DK174346B1 - Windmill rotor with speed regulation through adjustment of the wing angle setting - Google Patents

Windmill rotor with speed regulation through adjustment of the wing angle setting Download PDF

Info

Publication number
DK174346B1
DK174346B1 DK199500910A DK91095A DK174346B1 DK 174346 B1 DK174346 B1 DK 174346B1 DK 199500910 A DK199500910 A DK 199500910A DK 91095 A DK91095 A DK 91095A DK 174346 B1 DK174346 B1 DK 174346B1
Authority
DK
Denmark
Prior art keywords
shaft
rotor
worm
gear
axel
Prior art date
Application number
DK199500910A
Other languages
Danish (da)
Other versions
DK91095A (en
Inventor
Arne Johansen
Original Assignee
Arne Johansen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arne Johansen filed Critical Arne Johansen
Priority to DK199500910A priority Critical patent/DK174346B1/en
Publication of DK91095A publication Critical patent/DK91095A/en
Application granted granted Critical
Publication of DK174346B1 publication Critical patent/DK174346B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The wings 40 of a windmill rotor are through the help of an exchange mechanism 42, 43, 44, 32, 33 connected with a right-angle gear with two conical gears 38, 39. Each wing 40 entails an eccentric axel 25, which through the help of bearing journals 28, 29 are rotationally seated in the rotor housing around an axel 30, which is perpendicular on the rotor's rotation axel. The accompanying wing 40 is rotationally seated around its longitudinal direction (in 41) in a housing 42, which through the help of arms 43, 44 are pivotally mounted on eccentric parts 32, 33 of the axel 25. The first 38 of the two conical gears are non-pivotally connected with the axel 25 and has the same eccentricity as the two eccentric parts 32, 33. A gear segment 36 is fixed to a part 35 of the axel 25 and extends concentrically with the eccentric axels journals 28, 29. The gear segment 36 engages with a toothed bar 10. Adjustment of the wings' rotational position is achieved around their longitudinal direction upon variable wind load and upon going beyond a maximum rotational speed.<IMAGE>

Description

i DK 174346 B1in DK 174346 B1

Den foreliggende opfindelse angår en vindmøllerotor med hastighedsregulering ved omstilling af vingernes indstillingsvinkel, hvor hver vinge er dreje-5 ligt lejret omkring en tværakse, der forløber i et plan, som står vinkelret på rotorens omdrejningsakse.The present invention relates to a wind turbine rotor with speed control by adjusting the setting angle of the blades, each blade being pivotally mounted about a transverse axis extending in a plane perpendicular to the rotational axis of the rotor.

Den foreliggende opfindelse angår navnlig en vindmøllerotor, hvor vingernes indstillingsvinkel og rotorens omdrejningshastighed styres af vindens tryk 10 og en udefra kommende referenceomløbshastighed.In particular, the present invention relates to a wind turbine rotor in which the angle of adjustment of the blades and the rotational speed of the rotor are controlled by the pressure of the wind 10 and an external reference orbital speed.

Ved "indstillingsvinkel" skal der i denne beskrives forstås den drejningsvinkel, en vinge indtager omkring sin længderetning. Denne vinkel er 0°, når vingen vender sin forkant mod vindretningen, og 15 vingen ikke er påvirket af nogen opdrift. Når en vinge indtager denne stilling, siges den at være kantstillet. Ved stigende indstillingsvinkel drejes vingen omkring sin længderetning til opnåelse af en opdrift, der påvirker vingen med en kraft, der giver et 20 moment omkring rotorens hovedaksel i dennes tilstræbte omløbsretning.By "angle of adjustment" it is understood herein to mean the angle of rotation that a blade takes about its longitudinal direction. This angle is 0 ° when the wing faces its front edge towards the wind direction and the wing is not affected by any buoyancy. When a wing occupies this position, it is said to be edge-mounted. At increasing angle of adjustment, the blade is rotated about its longitudinal direction to obtain a buoyancy affecting the blade with a force that provides a torque about the main shaft of the rotor in its intended direction of rotation.

