SE529445C2 - Process for making compact graphite iron - Google Patents

Process for making compact graphite iron

Info

Publication number
SE529445C2
SE529445C2 SE0502817A SE0502817A SE529445C2 SE 529445 C2 SE529445 C2 SE 529445C2 SE 0502817 A SE0502817 A SE 0502817A SE 0502817 A SE0502817 A SE 0502817A SE 529445 C2 SE529445 C2 SE 529445C2
Authority
SE
Sweden
Prior art keywords
cerium
iron
magnesium
mold
alloy
Prior art date
Application number
SE0502817A
Other languages
Swedish (sv)
Other versions
SE0502817L (en
Inventor
Rudolf Sillen
Original Assignee
Novacast Technologies Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novacast Technologies Ab filed Critical Novacast Technologies Ab
Priority to SE0502817A priority Critical patent/SE529445C2/en
Priority to CN2006800481058A priority patent/CN101341262B/en
Priority to PCT/SE2006/001424 priority patent/WO2007073280A1/en
Priority to KR1020087015971A priority patent/KR20080089577A/en
Priority to BRPI0620077-0A priority patent/BRPI0620077A2/en
Priority to US12/086,637 priority patent/US20090183848A1/en
Priority to MX2008007968A priority patent/MX2008007968A/en
Priority to EP06835848A priority patent/EP1974062B1/en
Publication of SE0502817L publication Critical patent/SE0502817L/en
Publication of SE529445C2 publication Critical patent/SE529445C2/en
Priority to US13/329,561 priority patent/US20120090803A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/08Manufacture of cast-iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

A process for production of compacted graphite iron using in-mould addition of a magnesium alloy is disclosed. The process is characterised by a step of pre-treating the base iron in a ladle or in a furnace with an alloy containing cerium and performing a structure forming treatment in a reaction chamber in the mould using an alloy containing magnesium and lanthanum.

Description

25 30 35 529 445 2 i WO-01/54844, är lämplig för framställning av kompakt- grafitjärn. In-mould-tekniken baseras på att man placerar magnesiumlegeringen i en reaktionskammare i gjutsystemet i gjutformen. Vid avgjutning flyter basjärnsmältan in i gjutformen varvid legeringen successivt löses upp. Den behandlade smältan fyller därefter gjutgodskaviteten. 529 445 2 in WO-01/54844, is suitable for the production of compact graphite iron. The in-mold technique is based on placing the magnesium alloy in a reaction chamber in the casting system in the mold. During casting, the base iron melt flows into the mold, whereby the alloy is gradually dissolved. The treated melt then fills the casting cavity.

Problem med avklingning av magnesium elimineras när man använder denna process.Problems with decay of magnesium are eliminated when using this process.

Ett problem är att svavelhalten i basjärnet ofta va- rierar. Därför måste magnesiumhalten justeras. Med in- mould-behandling är det i praktiken inte möjligt, efter- som reaktionskammaren är likadan i varje gjutform. Ett annat problem är att behandling med magnesium gör struk- turen känslig för variationer i svalningshastigheten. Vid en hög svalningshastighet, t.ex. i gjutgodsets tunna sek- tioner, blir grafitstrukturen mer sfärisk. Vid låg sval- ningshastighet, t.ex. i tjocka sektioner, utskiljes gra- fiten mer i lamellär form.One problem is that the sulfur content of the base iron often varies. Therefore, the magnesium content must be adjusted. With in-mold treatment, this is not possible in practice, as the reaction chamber is the same in every mold. Another problem is that treatment with magnesium makes the structure sensitive to variations in the rate of cooling. At a high cooling rate, e.g. in the thin sections of the casting, the graphite structure becomes more spherical. At low cooling rate, e.g. in thick sections, the graphite is more precipitated in lamellar form.

Det är välkänt att behandlingslegeringar som inne- håller både magnesium och cerium reducerar dessa problem.It is well known that treatment alloys containing both magnesium and cerium reduce these problems.

Däremot kan höga nivåer av cerium öka risken för vissa defekter såsom primära karbider och mikrosugningar.However, high levels of cerium can increase the risk of certain defects such as primary carbides and micro-suctions.

Beskrivning av uppfinningen Ett syfte med uppfinningen är att lösa dessa pro- blem.Description of the invention An object of the invention is to solve these problems.

