view similar to that of FIG. 1 shows the opposite end of the main shaft 1, the steering shaft 14 and the push rod 15.

Hovedakslen 1 bærer drejefast et første cylindrisk tandhjul 26, og styreakslen 14 bærer drejefast et andet cylindrisk tandhjul 27. Det første cylindriske tandhjul 26 er i indgreb med et tredje cylindrisk 10 tandhjul 28 og det andet cylindriske tandhjul 27 er via et mellemhjul 29 i indgreb med et fjerde cylindrisk tandhjul 30. Det tredje og det fjerde cylindriske tandhjul 28 og 30 henholdsvis bæres drejeligt af aksler 31, som er stedfast monteret i den ikke viste 15 gondol af vindmøllen, og der er fast forbundet med hvert sit af to første, modstående, koniske tandhjul 32 i et differentiale med et via lejer 38 roterbart differentialehus 33. Drejeligt om en differentialeaksel 34 findes to andre, modstående, koniske tandhjul 20 35, som er i indgreb med de første, modstående, koniske tandhjul 32. Differentialehuset 33 bærer på sin omkredsflade et snekkehjul 36, som er i indgreb med en stedfast i gondolen monteret snekke 37, som er ro-terbar om en akse vinkelret på tegningens plan.The main shaft 1 pivotally carries a first cylindrical sprocket 26, and the steering shaft 14 pivotally pivots a second cylindrical sprocket 27. The first cylindrical sprocket 26 is engaged by a third cylindrical sprocket 28 and the second cylindrical sprocket 27 is engaged by a sprocket 29. a fourth cylindrical gear 30. The third and fourth cylindrical gears 28 and 30 are respectively pivotally supported by shafts 31 which are fixedly mounted in the 15 gondola of the wind turbine not shown, and which are firmly connected to each of two first, opposite, tapered gears 32 in a differential with a differential housing rotatable via bearings 38 33. Rotating about a differential shaft 34 are two other opposed tapered gears 20 35 which engage the first opposed tapered gears 32. The differential housing 33 carries on its circumferential surface is a worm wheel 36 which engages a worm 37 fixedly mounted in the gondola rotatable about an axis perpendicular to the drawing p. loan.

25 Det første og det tredje cylindriske tandhjul 26 og 28 har ens diameter, og det andet og det fjerde cylindriske tandhjul 27 og 30 har ens diameter.25 The first and third cylindrical gears 26 and 28 have the same diameter, and the second and fourth cylindrical gears 27 and 30 have the same diameter.

Som følge deraf vil differentialeakslen 34 stå stille, når hovedakslen 1 og styreakslen 14 har samme om-30 drejningshastighed og -retning. Hvis hovedakslen 1 og styreakslen 15 ikke har samme omdrejningshastighed og -retning, vil differentialeakslen 34 rotere om en med akslerne 31 koaksial akse medbringende differentiale-As a result, the differential shaft 34 will stand still when the main shaft 1 and the steering shaft 14 have the same rotation speed and direction. If the main shaft 1 and the steering shaft 15 do not have the same rotational speed and direction, the differential shaft 34 will rotate about a differential coaxial axis carrying the shafts 31.

I DK 175892 B1 II DK 175892 B1 I

I 10 II 10 I

huset 33 og snekkehjulet 36. Sidstnævnte vil ved sit Ithe housing 33 and the worm wheel 36. The latter will by its I

I indgreb drive snekken 37. IIn operation the worm 37. I

I Hvis hovedakslen 1 og styreakslen 14 roterer II If the main shaft 1 and the steering shaft 14 rotate

I med forskellig hastighed vil det medføre en drejning IAt different speeds it will cause a rotation

I 5 af snekken 13 i rotorhuset 2 og dermed en drejning af ^ IIn 5 of the worm 13 in the rotor housing 2 and thus a turn of ^ I

I vingerne. Derfor kan via snekken 37 udlæses en grund-In the wings. Therefore, through the worm 37, a basic

I indstillingsvinkel for vingerne. IAt the angle of adjustment of the wings. IN

I En omdrejningstæller 40 er via et femte cylin- IA revolution counter 40 is via a fifth cylinder

I drisk tandhjul 41, som er i indgreb med det førsteIn Drisk gear 41, which engages with the first

I 10 cylindriske tandhjul 26, forbundet med hovedakslen og IIn 10 cylindrical gears 26, connected to the main shaft and I

I angiver dermed dennes omdrejningshastighed. IYou thus indicate its rotational speed. IN

En positionsmåler 42 har en tast 42a i anlæg IA position meter 42 has a key 42a in system I

