RU2816425C1 - Способ получения аппретированного углеволокна и полимерный композиционный материал на его основе - Google Patents

Способ получения аппретированного углеволокна и полимерный композиционный материал на его основе Download PDF

Info

Publication number
RU2816425C1
RU2816425C1 RU2023108193A RU2023108193A RU2816425C1 RU 2816425 C1 RU2816425 C1 RU 2816425C1 RU 2023108193 A RU2023108193 A RU 2023108193A RU 2023108193 A RU2023108193 A RU 2023108193A RU 2816425 C1 RU2816425 C1 RU 2816425C1
Authority
RU
Russia
Prior art keywords
sizing
polymer composite
carbon fibre
carbon fiber
finished
Prior art date
Application number
RU2023108193A
Other languages
English (en)
Inventor
Ауес Ахмедович Беев
Светлана Юрьевна Хаширова
Джульетта Анатольевна Беева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ)
Application granted granted Critical
Publication of RU2816425C1 publication Critical patent/RU2816425C1/ru

Links

Abstract

Изобретение относится к способу получения аппретированных углеродных волокон и может быть использовано в качестве конструкционных полимерных материалов для производства изделий специального назначения в аддитивных технологиях. Способ получения аппретированных углеродных волокон, предназначенных для конструкционных полимерных материалов, основан на аппретировании углеродного волокна путем нанесения аппретирующего компонента из раствора с последующей сушкой, в сушильном шкафу под вакуумом при 54±0,5оС, при этом аппрет наносят из раствора с концентрацией 0,78 мас. % в органическом легколетучем растворителе диметилкетоне, и проводят ступенчатый подъем температуры с одновременной отгонкой растворителя и воздействия ультразвука с рабочей частотой 46 кГц по режиму: 20°С – 2 мин, 30°С - 2 мин, 40°С - 3 мин, 60°С - 5 мин, 75°С - 5 мин, причем количественное соотношение компонентов соответствует в мас. %: углеволокно -96,5, 4,4'-диоксифталофенона – 0,5-3,0, 3,4-толуилендиамина – 3,0-0,5. Также изобретение относится к полимерному композиционному материалу, используемому при производстве конструкционных изделий в аддитивных технологиях, содержащему полимерную матрицу на основе полиэфиримида и аппретированного углеродного волокна, полученного способом получения аппретированных углеродных волокон, причем количественное соотношение компонентов в полимерном композите соответствует в мас. %.: полиэфиримид – 80, аппретированное углеродное волокно – 20. Технический результат изобретения заключается в улучшении модуля упругости и прочности при изгибе создаваемых полимерных композиционных материалов за счет введения аппретирующего состава - 3,4-толуилендиамина и 4,4'-диоксифталофенона, который повышает смачиваемость углеродного волокна, и увеличивает граничные взаимодействия между наполнителем и полиэфиримидной матрицей. 2 н.п. ф-лы, 1 табл., 6 пр.