Uppfinningen avser en process för framställning av kompaktgrafitjärn med användning av in-mould-tillsats av magnesiumlegering i enlighet med krav l och där basjärnet behandlas med cerium före avgjutning. Mängden cerium ju- steras i förhållande till svavelhalten i basjärnet. Ceri- umnivån justeras enligt följande formel: (%Svavel - 0,006) * 2,9 + A Värdet för A varieras företrädesvis mellan 0,01 och %Cerium = 0,03 beroende på gjutgodsets konfiguration, dvs variation i dimensionerna för olika sektioner och gjutgodsets mo- dul. Eftersom cerium har en mycket högt koktemperatur 10 15 20 25 30 529 445 3 (3470°C) och en hög densitet (6,l4 g/cm3) visar det prak- tiskt taget ingen avklingningseffekt. Genom att tillsätta cerium i basjärnet kan det fullständigt gå i lösning och en mindre mängd magnesiumlegering behöver tillsättas i reaktionskammaren i gjutformen eftersom även cerium har en strukturformande effekt.The invention relates to a process for the production of compact graphite iron using in-mold addition of magnesium alloy according to claim 1 and wherein the base iron is treated with cerium before casting. The amount of cerium is adjusted in relation to the sulfur content of the base iron. The cerium level is adjusted according to the following formula: (% Sulfur - 0.006) * 2.9 + A The value for A is preferably varied between 0.01 and% Cerium = 0.03 depending on the configuration of the casting, ie variation in the dimensions of different sections and the casting module. Since cerium has a very high boiling temperature (3470 ° C) and a high density (6.14 g / cm 3), it shows practically no decaying effect. By adding cerium to the base iron, it can completely dissolve and a smaller amount of magnesium alloy needs to be added to the reaction chamber in the mold because cerium also has a structuring effect.

Behandlingslegeringen innehåller företrädesvis 3-6% magnesium och 0.5-l.5% lantan. Lantan har en fördelaktig effekt i att det reducerar gjutgodsdefekter såsom karbi- der och sugningar. Största effekten av lantan vad gäller sugningar är direkt efter behandling och därför är det optimalt att tillsätta lantan så sent som möjligt.The treatment alloy preferably contains 3-6% magnesium and 0.5-1.5% lanthanum. Lanthanum has a beneficial effect in that it reduces casting defects such as carbides and suctions. The greatest effect of lanthanum in terms of suction is immediately after treatment and therefore it is optimal to add lanthanum as late as possible.

De legeringar som används kan ha olika sammansätt- ning för att nå optimala resultat. Exempel på kompositio- ner för kommersiellt tillgängliga legeringar: För magnesiumlegeringen: 48% Fe, 45% Si, 5% Mg, l,O% O,5% La och 0,5% Ca, För ceriumlegeringen: Al, samt 65% Fe, 25% Ce, 7% La och återstoden andra sällsynta jordartsmetaller.The alloys used can have different compositions to achieve optimal results. Examples of compositions for commercially available alloys: For the magnesium alloy: 48% Fe, 45% Si, 5% Mg, 1.0% 0, 5% La and 0.5% Ca, For the cerium alloy: Al, and 65% Fe , 25% Ce, 7% La and the remainder other rare earth metals.

I enlighet med uppfinningens ändamål tillsätts ceri- um i ugnen eller skänken (och inte som en del av magnesi- umlegeringen) och magnesium tillsätts i gjutformen.In accordance with the object of the invention, cerium is added to the oven or ladle (and not as part of the magnesium alloy) and magnesium is added to the mold.

Med den föreslagna processen kan magnesiumtillsatsen minskas med åtminstone 30% jämfört med en traditionell in-mould behandling enbart i gjutformen.With the proposed process, the magnesium addition can be reduced by at least 30% compared to a traditional in-mold treatment in the mold alone.

Den minskade magnesiumnivàn i gjutgodset har även den fördelen att gjutgodsfel såsom dross och mikrosugningar minimeras.The reduced magnesium level in the castings also has the advantage that casting defects such as dross and micro suction are minimized.