I mod enden af trykstangen 15 og giver derfor via vip- ITowards the end of the push rod 15 and therefore provides via tilting

I pearmen 17 et mål for afbøjningsvinklen α for vingen IIn the parchment 17 a measure of the deflection angle α of the wing I

I 15 med den største afbøjningsvinkel. IIn 15 with the greatest deflection angle. IN

En styremotor 43 bærer drejefast på sin aksel IA steering motor 43 carries pivotally fixed to its shaft I

I 44 et sjette cylindrisk tandhjul 45, som er i indgreb IIn 44, a sixth cylindrical gear 45 which engages I

med det andet cylindriske tandhjul 27. Derved styrerwith the second cylindrical sprocket 27. thereby controlling

I styremotoren 43 styreakslen 14’s rotation. IIn the steering motor 43 the steering shaft 14's rotation. IN

20 Styremotoren 43 styres af en med en mikropro- IThe control motor 43 is controlled by one with a microprocessor

I cessor forsynet styreindretning 46, som modtager sig- ICessor-provided controller 46 which receives itself

I naler fra snekken 37, omdrejningstælleren 40, positi- IIn worms 37, turn counter 40, position I

I onsmåleren 42 og desuden et signal som angiver be- IIn the odometer 42 and also a signal indicating the condition

I lastningen på møllen, eksempelvis en angivelse af den IIn the loading on the mill, for example, an indication of the I

I 25 effekt som afgives af den ikke viste generator. IIn 25 power output of the generator not shown. IN

I Således modtager styreindretningen 46 i en fo- IThus, the control device 46 receives in a foil

retrukket udførelsesform følgende signaler: Iretracted embodiment the following signals:

I A: mål for vingernes grundindstillingsvinkel II A: measure of the blade 's initial angle of adjustment

I udledt fra snekken 37, IIn deduction from worm 37, I

I 30 B: mål for møllens (hovedakslen l's) omdrej- IIn 30 B: measure of the rotation of the mill (main shaft 1)

I ningshastighed udledt fra omdrejningstælleren 40, ISpeed of speed deduced from the tachometer 40, I

I C: mål for vindhastigheden mod møllevingerne II C: measure of wind speed against the mill blades I

I eller vindbelastning på møllevingerne udtrykt ved af- II or wind load on the milling blades, expressed by I

11 DK 175892 B1 bøjningsvinklen α udledt fra positionsgiveren 42, og D: mål for møllens effekt som afgivet af generatoren.11 DK 175892 B1 the bending angle α deduced from the position sensor 42, and D: measure of the mill's power as delivered by the generator.

I den her beskrevne udførelsesform drives møl- v 5 len i ø-drift, dvs· at den ikke er forbundet til et større net. Møllens omdrejningshastighed skal så vidt muligt holdes konstant fordi frekvensen af den af generatoren afgivne strøm er proportionel med møllens omdrejningshastighed, og denne frekvens ønskes så 10 konstant som muligt.In the embodiment described here, the moth 5 is operated in island operation, i.e., it is not connected to a larger net. As far as possible, the rotational speed of the turbine must be kept constant because the frequency of the power supplied by the generator is proportional to the rotational speed of the turbine and this frequency is desired as constant as possible.

Under driften skal møllens effekt varieres efter behovet, fordi overskydende effekt fra møllen vil blive optaget som kinetisk energi i møllen roterende dele, dvs. at møllens omdrejningshastighed vil øges, 15 hvilket som nævnt er uønsket.During operation, the power of the mill must be varied as required, since excess power from the mill will be absorbed as kinetic energy in the mill rotating parts, ie. that the speed of the mill will increase, which is undesirable as mentioned.

Ved konstant vindbelastning kan effekten indstilles ved indstilling af vingernes grundindstillingsvinkel.At constant wind loads, the effect can be set by adjusting the blade's default setting angle.

Ved konstant effektbehov kan den af vinden ud-20 vundne effekt indstilles ved indstilling af vingernes grundindstillingsvinkel.At constant power demand, the power produced by the wind can be adjusted by adjusting the blade's default setting angle.

Fordi både vindbelastningen og effektbehovet i realiteten varierer tilfældigt styres styremotoren 43 af styreindretningen 46 i en åben-sløj festyring ved 25 hvilken styreindretningen bestemmer en ønsket grundindstillingsvinkel på grundlag af målene C og D for henholdsvis vindbelastningen og den aftagne effekt.Because both the wind load and the power demand in reality vary randomly, the control motor 43 is controlled by the control device 46 in an open loop control at 25, the control device determining a desired basic setting angle on the basis of the measurements C and D for the wind load and the reduced power respectively.