Der kendes fra tysk patentskrift nr. 435889 en vindmølle, hvor hver vinge ved sin indre ende er længdeforskydeligt og drejeligt lejret på en stang, 25 der rager radialt ud fra et navn, som er fast forbundet med møllens hovedaksel. Ved den indre ende af hver vinge er der drejeligt, men aksialt uforskydeligt, lejret en ring, der ved hjælp af en ledstang er forbundet med en krumtap, som er fastgjort til det 30 ene af vinkelgearets to koniske tandhjulselementer.German Patent No. 435889 discloses a wind turbine, each blade at its inner end being longitudinally displaceable and rotatably mounted on a rod 25 projecting radially from a name firmly connected to the main shaft of the mill. At the inner end of each wing a pivotal, but axially displaceable, is mounted a ring, which is connected by means of a link rod to a crank which is attached to one of the two tapered gears of the angular gear.

Dette er lejret frit drejeligt i forhold til hovedakslen, og det dermed i indgreb stående andet koniske tandhjulselement er frit drejeligt, men aksialt uforskydeligt, lejret på den tilhørende vinges 35 navstang. Det andet koniske tandhjulselement er forsynet med et nav, hvormed vingen er forbundet på længdeforskydelig, men udrejelig måde. Det andet koniske tandhjulselement er fat forbundet med en udra- DK 174346 B1 2 gende arm, og denne er ved hjælp af en dobbeltarmet vægtstang forbundet med en trækstang, der går gennem hovedakslen og er belastet i aksial retning.This is mounted freely rotatable relative to the main shaft, and the other conical gear element thus engaged is freely rotatable, but axially displaceable, mounted on the associated shaft's hub shaft. The second tapered gear element is provided with a hub with which the blade is connected in a longitudinally displaceable but removable manner. The second tapered gear element is connected to an extension arm, and this is connected by means of a double-arm bar to a drawbar passing through the main shaft and axially loaded.

Når den maksimalt tilladelige omdrejningsha-5 stighed overskrides, trækker vingen i ringen med en bestemt centrifugalkraft, og derved trækkes ledstangen udefter. Derved drejes det nævnte ene koniske tandhjulselement, der på sin side drejer det andet koniske tandhjulselement, hvorved dette svinger den 10 udragende arm. Derved trækker denne i den dobbeltar-mede vægt s tang, som derved er i stand til at overvinde belastningen på trækstangen. Samtidig med at det andet koniske tandhjulselement drejes, drejes den pågældende vinge, således at indstrømningsvinklen falls der og vingen kantstilles.When the maximum permissible speed of rotation is exceeded, the blade pulls in the ring with a particular centrifugal force, thereby pulling the lever outwards. Thereby the said one tapered gear element is rotated, which in turn turns the second tapered gear element, thereby swinging the protruding arm. Thereby, this pulls in the double-arm weight s forceps, which is thereby able to overcome the load on the drawbar. At the same time as the second tapered gear element is rotated, the respective blade is rotated so that the inflow angle falls there and the blade is tilted.

Da vingerne ved denne kendte vindmøllerotor er lejret på de nævnte radialt udragende stænger, er vingerne ikke i stand til at foretage nogen "afbøjningsbevægelse". Ved "afbøjningsbevægelse" skal der i 20 denne beskrivelse forstås, at vingerne er i stand til at svinge bagud, dvs. i vindretningen, nemlig under påvirkning af vindtrykket og for at afbøje de uheldige virkninger, som kraftige vindstød ellers kunne have. Der skal i denne forbindelse henvises til beskri-25 velsen til US patent nr. 2.516.576, hvor vingerne synkront kan svinges bagud af vindtrykket, hvorved en ledmekanisme forårsager en ændring af indstillingsvinklen. En lignende teknik kendes også fra tysk patentskrift nr. 805388, som beskriver er vindmøllero-30 tor til automatisk indstilling af indstillingsvinklen i afhængighed af både centrifugalkræfter og vindtryk på vingerne.Since the blades of this known wind turbine rotor are mounted on said radially extending rods, the blades are unable to make any "deflection motion". By "deflection movement" in this description is meant that the wings are capable of swinging backwards, i.e. in the wind direction, namely under the influence of the wind pressure and to mitigate the adverse effects that strong gusts could otherwise have. Reference is made in this connection to the specification of US Patent No. 2,516,576 in which the blades can be synchronously swiveled backwards by the wind pressure, whereby a link mechanism causes a change of the setting angle. A similar technique is also known from German Patent Specification No. 805388, which discloses is a wind turbine rotor for automatically adjusting the angle of adjustment depending on both centrifugal forces and wind pressure on the blades.