Claims (3)

l0 15 20 25 529 445 4 PATENTKRAVl0 15 20 25 529 445 4 PATENT REQUIREMENTS 1. Process för framställning av kompaktgrafitjärn genom tillsats av en magnesiumlegering i en reaktionskam- mare i en gjutform k ä n n e t e c k n a d av att bas- järnet förbehandlas i en gjutskänk eller i en smältugn med en legering som innehåller cerium, samt att struktur- formande behandling utförs i en reaktionskammare i gjut- formen med en legering som innehåller magnesium och lan- tan.Process for the production of compact graphite iron by adding a magnesium alloy in a reaction chamber in a mold, characterized in that the base iron is pretreated in a ladle or in a melting furnace with an alloy containing cerium, and that structuring treatment is carried out in a reaction chamber in the mold with an alloy containing magnesium and lanthanum. 2. Process i enlighet med krav l, k ä n n e- t e c k n a d gering som innehåller cerium för uppnàende av en cerium- nivå mellan 0,008 och 0,025% och att järnet vidare be- av att basjärnet förbehandlas med en le- handlas i gjutformen med en legering som innehåller 3-6% magnesium och 0,5-l,5% lantan.Process according to claim 1, characterized in that a cerium containing cerium is obtained to achieve a cerium level between 0.008 and 0.025% and that the iron is further treated by pre-treating the base iron with a clay in the mold with a alloy containing 3-6% magnesium and 0.5-1.5% lanthanum. 3. Förfarande i enlighet med krav 1 eller 2, k ä n n e t e c k n a d a v att en lägsta procentuell andel cerium i basjärnet beräknas enligt formeln (%S - 0,006) * 2,9 + 0,01), där S är svavelhalten i järnet före tillsättning av cerium.Process according to Claim 1 or 2, characterized in that a minimum percentage of cerium in the base iron is calculated according to the formula (% S - 0.006) * 2.9 + 0.01), where S is the sulfur content of the iron before the addition of cerium.
SE0502817A 2005-12-20 2005-12-20 Process for making compact graphite iron SE529445C2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SE0502817A SE529445C2 (en) 2005-12-20 2005-12-20 Process for making compact graphite iron
CN2006800481058A CN101341262B (en) 2005-12-20 2006-12-14 Process for production of compacted graphite iron
PCT/SE2006/001424 WO2007073280A1 (en) 2005-12-20 2006-12-14 Process for production of compacted graphite iron
KR1020087015971A KR20080089577A (en) 2005-12-20 2006-12-14 Process for production of compacted graphite iron
BRPI0620077-0A BRPI0620077A2 (en) 2005-12-20 2006-12-14 process for producing compressed graphite iron
US12/086,637 US20090183848A1 (en) 2005-12-20 2006-12-14 Process for Production of Compacted Graphite Iron
MX2008007968A MX2008007968A (en) 2005-12-20 2006-12-14 Process for production of compacted graphite iron.
EP06835848A EP1974062B1 (en) 2005-12-20 2006-12-14 Process for production of compacted graphite iron
US13/329,561 US20120090803A1 (en) 2005-12-20 2011-12-19 Process for producton of compacted graphite iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0502817A SE529445C2 (en) 2005-12-20 2005-12-20 Process for making compact graphite iron

Publications (2)

Publication Number Publication Date
SE0502817L SE0502817L (en) 2007-06-21
SE529445C2 true SE529445C2 (en) 2007-08-14

Family

ID=38188913

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0502817A SE529445C2 (en) 2005-12-20 2005-12-20 Process for making compact graphite iron

Country Status (8)

Country Link
US (2) US20090183848A1 (en)
EP (1) EP1974062B1 (en)
KR (1) KR20080089577A (en)
CN (1) CN101341262B (en)
BR (1) BRPI0620077A2 (en)
MX (1) MX2008007968A (en)
SE (1) SE529445C2 (en)
WO (1) WO2007073280A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101708583B1 (en) * 2013-09-06 2017-02-20 도시바 기카이 가부시키가이샤 Method for spheroidizing molten metal of spheroidal graphite cast iron
CN105785882B (en) * 2016-05-09 2019-05-14 哈尔滨理工大学 A kind of spheroidal graphite cast-iron nodularization inoculation dynamic regulation method and system
ES2901405T3 (en) * 2016-09-12 2022-03-22 Snam Alloys Pvt Ltd A magnesium-free process to produce compact graphite iron (CGF)
BR102016022690B1 (en) * 2016-09-29 2022-02-08 Tupy S.A. VERMICULAR CAST IRON ALLOY FOR INTERNAL COMBUSTION ENGINE BLOCK AND HEAD
CN109371191A (en) * 2018-11-09 2019-02-22 中船海洋动力部件有限公司 A kind of compactedization inoculation method of vermicular cast iron