Description

Изобретение относится к способу получения аппретированных углеродных волокон и полимерным композиционным материалам на их основе, и может быть использовано в качестве конструкционных материалов для производства изделий специального назначения в аддитивных технологиях.
Из уровня техники известны различные виды аппретирующих добавок, используемых при создании полимерного композиционного материала. Так патент на изобретение RU 2057767 описывает полимерный композиционный материал, включающий в себя полисульфоновую матрицу и углеродные волокна, причем углеродные волокна содержат на поверхности в качестве аппретирующего слоя сополимер, состоящий из звеньев метакриловой кислоты, диэтиленгликоля и бензосульфокислоты в молярном соотношении от 49,5:49,5:1 до 49: 49: 2 в количестве 0,52-5,0% от массы волокна при следующем соотношении компонентов, мас.%: углеродные армирующие волокна, содержащие сополимер, 25-75; полисульфоновая матрица остальное. Как утверждают авторы изобретения, использование в качестве аппретирующего слоя указанного сополимера позволяет в 1,8-2,2 раза повысить межслоевую прочность при сдвиге полисульфоновых углепластиков. Основным недостатком предлагаемого решения является использование водной среды для нанесения на углеродную ленту смеси мономеров. Так как углеродные волокна и ленты являются гидрофобными, добиться равномерного распределения водного раствора смеси мономеров сложно. В результате полимеризации также возможна неполная конверсия мономеров, что может привести к образованию и выделению воды на других этапах получения полимерного композита, что приведет к образованию пор и снижению прочностных характеристик. Наличие в водной среде бензолсульфокислоты может также приводить к накоплению ионов, что может ухудшить диэлектрические свойства.
Известны полимерные композиции по патенту РФ № 2201423, полученные на основе полимерного связующего (аппрет) и стеклоткани или углеродного наполнителя. Предварительно получают связующее - олигомер путем взаимодействия тетранитрила ароматической тетракарбоновой кислоты и ароматического бис-о-цианамина при температуре 170-180°С. Связующее получают в порошкообразном виде. Основным недостатком приведенного решения является сложность процесса синтеза связующего. Неполная степень превращения мономеров во время синтеза может привести к выделению побочных низкомолекулярных продуктов реакции при совмещении связующего с наполнителем при повышенной температуре, а, следовательно, к образованию пустот в композиционном материале, что будет приводить к ухудшению прочностных характеристик материала. Кроме того, порошкообразные аппреты могут недостаточно равномерно покрывать поверхность наполнителя.
Известны полиэфиримидные композиты по патенту США № 4049613. Для увеличения смачиваемости углеродного волокна полимерной матрицей, в патенте предлагается выдерживать наполнитель в горячей азотной кислоте в течение трех суток, что в технологическом и экономическом плане невыгодны.
В следующей работе - по патенту РФ № 2054015 «Способ аппретирования углеродного волокна для производства полисульфонового углепластика», предложено смешение с растворителем блоксополимера, состоящего из звеньев бисметакрилоилоксидиэтиленгликольфталата и бисметакрилоилокси-триэтиленгликольфталата, пропитку углеродного наполнителя с последующей сушкой для удаления растворителя и полимеризации пленки аппрета на волокне, отличающийся тем, что смешение осуществляют в воде с одновременным воздействием ультразвукового излучения при частоте от 15 до 44 кГц и длительности воздействия от 5 до 14 минут. Недостатками способа являются использование водных растворов блоксополимеров для смачивания гидрофобных поверхностей углеродного волокна и необходимость дальнейшей полимеризации на поверхности наполнителя. Следствием может быть неравномерное смачивание наполнителя, а, следовательно, ухудшение свойств получаемого углепластика.
Наиболее близким аналогом выступает способ аппретирования углеродного волокна по патенту РФ № 2712612 «Способ получения аппретированных углеродных волокон и композиционные материалы на их основе». Недостатком решения можно считать относительно невысокие значения прочности при изгибе полимерных композиционных материалов.
Задача настоящего изобретения заключается в разработке способа получения аппретированных углеродных волокон и получении полимерных композиционных материалов на их основе с улучшенными значениями прочности при изгибе с использованием матричного полимера - полиэфиримида (ПЭИ), армированного аппретированным углеродным волокном (УВ) в качестве наполнителя.
Поставленная задача достигается тем, что полимерный композиционный материал на основе полиэфиримида, армированный углеродным наполнителем, получается предварительной обработкой углеродного волокна аппретирующим составом - смесью 3,4-толуилендиамина (ТДА) и 4,4'-диоксифталофенона (ДОФФ).
При этом берут следующие соотношения (масс. %) компонентов в наполнителе:
Углеволокно 96,5
ДОФФ 0,5 ÷ 3,0
ТДА 3,0 ÷ 0,5
Количество аппретирующего состава к углеродному волокну соответствует 3,5%. Количество аппретированного углеродного волокна в полимерном композиционном материале соответствует 20 масс. %.
Обработка таким аппретирующим составом повышает смачиваемость углеродного волокна матричным полиэфиримидом, позволяет многократно проводить при необходимости термообработку получаемого изделия без изменения свойств аппретирующего состава.
Матричный полимер - промышленный полиэфиримид (ПЭИ) марки ULTEM-1010, формулы:
является продуктом поликонденсации 1,3-диаминобензола и диангидрида 2,2'-бис[4(3,4-дикарбоксифенокси)фенил]-пропана. Приведенная вязкость равна 0,66 дл/г, измеренная для 0,5 %-го раствора в хлороформе.
Аппретированные волокна получают путем обработки углеродного волокна аппретирующим составом - раствором смеси 3,4-толуилендиамина и 4,4'-диоксифталофенона в диметилкетоне, при воздействии ультразвука в ультразвуковой ванне CD-4820 с рабочей частотой 46 кГц. Полимерные композиты по настоящему изобретению получают путем предварительного смешения полимерной матрицы и аппретированного углеволокна с использованием высокоскоростного гомогенизатора Multi function disintegrator VLM-40B. Затем полимерная смесь подвергается экструзии с использованием лабораторного двухшнекового экструдера с тремя зонами нагрева при температурных режимах переработки 200°С, 315°С, 355°С. Использованы углеродное волокно марки RK-306 (IFI Technical Production), диметилкетон марки «Ч».