Som udgangspunkt roteres styreakslen 14 med samme omdrejningshastighed som hovedakslen 1. Ved be-30 hov for ændring af vingernes grundindstillingsvinkel øges eller reduceres styreakslen 14' s omdrejningshastighed. Den ændrede grundindstillingsvinkel udledes som målet A fra snekken 37. Når målet A svarer til _ _____ __'As a starting point, the steering shaft 14 is rotated at the same rotational speed as the main shaft 1. In the event of a change in the basic setting angle of the blades, the steering shaft 14's rotational speed is increased or decreased. The changed default setting angle is deduced as the target A from the worm 37. When the target A corresponds to _ _____ __ '

I DK 175892 B1 II DK 175892 B1 I

det af styreindretningen 4 6 bestemte indstilles sty- Ithe control set 4 by the control device 4 6 is adjusted

reakslen 14's hastighed til den for hovedakslen 1 øn- Ithe speed of the shaft 14 to that of the main shaft 1

skede omdrejningshastighed. Isheath speed of rotation. IN

For at hindre, at omdrejningshastigheden for ITo prevent the rotational speed of I

5 hovedakslen 1 driver, overlejres åben-sløj festyringen - I5 the main shaft 1 drives, the open-loop mounting guide is superimposed - I

af en lukket-sløj festyring med tilbagekobling af må- Iof a closed-loop party control with feedback of I-I

let D fra omdrejningstælleren til styreindretningen Ieasy D from the tachometer to the control device I

Forsøg har vist at der på denne måde kan opnås IExperiments have shown that in this way I can be obtained

10 en vekselstrøm fra generatoren med en frekvens, der I10 shows an alternating current from the generator at a frequency which I

kun afviger +/- 2,5% fra det ønskede. Ionly +/- 2.5% deviates from what you want. IN

De enkelte vinger vil udover grundindstillings- IIn addition to the basic setting, the individual blades will

vinklen ændre deres aktuelle indstillingsvinkel som Ithe angle change their current setting angle as I

følge af deres aktuelle afbøjningsvinkel α på samme Idue to their current deflection angle α on the same I

15 måde som beskrevet i ansøgers ovennævnte, ældre dan- I15, as described in the applicant's above-mentioned older patent

ske patent nr. 174 346. Ipatent No. 174,346

Claims (7)