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB833486A (en) * 1956-05-02 1960-04-27 British Cast Iron Res Ass Manufacture of engineering components and of improved grey cast iron therefor
US3392013A (en) * 1966-03-14 1968-07-09 Owens Illinois Inc Cast iron composition and process for making
US3765876A (en) * 1972-11-01 1973-10-16 W Moore Method of making nodular iron castings
EP0041953B1 (en) * 1979-12-19 1984-06-13 Foseco International Limited Production of vermicular graphite cast iron
DE3010623C2 (en) * 1980-03-20 1982-12-02 Metallgesellschaft Ag, 6000 Frankfurt Apparatus for treating molten cast iron
CH656147A5 (en) * 1981-03-31 1986-06-13 Fischer Ag Georg METHOD FOR PRODUCING A CAST IRON WITH VERMICULAR GRAPHITE.
US4806157A (en) * 1983-06-23 1989-02-21 Subramanian Sundaresa V Process for producing compacted graphite iron castings
DE3801917A1 (en) * 1988-01-23 1989-08-03 Metallgesellschaft Ag METHOD FOR PRODUCING CAST IRON WITH BALL GRAPHITE
NO306169B1 (en) * 1997-12-08 1999-09-27 Elkem Materials Cast iron grafting agent and method of making grafting agent
SE518344C2 (en) 2000-01-26 2002-09-24 Novacast Ab gating

Also Published As

Publication number Publication date
CN101341262B (en) 2010-12-29
MX2008007968A (en) 2008-09-26
CN101341262A (en) 2009-01-07
EP1974062B1 (en) 2013-01-23
EP1974062A1 (en) 2008-10-01
BRPI0620077A2 (en) 2011-11-01
US20120090803A1 (en) 2012-04-19
SE0502817L (en) 2007-06-21
KR20080089577A (en) 2008-10-07
WO2007073280A1 (en) 2007-06-28
US20090183848A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
CN105401032B (en) A kind of inexpensive high heat conduction diecast magnesium alloy and its manufacture method
CN106566935B (en) A kind of liquid forging aluminium alloy and preparation method thereof
Zhang et al. Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process
CN102717035B (en) Low Si-Mg ratio and low RE-Mg nodularizer
CN104911458A (en) Hydraulic pump body casting process
CN104152793B (en) QT500-7 heavy section casting quality and the method for Composition Control
CN105463282A (en) Rare earth-magnesium alloy and preparation method thereof
SE529445C2 (en) Process for making compact graphite iron
CN111455228B (en) High-strength and high-toughness aluminum-silicon alloy, and die-casting process preparation method and application
CN103320652B (en) Zinc-based alloy for die and preparation process thereof
JP2016223002A (en) High strength ductile thin wall cast machine component without chill
Nunes et al. Low-and high-pressure casting aluminum alloys: A review
JPWO2011145194A1 (en) Heat-resistant cast iron short metal fiber and method for producing the same
US20210147963A1 (en) Magnesium alloy with high thermal conductivity, inverter housing, inverter and vehicle
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
CN106513622A (en) AM50 magnesium alloy vacuum die-casting process
CN105382240A (en) Precision casting process for thin-wall aluminum alloy casting
CN112475240B (en) Casting method of brake head capable of avoiding edge thin-wall white notch
JP2007327083A (en) Spheroidal graphite cast iron and its production method
Fred Major Aluminum and aluminum alloy castings
CN106399784A (en) Cast magnesium alloy with almost no eutectic solidification phase and manufacturing method of casting made of cast magnesium alloy with almost no eutectic solidification phase
CN102051520B (en) Composite beam connecting piece for maglev train and casting method of composite beam connecting piece
CN110218922A (en) Production method, system of processing and the Mg alloy castings of Mg alloy castings
CN107245642B (en) A kind of equalizing suspension system casting with spheroidal graphite cast-iron plastics on new materials with and preparation method thereof
Kanno Effect of pouring temperature, composition, mould strength and metal flow resistance on shrinkage cavities in spheroidal graphite cast iron

Legal Events

Date Code Title Description
NUG Patent has lapsed