Ниже представленные примеры, иллюстрирующие способ получения аппретированных углеродных волокон с использованием аппретирующего состава.
Пример 1. Получение аппретированного УВ с 0,5 масс. % ДОФФ и 3,0 масс. % ТДА
В трехгорловую реакционную колбу помещают 24,125 г (96,5 масс. %) УВ с длиной волокон 3 мм и приливают раствор, полученный растворением 0,125 г (0,5 масс. %) ДОФФ и 0,75 г (3,0 масс. %) ТДА в 140 мл диметилкетона (0,78 %-й раствор). Колбу помещают в водяную баню ультразвуковой ванны при температуре 20°С, включают ультразвук и выдерживают 2 минуты. После этого, в колбу помещают мешалку, подсоединяют прямой холодильник, включают подачу газообразного азота. Включают мешалку, и проводят нагревание содержимого колбы и отгонку диметилкетона по режиму: 30°С - 2 мин.; 40°С - 3 мин.; 60°С - 5 мин.; 75°С - 5 мин.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 54±0,5°С, 2 часа.
Пример 2. Получение аппретированного УВ с 1,0 масс. % ДОФФ и 2,5 масс. % ТДА
В трехгорловую реакционную колбу помещают 24,125 г (96,5 масс. %) УВ с длиной волокон 3 мм и приливают раствор, полученный растворением 0,25 г (1,0 масс. %) ДОФФ и 0,625 г (2,5 масс. %) ТДА в 140 мл диметилкетона (0,78 %-й раствор). Колбу помещают в водяную баню ультразвуковой ванны при температуре 20°С, включают ультразвук и выдерживают 2 минуты. После этого, в колбу помещают мешалку, подсоединяют прямой холодильник, включают подачу газообразного азота. Включают мешалку, и проводят нагревание содержимого колбы и отгонку диметилкетона по режиму: 30°С - 2 мин.; 40°С - 3 мин.; 60°С - 5 мин.; 75°С - 5 мин.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 54±0,5°С, 2 часа.
Пример 3. Получение аппретированного УВ с 1,5 масс. % ДОФФ и 2,0 масс. % ТДА
В трехгорловую реакционную колбу помещают 24,125 г (96,5 масс. %) УВ с длиной волокон 3 мм и приливают раствор, полученный растворением 0,375 г (1,5 масс. %) ДОФФ и 0,5 г (2,0 масс. %) ТДА в 140 мл диметилкетона (0,78 %-й раствор). Колбу помещают в водяную баню ультразвуковой ванны при температуре 20°С, включают ультразвук и выдерживают 2 минуты. После этого, в колбу помещают мешалку, подсоединяют прямой холодильник, включают подачу газообразного азота. Включают мешалку, и проводят нагревание содержимого колбы и отгонку диметилкетона по режиму: 30°С - 2 мин.; 40°С - 3 мин.; 60°С - 5 мин.; 75°С - 5 мин.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 54±0,5°С, 2 часа.
Пример 4. Получение аппретированного УВ с 2,0 масс. % ДОФФ и 1,5 масс. % ТДА
В трехгорловую реакционную колбу помещают 24,125 г (96,5 масс. %) УВ с длиной волокон 3 мм и приливают раствор, полученный растворением 0,5 г (2,0 масс. %) ДОФФ и 0,375 г (1,5 масс. %) ТДА в 140 мл диметилкетона (0,78 %-й раствор). Колбу помещают в водяную баню ультразвуковой ванны при температуре 20°С, включают ультразвук и выдерживают 2 минуты. После этого, в колбу помещают мешалку, подсоединяют прямой холодильник, включают подачу газообразного азота. Включают мешалку, и проводят нагревание содержимого колбы и отгонку диметилкетона по режиму: 30°С - 2 мин.; 40°С - 3 мин.; 60°С - 5 мин.; 75°С - 5 мин.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 54±0,5°С, 2 часа.
Пример 5. Получение аппретированного УВ с 2,5 масс. % ДОФФ и 1,0 масс. % ТДА
В трехгорловую реакционную колбу помещают 24,125 г (96,5 масс. %) УВ с длиной волокон 3 мм и приливают раствор, полученный растворением 0,625 г (2,5 масс. %) ДОФФ и 0,25 г (1,0 масс. %) ТДА в 140 мл диметилкетона (0,78 %-й раствор). Колбу помещают в водяную баню ультразвуковой ванны при температуре 20°С, включают ультразвук и выдерживают 2 минуты. После этого, в колбу помещают мешалку, подсоединяют прямой холодильник, включают подачу газообразного азота. Включают мешалку, и проводят нагревание содержимого колбы и отгонку диметилкетона по режиму: 30°С - 2 мин.; 40°С - 3 мин.; 60°С - 5 мин.; 75°С - 5 мин.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 54±0,5°С, 2 часа.
Пример 6. Получение аппретированного УВ с 3,0 масс. % ДОФФ и 0,5 масс. % ТДА
В трехгорловую реакционную колбу помещают 24,125 г (96,5 масс. %) УВ с длиной волокон 3 мм и приливают раствор, полученный растворением 0,75 г (3,0 масс. %) ДОФФ и 0,125 г (0,5 масс. %) ТДА в 140 мл диметилкетона (0,78 %-й раствор). Колбу помещают в водяную баню ультразвуковой ванны при температуре 20°С, включают ультразвук и выдерживают 2 минуты. После этого, в колбу помещают мешалку, подсоединяют прямой холодильник, включают подачу газообразного азота. Включают мешалку, и проводят нагревание содержимого колбы и отгонку диметилкетона по режиму: 30°С - 2 мин.; 40°С - 3 мин.; 60°С - 5 мин.; 75°С - 5 мин.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 54±0,5°С, 2 часа.
Из аппретированных УВ и ПЭИ получены композиционные материалы, содержащие 20 масс. % аппретированных - смесью 3,4-толуилендиамина и 4,4'-диоксифталофенона углеволокон.
В таблице 1 представлены составы, а также модули упругости и прочности при изгибе композиционных материалов, содержащих УВ, по примерам 1÷6.
Таблица 1
Состав Е изг,
ГПа
σ изг,
МПа
ПЭИ 3,63 112,4
ПЭИ + 20 % УВ (3 мм)
неаппретированный
8,48 207,1
По примеру 1 10,29 256,7
По примеру 2 10,78 259,6
По примеру 3 12,12 268,8
По примеру 4 12,75 276,4
По примеру 5 11,96 274,3
По примеру 6 11,63 270,2
где, Е изг - модуль упругости при изгибе, σ изг - предел прочности при изгибе.
Как видно из приведенных сведений, полимерные композиционные материалы, содержащие аппретированные УВ (№№ 1÷6), проявляют более высокие значения модуля упругости и прочности при изгибе по сравнению с композитом, содержащим неаппретированное углеволокно.
Технический результат предлагаемого изобретения заключается в улучшении модуля упругости и прочности при изгибе создаваемых полимерных композиционных материалов за счет введения аппретирующего состава - 3,4-толуилендиамина и 4,4'-диоксифталофенона, который повышает смачиваемость углеродного волокна, и увеличивает граничные взаимодействия между наполнителем и полиэфиримидной матрицей.