En vindmølle af den indledningsvis anførte art kendes fra svensk fremlæggelsesskrift nr. 404716, som 35 omtaler en mølle, i hvilken vingerne separat kan af-bøje, idet de er monterede med deres længdeakse skråst il let i forhold til tværaksen. Vingerne kan desuden kantstilles ved drejning omkring tværaksen ved hjælp 3 DK 174346 B1 af en ikke beskrevet mekanisme. Derved er vingernes afbøjningsvinkel og deres indstillingsvinkel uløseligt forbundet, og det er ikke muligt at lade vingerne afbøje individuelt for vindpres samtidig med at 5 indstillingsvinklen reguleres.A wind turbine of the kind initially mentioned is known from Swedish Patent Specification No. 404716, which discloses a mill in which the blades can deflect separately, having their longitudinal axis slightly inclined relative to the transverse axis. The blades can also be angled by rotation about the transverse axis by means of a mechanism not described. Thus, the deflection angle of the blades and their angle of adjustment are inextricably linked, and it is not possible to allow the blades to deflect individually for wind pressure while adjusting the angle of adjustment.

Det er desuden kendt at regulere indstillingsvinklen i vindmøllerotorer med stift monterede vinger jf. WO-A-83/00195, EP-A-0 094 106 og DE-A-42 21 783.In addition, it is known to regulate the setting angle in wind turbine rotors with rigidly mounted blades, cf. WO-A-83/00195, EP-A-0 094 106 and DE-A-42 21 783.

Det er formålet med den foreliggende opfindelse 10 at anvise en vindmøllerotor, som foruden ændring af indstillingsvinklen ved kraftige vindstød eller når vingerne udsættes for "skyggepåvirkning" fra mølletårnet, også ændrer indstillingsvinkel, når rotorens omdrejningshastighed ændrer sig fra den valgte udefra 15 kommende referencehastighed.It is the object of the present invention to provide a wind turbine rotor which, in addition to changing the setting angle in heavy gusts or when the blades are subjected to "shadowing" from the turbine tower, also changes the setting angle as the rotor speed of rotation changes from the selected outside reference speed.

Dette opnås ved en vindmøllerotor af den indledningsvis anførte art, som er særegen ved, at hver vinge med en vingeaksel er lejret drejeligt omkring sin længderetning i en forbindelsesdel, som drejeligt 20 om tværaksen er forbundet med rotorens hus, at hver vingeaksel er udrejeligt forbundet med et konisk tandhjulselement, der er i indgreb med et andet konisk tandhjulselement, der er udrejeligt forbundet med en om den respektive tværakse drejelig aksel.This is accomplished by a wind turbine rotor of the kind initially provided, which is peculiar in that each vane having a vane shaft is rotatably rotated about its longitudinal direction in a connecting portion pivotally connected to the rotor shaft 20, that each vane shaft is extensively connected to a tapered gear element engaging another tapered gear element which is pivotally connected to a shaft rotatable about the respective transverse axis.

25 Herved opnås en adskillelse af afbøjningsbevægelsen og indstillingsbevægelsen, idet den mellem vingen og rotorhuset indskudte forbindelsesdel kan svinge om en akse, der er fælles med en aksel der kan anvendes til styring af indstillingsvinklen. Der opnås således at 30 vingerne altid kan foretage individuelle afbøjningsbevægelser, idet de deraf følgende ændringer i indstillingsvinklen for den respektive vinge kan ske i forhold til en for vingerne fælles regulerbar indstillingsvinkel .Hereby a separation of the deflection movement and the adjustment movement is obtained, the connecting part inserted between the blade and the rotor housing can pivot about an axis common to a shaft which can be used for controlling the adjustment angle. It is thus obtained that the 30 wings can always make individual deflection movements, the resulting changes in the angle of adjustment of the respective wings can be made in relation to a joint adjustable angle of adjustment for the wings.