1. Fremgangsmåde til styring af en vindmølle, fortrinsvis i ø-drift, hvilken vindmølle omfatter en rotor med i det 5 væsentlig vandret omdrejningsakse, mindst to vinger, der hver især i en ende er forbundet med rotoren og strækker sig ud fra denne i det væsentlige langs en vingeakse, omkring hvilken vingen kan drejes til en indstillingsvinkel for vingen, en vingejusteringsind-10 retning til indstilling af en fælles grundindstillingsvinkel for vingerne, midler til detektering af grundindstillingsvinklens størrelse, midler til detektering af vindmøllens belastning, midler til detektering af vingens afbøjning i omdrejningsakseret-15 ningen, ved hvilken fremgangsmåde møllens rotors omdrejningshastighed styres ved justering af grundindstillingsvinklen, idet et styresignal for vingejuste-ringsindretningen tilvejebringes i afhængighed af be-20 lastningen og vindhastigheden, kendetegnet ved, at der som mål for vindhastigheden anvendes vingens afbøjning i rotorens omdrejningsakses retningen.A method of controlling a wind turbine, preferably in island operation, said wind turbine comprising a rotor with substantially horizontal axis of rotation, at least two vanes each connected at one end to the rotor and extending therefrom therein. substantially along a blade axis about which the blade can be rotated to an adjustment angle of the blade, a blade adjustment device for adjusting a common basic adjustment angle of the blades, means for detecting the magnitude of the angle of adjustment, means for detecting the wind turbine deflection means in the rotation axis, by which method the rotor speed of the turbine is controlled by adjusting the basic setting angle, providing a control signal for the blade adjusting device depending on the load and the wind speed, characterized in that the blade deflection of the blade speed is used as a measure of the wind speed. omdrejningsa change direction. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at rotorens omdrejningshastighed 25 måles og anvendes i tilvejebringelsen af styresignalet for vingejusteringsindretningen.Method according to claim 1, characterized in that the rotational speed of the rotor 25 is measured and used in the provision of the control signal for the wing adjusting device. 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved, at der som mål for vindhastigheden anvendes afbøjningen af vingen med den største 30 afbøjning.Method according to claim 1 or 2, characterized in that the deflection of the blade with the largest deflection is used as a measure of the wind speed. 4. Vindmølle omfattende en rotor med i det væsentlig vandret omdrejningsakse, i . _____._____—d DK 175892 B1 mindst to vinger, der hver især i en ende er I forbundet med rotoren og strækker sig ud fra denne i I det væsentlige langs en vingeakse, omkring hvilken I vingen kan drejes gennem I 5 et første leje til en indstillingsvinkel for - I vingen, I en vingejusteringsindretning til indstilling af I en fælles grundindstillingsvinkel for vingerne, I et hængsel mellem vingen og rotoren med en I 10 hængselakse strækkende sig i en retning på tværs af I I vingeaksen og rotorens omdrejningsakses retning, I hvorved vingerne hver især kan afbøjes i rotorens om- I drejningsakses retning ved drejning om den respektive I I hængselakse, kendetegnet ved, at omfatte I I 15 en indretning til detektering af størrelsen af en I H vinges afbøjning i rotorens omdrejningsakses retning I og midler til detektering af grundindstillingsvink- I I lens størrelse samt midler til overføring af en de- I I tekteret vingeafbøjningsstørrelse og en detekteret I I 20 grundindstillingsvinkelstørrelse til en styreindret- I ning. IA wind turbine comprising a rotor with substantially horizontal axis of rotation, i. _____._____— d DK 175892 B1 at least two vanes, each of which is connected at one end to the rotor and extends therefrom substantially along a blade axis about which the vane can be rotated through a first bearing to an adjustment angle of the blade, in a blade adjusting device for adjusting a common basic adjustment angle of the blades, in a hinge between the blade and the rotor, with a hinge axis extending in a transverse direction of the blade axis and the direction of rotation of the rotor, whereby the blades each can be deflected in the direction of the rotor axis of rotation by rotation of the respective II hinge axis, characterized in that II comprises a device for detecting the magnitude of the deflection of an IH blade in the direction of rotation of the rotor axis and means for detecting the basic adjustment angle II size of the lens as well as means for transmitting a detected II deflection size and a detected I In 20 basic setting angle size for a control device. IN 5. Vindmølle ifølge krav 4,kendeteg- I I net ved, at omfatte en indretning til detektering I af afbøjningen af vingen med den største afbøjning. IWind turbine according to claim 4, characterized in that it comprises a device for detecting the deflection of the blade with the largest deflection. IN 6. Vindmølle ifølge krav 4 eller 5, k e n d e - I tegnet ved midler til detektering af rotorens I I omdrejningshastighed og midler til overføring af den I I detekterede størrelse til en styreenhed. IWind turbine according to claim 4 or 5, characterized by means for detecting the rotational speed of the rotor I and means for transmitting the detected size to a control unit. IN 7. Vindmølle ifølge krav 4-6,kendeteg- I I 30 n e t ved, at omfatte en styreenhed til at tilveje- I I bringe et styresignal til vingejusteringsindretnin- I I gen. IWind turbine according to claims 4-6, characterized in that it comprises a control unit for providing a control signal for the wing adjustment device. IN
DK200400429A 2004-03-17 2004-03-17 Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor DK175892B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK200400429A DK175892B1 (en) 2004-03-17 2004-03-17 Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor
PCT/DK2005/000181 WO2005088121A2 (en) 2004-03-17 2005-03-17 A method of controlling a windmill, especially in stand-alone operation, and a windmill
EP05715102A EP1738072A2 (en) 2004-03-17 2005-03-17 A method of controlling a windmill, especially in stand-alone operation, and a windmill
CN2005800086637A CN101010506B (en) 2004-03-17 2005-03-17 A method of controlling a windmill, especially in stand-alone operation, and a windmill
US10/593,319 US20090081042A1 (en) 2004-03-17 2005-03-17 Method of controlling a windmill, especially in stand-alone operation and a windmill
CA002560083A CA2560083A1 (en) 2004-03-17 2005-03-17 A method of controlling a windmill, especially in stand-alone operation, and a windmill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200400429A DK175892B1 (en) 2004-03-17 2004-03-17 Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor
DK200400429 2004-03-17

Publications (1)

Publication Number Publication Date
DK175892B1 true DK175892B1 (en) 2005-05-30

Family

ID=34609975

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200400429A DK175892B1 (en) 2004-03-17 2004-03-17 Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor

Country Status (6)