Claims (4)

1. Способ получения аппретированных углеродных волокон, предназначенных для конструкционных полимерных материалов, основанный на аппретировании углеродного волокна путем нанесения аппретирующего компонента из раствора с последующей сушкой в сушильном шкафу под вакуумом при 54±0,5°С, отличающийся тем, что аппрет наносят из раствора с концентрацией 0,78 мас.% в органическом легколетучем растворителе диметилкетоне и проводят ступенчатый подъем температуры с одновременной отгонкой растворителя и воздействия ультразвука с рабочей частотой 46 кГц по режиму: 20°С – 2 мин; 30°С - 2 мин; 40°С - 3 мин; 60°С - 5 мин; 75°С - 5 мин, причем количественное соотношение компонентов соответствует, мас. %:
Углеволокно 96,5 4,4'-диоксифталофенон (ДОФФ) 0,5-3,0 3,4-толуилендиамин (ТДА) 3,0-0,5
2. Полимерный композиционный материал, используемый при производстве конструкционных изделий в аддитивных технологиях, содержащий полимерную матрицу на основе полиэфиримида и аппретированного углеродного волокна, отличающийся тем, что используется аппретированное углеродное волокно, полученное способом по п. 1, причем количественное соотношение компонентов в полимерном композите соответствует, мас. %:
Полиэфиримид 80 Аппретированное углеродное волокно 20
RU2023108193A 2023-04-03 Способ получения аппретированного углеволокна и полимерный композиционный материал на его основе RU2816425C1 (ru)