35 Opfindelsen skal herefter forklares nærmere un der henvisning til tegningen, hvor fig. 1 viser et sidebillede, delvis i snit efter linien B-B i fig. 2, idet dog kun den inderste 4 del af øverste vingearm er vist, fig. 2 viser et snit efter linien A-A i fig. 1, DK 174346 B1 og fig. 3 viser en udførelsesform af styreenheden, 5 delvis i snit gennem centerlinien.The invention will now be explained in more detail with reference to the drawing, in which fig. 1 is a side view, partially in section, taken along line B-B of FIG. 2, however, only the inner 4 portion of the upper wing arm is shown; 2 shows a section along line A-A in FIG. 1, DK 174346 B1 and FIG. 3 shows an embodiment of the control unit, 5 partly in section through the center line.

På tegningen betegner 1 rotorens hovedaksel, der fører ind i gondolens gear. Gondolen med dens kraftudtag er for overskuelighedens skyld ikke medtaget på tegningen. Hovedakslen 1 bærer rotorhuset 2, 10 der har en flange, hvortil hovedakslen 1 er fastgjort. Den ene ende af akslen 15 er fast forbundet til snekken 14, der går ind i rotorhuset 2, og akslen 15 forløber bagud gennem hovedakslen 1 ind i gondolen til styreenheden. Til rotorhuset (jfr. fig. 2) er 15 fast forbundet en akseltap 4, hvorpå hulakslen 5 er drejeligt lejret. På akslen 5 er der i den ene ende fastgjort et snekkehjul 13, der er i indgreb med en snekke 14. På akslen 5's anden ende er fastgjort et konisk tandhjul 12, der er i indgreb med et andet ko-20 nisk tandhjul 11, der er fastgjort til den nederste ende af en aksel 6, der udgør den inderste endedel af en møllevinge. Akslen 6 er drejeligt lejret ved hjælp af lejerne 7 og 8 i et lejehus 3. Lejehuset 3 er drejeligt forbundet til rotorhuset 2 ved lejerne 9 og 25 10.In the drawing, 1 denotes the main shaft of the rotor leading into the gondola gear. For the sake of clarity, the gondola with its power take-off is not included in the drawing. The main shaft 1 carries the rotor housing 2, 10 having a flange to which the main shaft 1 is attached. One end of the shaft 15 is firmly connected to the worm 14 which enters the rotor housing 2, and the shaft 15 extends backwards through the main shaft 1 into the gondola of the control unit. To the rotor housing (cf. Fig. 2), 15 is fixedly connected to a shaft pin 4 on which the hollow shaft 5 is pivotally mounted. On the shaft 5 is attached at one end a worm wheel 13 which is engaged by a worm 14. At the other end of the shaft 5 is attached a tapered sprocket 12 which engages another conical sprocket 11 which is attached to the lower end of a shaft 6 constituting the inner end portion of a mill blade. The shaft 6 is pivotally mounted by the bearings 7 and 8 in a bearing housing 3. The bearing housing 3 is pivotally connected to the rotor housing 2 at the bearings 9 and 25 10.