Country Link
US (1) US20090081042A1 (en)
EP (1) EP1738072A2 (en)
CN (1) CN101010506B (en)
CA (1) CA2560083A1 (en)
DK (1) DK175892B1 (en)
WO (1) WO2005088121A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010543A1 (en) * 2008-02-22 2009-08-27 Nordex Energy Gmbh Method for operating a wind turbine and wind turbine
US8736092B2 (en) 2008-03-07 2014-05-27 Vestas Wind Systems A/S Control system and a method for redundant control of a wind turbine
EP2107237A1 (en) * 2008-03-31 2009-10-07 AMSC Windtec GmbH Wind energy converter comprising a superposition gear
US20130302161A1 (en) * 2012-05-08 2013-11-14 Arne Koerber Controller of wind turbine and wind turbine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360792A (en) * 1941-03-22 1944-10-17 Morgan Smith S Co Wind turbine
US2516576A (en) * 1947-01-04 1950-07-25 Charles R Jacobs Self-governing wind-driven propeller
US4183715A (en) * 1978-02-01 1980-01-15 First National Bank Of Lubbock Adjustable vane windmills
DE2922972C2 (en) * 1978-06-15 1986-11-13 United Technologies Corp., Hartford, Conn. Wind turbine control system
US4297076A (en) 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
US4522564A (en) * 1980-07-30 1985-06-11 Carter Wind Power Wind-driven generator apparatus
US4435646A (en) * 1982-02-24 1984-03-06 North Wind Power Company, Inc. Wind turbine rotor control system
DD252640A1 (en) * 1986-09-11 1987-12-23 Rostock Energiekombinat CONTROL UNIT FOR WIND POWER PLANTS
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
US5584655A (en) * 1994-12-21 1996-12-17 The Wind Turbine Company Rotor device and control for wind turbine
DK174346B1 (en) * 1995-08-14 2002-12-16 Arne Johansen Windmill rotor with speed regulation through adjustment of the wing angle setting
DE19731918B4 (en) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Wind turbine
EP0995904A3 (en) * 1998-10-20 2002-02-06 Tacke Windenergie GmbH Wind turbine
DK1230479T3 (en) 1999-11-03 2005-01-10 Vestas Wind Sys As A method for controlling the operation of a wind turbine as well as a wind turbine for use in this method
DE10011393A1 (en) * 2000-03-09 2001-09-13 Tacke Windenergie Gmbh Control system for a wind turbine

Also Published As

Publication number Publication date
US20090081042A1 (en) 2009-03-26
CN101010506A (en) 2007-08-01
WO2005088121A3 (en) 2007-03-22
CA2560083A1 (en) 2005-09-22
WO2005088121A2 (en) 2005-09-22
CN101010506B (en) 2011-06-01
EP1738072A2 (en) 2007-01-03
WO2005088121A8 (en) 2005-11-10

Similar Documents

Publication Publication Date Title
AU727051B2 (en) Wind energy installation
EP2096300B1 (en) Method of controlling the tip speed ratio of wind turbine blades
EP3015705B1 (en) System and method for adaptive rotor imbalance control
AU768212B2 (en) Method of controlling the operation of a wind turbine and wind turbine for use in said method
EP1646786B1 (en) Method and apparatus for wind turbine rotor load control based on shaft radial displacement
EP2598750B1 (en) Improvements relating to wind turbines
EP2530304A1 (en) Wind power generation device and yaw turning control method for wind power generation device
NO760480L (en) WIND POWER PLANT.
EP2678556B1 (en) A safety system for a wind turbine
KR20120040747A (en) Method for controlling a wind power plant
AU2007303956A1 (en) Wind turbine with blade pitch control to compensate for wind shear and wind misalignment
EP2273106B1 (en) Wind turbine aerodynamic separation control
CA2821072A1 (en) Systems and methods for controlling tower clearance in a wind turbine
CN110520621A (en) Turbine operation depending on atmospheric density
EP2981710A1 (en) Method for controlling thrust load on a wind turbine
EP4008900A1 (en) Load sensors in wind turbines
US9702342B2 (en) Wind turbine
DK151351B (en) WINDMILL WITH REDUCED ACCESSIBILITY FOR DRIVER DIRECTION
DK175892B1 (en) Windmill control method involves providing control signal for adjusting common basic adjustment angle of blade, based on measured windmill load and wind speed obtained based on deflection of blade along rotational axis of rotor
CA3074397A1 (en) Wind turbine and method for operating a wind turbine with a loading variable
CN115585101A (en) Orientation sensor in a wind turbine
CN105264221A (en) Method for orienting of a wind power plant by a yaw moment of the rotor
EP3404257A1 (en) System and method for controlling a pitch angle of a wind turbine rotor blade
US12006914B2 (en) Controlling power output of a wind turbine at below-rated wind speed
JP7113892B2 (en) Method and controller and wind turbine for operating wind turbine in emergency mode

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20130331