Publications (1)

Publication Number Publication Date
RU2816425C1 true RU2816425C1 (ru) 2024-03-28

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049613A (en) * 1976-09-07 1977-09-20 General Electric Company Polyetherimide composites
RU2054015C1 (ru) * 1994-04-28 1996-02-10 Московский авиационный технологический институт им.К.Э.Циолковского Способ аппретирования углеродного волокна для производства полисульфонового углепластика
RU2057767C1 (ru) * 1993-06-17 1996-04-10 Московский авиационный технологический институт им.К.Э.Циолковского Полимерный композиционный материал
RU2201423C2 (ru) * 2000-12-26 2003-03-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Полимерное связующее и высокопрочные термостойкие композиционные материалы на его основе
RU2712612C1 (ru) * 2019-05-16 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ получения аппретированных углеродных волокон и композиционные материалы на их основе

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049613A (en) * 1976-09-07 1977-09-20 General Electric Company Polyetherimide composites
RU2057767C1 (ru) * 1993-06-17 1996-04-10 Московский авиационный технологический институт им.К.Э.Циолковского Полимерный композиционный материал
RU2054015C1 (ru) * 1994-04-28 1996-02-10 Московский авиационный технологический институт им.К.Э.Циолковского Способ аппретирования углеродного волокна для производства полисульфонового углепластика
RU2201423C2 (ru) * 2000-12-26 2003-03-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Полимерное связующее и высокопрочные термостойкие композиционные материалы на его основе
RU2712612C1 (ru) * 2019-05-16 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ получения аппретированных углеродных волокон и композиционные материалы на их основе

Similar Documents

Publication Publication Date Title
RU2744893C1 (ru) Полимерная углеволоконная композиция и способ её получения
RU2816425C1 (ru) Способ получения аппретированного углеволокна и полимерный композиционный материал на его основе
RU2816456C1 (ru) Способ получения аппретированных углеволокон и полимерный композит на их основе
RU2803746C2 (ru) Способ получения аппретированных углеродных волокон и полимерный композит
RU2811291C1 (ru) Способ получения аппретированного углеволокна и полимерный композит на его основе
RU2793864C1 (ru) Углеволоконный полиэфирэфиркетонный композит и способ его получения
RU2796835C1 (ru) Способ получения аппретированных углеволокон и полиэфиримидные композиции
RU2793866C1 (ru) Способ получения аппретированных углеродных волокон и полиэфиримидный композит
RU2804162C1 (ru) Способ получения аппретированных углеродных волокон и полиэфиримидно-углеволоконная композиция
RU2798036C1 (ru) Способ получения аппретированных углеволокон и полиэфиримидные композиции
RU2793888C1 (ru) Полимерный композиционный материал на основе полиэфирэфиркетона и углеволокна и способ его получения
RU2803603C2 (ru) Способ получения аппретированных углеволокон и полимерные композиции на их основе
RU2804164C1 (ru) Способ получения аппретированных углеродных волокон и армированная полимерная композиция
RU2819115C1 (ru) Способ получения аппретированных углеволокон и наполненный ими полимерный композит
RU2796405C1 (ru) Способ получения аппретированных углеволокон и наполненный ими полиэфиримидный композит
RU2793762C1 (ru) Способ получения аппретированного углеволокна и полиэфиримидный композиционный материал
RU2796404C1 (ru) Способ получения аппретированных углеволокон и полимерные композиции на их основе
RU2802624C1 (ru) Способ получения аппретированных углеродных волокон и полиэфирэфиркетонные композиционные материалы на их основе
RU2793913C1 (ru) Аппретированное углеродное волокно и полиэфирэфиркетонный композит на его основе
RU2793890C1 (ru) Способ получения аппретированного углеволокна и полиэфирэфиркетонный композит на его основе
RU2816362C1 (ru) Способ получения аппретированного углеволокна и армированная полимерная композиция на ее основе
RU2811422C1 (ru) Способ получения аппретированного углеволокна и полиэфирэфиркетонный композит
RU2796448C1 (ru) Способ получения аппретированных углеродных волокон и полимерный композиционный материал
RU2793760C1 (ru) Аппретированное углеродное волокно и полиэфирэфиркетонный композиционный материал на его основе
RU2793886C1 (ru) Полиэфирэфиркетонный углеволокнистый композиционный материал и способ его получения