Styreenheden 16 (jfr. fig. 3) består af et snekkegear med snekke 33 og snekkehjul 34. I snekkehjulet 34 er indbygget og fast forbundet et friløbsleje 25, hvis inderring er fast forbundet til akslen 30 15. På snekkegearets indgangsaksle er monteret en styremotor, som ikke er vist på tegningen. Konsollen 30 danner lejehus for differentiale 20. På akslen 15 er fastgjort et cylindrisk tandhjul 17, der er i indgreb med et andet cylindrisk tandhjul 19, der er 35 fastgjort til akselenden af den ene udgangsaksel 31 fra differentialet. På den anden udgangsaksel 32 er der i enden fastgjort et cylindrisk tandhjul 21, der er i indgreb med et andet cylindrisk tandhjul 22, som 5 DK 174346 B1 er fastgjort til hovedakslen 1. Akslerne 31 og 32 er lejret i lejerne 26 og 27 i lejehuset 30. På akslerne 31 og 32 er fastgjort lejerne 28 og 29, der danner leje for differentialehuset 20, der dermed er dreje-5 ligt. Differentialehuset er udvendigt formet som en spole til oprulning af wire 23, der er forbundet til lod 24. I differentialehuset 20 er fastgjort en akseltap 35, der danner leje for de to differentialehjul 36 og 37. Af den i det foregående afgivne for-10 klaring vil det forstås, at en vinge, f.eks. den, der er forbundet med den øverste aksel tap 6 i fig. 2, i ubelastet tilstand og hvis der ses bort fra tyngdekraftens virkning, ikke er bundet til den i fig. 1 viste lodrette stilling, men vil kunne svinge i ret-15 ning af dobbeltpilen 40 i fig. 1, dvs. i et aksialt snit gennem hovedakslen 1, idet en sådan svingning blot vil resultere i en rulning af det tilhørende tandhjul 11 i forhold til det dermed samvirkende tandhjul 12, der normalt fastholdes i en bestemt vin-20 kelstilling af snekkehjul 13 og snekke 14. Denne svingningsbevægelse tillades som følge af den svinge-lige lejring af lejehuset 3 ved hjælp af lejerne 9 og 10 i rotorhuset. For imidlertid at undgå at vingerne i en sådan ubelastet tilstand skal stå og "vakle" er 25 der til hvert lejehus 3 fastgjort en dæmpningsfjeder, som ikke er påført tegningen.The control unit 16 (cf. Fig. 3) consists of a worm gear with worm 33 and worm wheel 34. In the worm wheel 34 is built-in and fixedly connected a freewheel bearing 25, the inner ring of which is firmly connected to the shaft 30 15. A steering motor is mounted on the input shaft of the worm gear. which is not shown in the drawing. The bracket 30 forms bearing housing for differential 20. On the shaft 15 is mounted a cylindrical sprocket 17 which engages another cylindrical sprocket 19, which is attached to the shaft end of one output shaft 31 from the differential. On the second output shaft 32, a cylindrical sprocket 21 is engaged at the end which is in engagement with another cylindrical sprocket 22, which is attached to the main shaft 1. The shafts 31 and 32 are mounted in the bearings 26 and 27 of the bearing housing. 30. On shafts 31 and 32 are mounted the bearings 28 and 29 which form bearings for the differential housing 20, which is thus rotatable. The differential housing is externally shaped as a coil for winding wire 23 connected to solder 24. In the differential housing 20 is mounted a shaft pin 35 which forms the bearing for the two differential wheels 36 and 37. Of the explanation given in the previous explanation it will be understood that a wing, e.g. that associated with the upper shaft pin 6 of FIG. 2, in the unloaded state and if the effect of gravity is disregarded, is not bound to that of FIG. 1, but will be able to swing in the direction of the double arrow 40 in FIG. 1, i.e. in an axial section through the main shaft 1, such a pivot will only result in a rolling of the associated sprocket 11 relative to the associated sprocket 12, which is normally held in a certain angular position of wormwheel 13 and worm 14. Swing movement is allowed as a result of the pivotal bearing of the bearing housing 3 by means of the bearings 9 and 10 in the rotor housing. However, in order to avoid the wings in such an unloaded state and to "wobble", a damping spring which is not applied to the drawing is attached to each bearing housing 3.

Som forklaret i det foregående fremkommer sådanne afbøjningsbevægelser som følge af vindtrykket og når den pågældende vinge udsættes for momentane 30 vindstød eller passerer tårnskyggen. Omkring det tilhørende vindmølletårn vil der opstå hvirvler, som har indvirkning på vingernes opdriftsegenskaber, når vingerne passerer tårnet, og uanset om dette sker på den luv side eller på den læ side.As explained above, such deflection movements occur as a result of the wind pressure and when the blade in question is subjected to instantaneous gusts or passes the tower shadow. Swirls will be formed around the associated wind turbine tower, which will affect the buoyancy properties of the blades as the blades pass through the tower and whether this occurs on the luv side or the sheltered side.

35 Under normal drift vil centrifugalkraften holde vingerne rettet radialt udefter, idet de dog vil have en lille afbøjning som følge af vindtrykket, og derved vil de samtidig indtage en bestemt drejningsvin- DK 174346 B1 6 kel omkring deres længderetninger, nemlig takketvære indgrebet mellem de tilhørende tandhjul 11 og 12 og det forhold, at akslen 5 holdes i en veldefineret stilling af snekkehjul 13 og 14. Herunder overføres 5 vingernes rotorbevægelse til hovedakslen 1 over: ak seltappene 6, lejerne 7 og 8, husene 3, lejerne 9 og 10 til rotorhuset 2. Udsættes en vinge for et vindstød, vil den foretage en afbøjning, dvs. den vil blive bevæget bagud i vindretningen. Derved vil det 10 tilhørende tandhjul 11 rulle i forhold til tandhjulet 12, og den pågældende vinge momentant aflastes. Vingen vil altså blive drejet omkring sin længderetning momentant. Så snart den pågældende påvirkning af vingen ophører, vil den vende tilbage til sin normale 15 arbejdsstilling som følge af centrifugalkraftens påvirkning. Mere præcist vil vingernes afbøjning eller bagoverhældning naturligvis, foruden af centrifugal-påvirkningen, afhænge af vindtrykket.35 In normal operation, the centrifugal force will keep the wings directed radially outwards, however, they will have a slight deflection due to the wind pressure, and at the same time they will take a certain rotational wind around their longitudinal directions, namely thanks to the engagement of the associated gears 11 and 12 and the fact that the shaft 5 is held in a well-defined position by worm wheels 13 and 14. Below, the 5 rotor movement of the wings is transferred to the main shaft 1 over: the shaft studs 6, bearings 7 and 8, the housings 3, the bearings 9 and 10 to the rotor housing. 2. If a blade is exposed to a gust, it will deflect, ie. it will be moved backwards in the wind direction. Thereby, the associated gears 11 will roll relative to the gears 12 and the blade in question is momentarily relieved. The blade will thus be rotated about its longitudinal direction momentarily. As soon as the particular impact on the blade ceases, it will return to its normal working position due to the influence of the centrifugal force. More precisely, in addition to the centrifugal action, the deflection or backward tilt of the wings will depend on the wind pressure.

Af den i det foregående givne forklaring vil 20 det forstås, at møllens rotationshastighed er bestemt af styreenheden 16 og omdrejningerne af dennes styre-motor. Under opstart er vingernes indstillingsvinkel 0°. Styremotoren vil gennem snekken 33 få snekkehjulet til at rotere med den ønskede hastighed. Friløbs-25 lejet 25, der er indbygget i snekkehjul 34 og inder-ringen fastgjort til akslen 15, har sit friløb i modsat retning af hovedakslen l's og snekkehjulet 34's rotationsretning. Når snekkehjulet 34 drejer, vil friløbslejet 25 tillade akslen 15 at kunne bevæge sig 30 frit op til snekkehjulet 34's omdrejninger, hvor akslen 15 da vil fastholdes, hvis den prøver at overskride denne hastighed. Ved opstart vil akslen da blive frigjort. Det vil bevirke, at loddet 24 gennem wiren 23 vil få differentialehuset til at dreje og 35 gennem lejetap 35 påvirke differentialehjulene 36 og 37. Under opstart er hovedakslen 1 stillestående og tandhjul 22 dermed også. Tandhjul 21 og akslen 32 vil da ikke kunne drejes. Differentialehjulene vil da kun 7 DK 174346 B1 kunne påvirke akslen 31, der da via tandhjulene 19, 18 og 17 vil overføre drejningen til akslen 15, der er fast forbundet til snekken 14 i rotorhuset 2, som er i indgreb med snekkehjulene 13, der igennem akslen 5 5 vil overføre drejningen til det koniske tandhjul 12 og videre til det koniske tandhjul 11, hvorved akslen 6 og vingen vil dreje til den ønskede indstillingsvinkel .From the foregoing explanation, it will be understood that the rotational speed of the mill is determined by the controller 16 and the revolutions of its steering motor. During start-up, the setting angle of the wings is 0 °. The steering motor will through the worm 33 cause the worm wheel to rotate at the desired speed. The freewheel bearing 25, which is built into the worm wheel 34 and the inner ring attached to the shaft 15, has its freewheel in the opposite direction of the rotational direction of the main shaft 1 and the worm wheel 34. As the worm wheel 34 turns, the freewheel bearing 25 will allow the shaft 15 to move freely up to the turns of the worm wheel 34, where the shaft 15 will then be retained if it tries to exceed this speed. At start-up, the shaft will then be released. This will cause the solder 24 through the wire 23 to cause the differential housing to rotate and 35 through the bearing pin 35 to affect the differential wheels 36 and 37. During start-up, the main shaft 1 is stationary and the gears 22 thus also. Gears 21 and shaft 32 will then not be rotatable. The differential wheels will then only be able to influence the shaft 31, which will then transmit via the gears 19, 18 and 17 to the shaft 15, which is firmly connected to the worm 14 in the rotor housing 2, which is in engagement with the worm wheels 13 which pass through it. the shaft 5 5 will transfer the rotation to the tapered sprocket 12 and further to the tapered sprocket 11, whereby the shaft 6 and the blade will rotate to the desired setting angle.

Hvis vindmøllerotoren under sin rotation vi 10 overstige styremotorens hastighed som følge af stigende vindhastighed, vil det modsatte forløb af det førnævnte indtræffe. Vindmøllerotorens større rotation vil medføre, at snekkehjulene 13 vil dreje hurtigere end snekken 14 og dermed "skrue" sig til en fal-15 dende indfaldsvinkel for vingerne. Samtidig vil den gennem differentialet 20 hæve loddet 24. Vindmøllerotoren vil da finde en balance omkring styremotorens angivne omdrejningshastighed.If during the rotation of the wind turbine we exceed the speed of the steering motor due to increasing wind speed, the opposite course of the aforementioned will occur. The larger rotation of the wind turbine rotor will cause the worm wheels 13 to rotate faster than the worm 14 and thus "screw" to a falling angle of inclination of the blades. At the same time, through the differential 20, it will raise solder 24. The wind turbine rotor will then strike a balance around the specified speed of the steering motor.

Ved stop af styremotor vil vingerne "skrue" sig 20 frem til indfaldsvinkel 0°.At the stop of the steering motor, the blades "screw" 20 forward to the angle of incidence 0 °.

Claims (4)

1. Vindmøllerotor med hastighedsregulering ved omstilling af vingernes indstillingsvinkel, hvor hver vinge er drejeligt lejret omkring en tværakse, der 5 forløber i et plan, som står vinkelret på rotorens omdrejningsakse, kendetegnet ved, at hver vinge med en vingeaksel {6) er lejret drejeligt omkring sin længderetning i en forbindelsesdel (3), som drejeligt om tværaksen er forbundet med rotorens hus 10 (2) , at hver vingeaksel (6) er udrejeligt forbundet med et konisk tandhjulselement (11) , der er i indgreb med et andet konisk tandhjulselement (12), der er udrejeligt forbundet med en om den respektive tværakse drejelig aksel (5).A wind turbine rotor with speed control when adjusting the setting angle of the blades, wherein each blade is rotatably mounted about a transverse axis extending in a plane perpendicular to the rotor axis of the rotor, characterized in that each blade with a blade shaft {6) is rotatably mounted about its longitudinal direction in a connecting part (3) rotatably about the transverse axis connected to the rotor housing 10 (2), that each vane shaft (6) is extendably connected to a tapered gear element (11) which engages another tapered gear element (12) which is pivotally connected to a shaft rotatable about the respective transverse axis (5). 2. Vindmøllerotor ifølge krav 1, kende - tegnet ved, at der til akslen (5) er et fast forbundet snekkehjulselement (13) parallelt med den nævnte tværakse, der står i indgreb med en snekke (14) i rotorens center, parallelt med rotorens om-20 drejningsakse.Wind turbine rotor according to claim 1, characterized in that the shaft (5) has a fixed worm wheel element (13) parallel to said transverse axis which engages a worm (14) in the center of the rotor, parallel to that of the rotor. about 20 axis of rotation. 3. Vindmøllerotor ifølge krav 2, kendetegnet ved, at snekken (14) er udrejeligt forbundet med en styreaksel (15) , der er ført til møllens styreenhed, der består af snekkegear med styre- 25 motor og at styreakslen (15) er forbundet til gearets snekkehjul (34) via et friløbsleje (25).Wind turbine rotor according to claim 2, characterized in that the worm (14) is removably connected to a control shaft (15) which is fed to the control unit of the mill, which consists of worm gear with control motor and that the control shaft (15) is connected to the worm gear (34) of the gear via a freewheel bearing (25). 4. Vindmøllerotor ifølge krav 3, kendetegnet ved, at der fast forbundet til styreakslen (15) er et cylindrisk tandhjulselement (17), der 30 er i indgreb med et andet cylindrisk tandhjulselement (18) , der som mellemhjul er i indgreb med et tredje tandhjulselement (19) , der er fast forbundet til den ene udgangsaksel (31) fra et differentiale (20) , at der på differentialets (20) anden udgangsaksel (32) 35 er et fjerde tandhjulselement (21) fast forbundet og i indgreb med et femte tandhjulselement (22) fast forbundet til rotorens hovedaksel (1) , og at differentialehuset danner spole for en wire (23) til et 9 DK 174346 B1 lod (24). 5Wind turbine rotor according to claim 3, characterized in that a cylindrical sprocket element (17) is fixedly connected to the steering shaft (17) which is in engagement with a second cylindrical sprocket element (18) which interferes with a third wheel. gear element (19) fixedly attached to one output shaft (31) of a differential (20), that on the second output shaft (32) of the differential (20), a fourth gear element (21) is firmly connected and engaged by a fifth gear element (22) firmly connected to the main shaft (1) of the rotor, and the differential housing forming coil for a wire (23) to a solder (24). 5
DK199500910A 1995-08-14 1995-08-14 Windmill rotor with speed regulation through adjustment of the wing angle setting DK174346B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK199500910A DK174346B1 (en) 1995-08-14 1995-08-14 Windmill rotor with speed regulation through adjustment of the wing angle setting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK199500910A DK174346B1 (en) 1995-08-14 1995-08-14 Windmill rotor with speed regulation through adjustment of the wing angle setting
DK91095 1995-08-14

Publications (2)

Publication Number Publication Date
DK91095A DK91095A (en) 1997-02-15
DK174346B1 true DK174346B1 (en) 2002-12-16

Family

ID=8098905

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199500910A DK174346B1 (en) 1995-08-14 1995-08-14 Windmill rotor with speed regulation through adjustment of the wing angle setting

Country Status (1)

Country Link
DK (1) DK174346B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088121A2 (en) 2004-03-17 2005-09-22 Arne Johansen A method of controlling a windmill, especially in stand-alone operation, and a windmill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088121A2 (en) 2004-03-17 2005-09-22 Arne Johansen A method of controlling a windmill, especially in stand-alone operation, and a windmill
WO2005088121A3 (en) * 2004-03-17 2007-03-22 Arne Johansen A method of controlling a windmill, especially in stand-alone operation, and a windmill
CN101010506B (en) * 2004-03-17 2011-06-01 阿尔内·约翰森 A method of controlling a windmill, especially in stand-alone operation, and a windmill

Also Published As

Publication number Publication date
DK91095A (en) 1997-02-15

Similar Documents

Publication Publication Date Title
US4084921A (en) Windmill with cyclically feathering blades
US5096381A (en) Regulating device for maintaining constant the rotary speed in turbines
US4183715A (en) Adjustable vane windmills
US20030075929A1 (en) Wind power plant
JP2010501054A (en) Wind power generator
US20100215502A1 (en) Multistage wind turbine with variable blade displacement
GB2360551A (en) Turbine
US6113350A (en) Vertical-axle power machine
NO330820B1 (en) Rotor mechanism for helicopters
DK141381B (en) Automatic acting control device for constant rotation of wind-driven rotors.
DE2825061A1 (en) Wind powered generator with variable pitch blades - has swivel point of blades offset from aerodynamic centre to balance forces
DK174346B1 (en) Windmill rotor with speed regulation through adjustment of the wing angle setting
DE4420204C2 (en) Hydrodynamic retarder
CN105431351B (en) For controlling the device of the Angle Position of the turbine blade of propeller set
CN2782976Y (en) Automatic vane adjusting speed limiter for small wind driven power generator
EP0438189B1 (en) Wind turbine
US2113478A (en) Air screw with automatically variable pitch
CA2073406C (en) Pitch control mechanism
US2533321A (en) Variable pitch propeller
EP0088778A1 (en) A windmill having automatic pitch control means
JPS59176474A (en) Safety device of wind prime mover
US2141552A (en) Variable pitch airscrew
RU2109166C1 (en) Windwheel with speed governor
JPH0211747B2 (en)
US188743A (en) Improvement in windmills

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed

Country of ref document: DK