RU2799781C1 - Способ получения растворов боргидридов тугоплавких металлов - Google Patents
Способ получения растворов боргидридов тугоплавких металлов Download PDFInfo
- Publication number
- RU2799781C1 RU2799781C1 RU2022125358A RU2022125358A RU2799781C1 RU 2799781 C1 RU2799781 C1 RU 2799781C1 RU 2022125358 A RU2022125358 A RU 2022125358A RU 2022125358 A RU2022125358 A RU 2022125358A RU 2799781 C1 RU2799781 C1 RU 2799781C1
- Authority
- RU
- Russia
- Prior art keywords
- refractory metal
- solution
- borohydride
- borohydrides
- metal borohydride
- Prior art date
Links
Abstract
Изобретение относится к технологии получения ультравысокотемпературных керамоматричных диборидов тугоплавких металлов. Предложены способ получения растворов боргидридов гафния, циркония, тантала, ниобия и вольфрама путём взаимодействия боргидридов лития в среде предельных углеводородов в присутствии катализатора при механохимической активации в атмосфере инертного газа с последующим фильтрованием конечного продукта с обеспечением дифференциального давления инертного газа на фильтре и раствор боргидрида тугоплавкого металла. Технический результат – расширение группы металлов, используемых для получения богидридов тугоплавких металлов, а также обеспечение пожаро- и взрывобезопасности процесса. 2 н. и 7 з.п. ф-лы, 3 ил., 5 пр.
Description
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к технологии получения растворов соединений боргидридов тугоплавких металлов в органическом растворителе, при термическом разложении которых образуются ультравысокотемпературные керамоматричные дибориды гафния, циркония, тантала, ниобия и вольфрама, используемые при создании специальных композиционных материалов. Разработанные на их основе керамические ультравысокотемпературные и окислительно-стойкие конструкционные материалы применяют для создания деталей, имеющих широкий спектр применения и эксплуатируемых в экстремальных высокотемпературных и окислительных условиях.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Известен способ получения боргидридов гафния и циркония взаимодействием тетрахлоридов тугоплавких металлов с боргидридом лития (H.R. Hoekstra and J.J. Katz, JACS, 1949, V. 71, 2488-2492).
Недостатком способа является образование взрывоопасных продуктов диборан и водород, трудности выделения конечного продукта, продолжительный процесс протекания реакции.
Известен способ получения боргидридов тугоплавких металлов реакцией тетрахлоридов тугоплавких металлов с жидким боргидридом алюминия (H.R. Hoekstra and J.J. Katz, JACS, 1949, V. 71, 2488-2492).
Недостатком способа является применение реакционного и способного к детонации боргидрида алюминия, а также трудности выделения боргидридов тугоплавких металлов из смеси летучих продуктов.
Известен способ получения боргидридов циркония и гафния путем взаимодействия твердых тетрахлоридов тугоплавких металлов с твердым боргидридом лития в инертной атмосфере при перемешивании металлической насадкой весом 5-6 кг на 1 кг реакционной смеси в течение 8-10 часов (Патент SU 1096901, МПК С01В 6/23, 1985).
Недостатком известного способа является низкий выход боргидридов тугоплавких металлов, трудности выделения конечного продукта, продолжительный процесс протекания реакции.
Наиболее близким по проводимому технологическому процессу и полученному результату, является известный из патента RU 2651024, опубликованного 18.04.2018 г, способ получения боргидридов циркония, гафния и титана, при котором взаимодействие тетрахлоридов титана, циркония и гафния с боргидридом натрия протекает в среде абсолютированного (безводного) органического растворителя в присутствии каталитического количества безводного хлорида лития (LiCl), при перемешивании в планетарной мельнице с последующим отделением конечного продукта путем фильтрации его раствора от насадки и шлама. При осуществлении предложенного способа синтез представляет собой механохимическую реакцию (трибохимия) метатезиса и протекает в соответствии с уравнениями:
Достигнутый технический результат состоит в упрощении синтеза боргидридов титана, циркония и гафния за счет следующих факторов: в присутствии катализатора сокращается продолжительность реакции, за счет использования органического растворителя исключается стадия выделения индивидуальных летучих пожаро- и взрывоопасных конечных продуктов.
Недостатком представленного способа является узкий ряд боргидридов тугоплавких металлов (гафний, цирконий и титан), в силу проведения синтеза в крайне агрессивных условиях и при высоких давлениях, малый выход конечного продукта, его недостаточно высокая чистота, большая продолжительность процесса, низкая безопасность проведения механохимической активации реакционной смеси, малая эффективность фильтрования, неоптимальный выбор применяемых растворителей и сложный процесс их предварительной подготовки, что в дальнейшем усложняет процесс получения специальных композиционных материалов.
КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ
Технической задачей и техническим результатом изобретения является повышение производительности технологии получения растворов боргидридов тугоплавких металлов, повышение чистоты и качества целевых продуктов, расширение группы металлов, повышение экологичности, обеспечение пожаро- и взрывобезопасности процесса.
Достижение поставленных целей возможно с помощью способа получения растворов боргидридов тугоплавких металлов, содержащего взаимодействие хлорида тугоплавкого металла с боргидридом щелочных металлов в среде органического растворителя в присутствии катализатора при механохимической активации с последующим фильтрованием конечного продукта. При этом в качестве хлорида тугоплавкого металла используют металл, относящийся к группе, включающей в себя: цирконий, гафний, тантал, ниобий, вольфрам, в качестве боргидрида щелочного металла применяют боргидрид лития, механохимическую активацию проводят в атмосфере инертного газа, фильтрование производят при откачке инертного газа через фильтр с обеспечением дифференциального давления инертного газа на фильтре и получают конечный продукт в виде раствора боргидрида тугоплавкого металла, относящегося к группе, включающей в себя: цирконий, гафний, тантал, ниобий или вольфрам.
Предпочтительно в качестве органического растворителя используют пентан либо гексан.
Предпочтительно фильтрование применяют при помощи воронки Шотта с пористостью 0,9-5,5 мкм,
Предпочтительно в качестве катализатора используют безводный хлорид лития в количестве 0,2-1 мольн. %.
Предпочтительно механохимическую активацию проводят при температуре 20-60°С четыре раза по 10 минут с тремя 10-минутными перерывами.
В другом варианте реализации изобретения технический результат достигается при использовании раствора боргидрида тугоплавкого металла, полученный способом получения раствора боргидридов тугоплавких металлов.
Предпочтительно в растворе количество боргидрида тугоплавкого металл составляет 35%, а растворителя, относящегося к пентану либо гексану, составляет 65%.
Предпочтительно в растворе количество примесей не более 0,1%.
Предпочтительно в растворе примеси относятся к хлоридам тугоплавких металлов, хлориду лития.
Поставленная задача получения боргидридов тугоплавких металлов (боргидридов гафния, циркония, тантала, ниобия и вольфрама) достигается перемешиванием хлоридов гафния, циркония, тантала, ниобия и вольфрама с боргидридом лития. Процесс проводится в инертной атмосфере с применением органического растворителя (Гексан, Пентан) в присутствии катализатора безводного хлорида лития 0,2-1 мольн. %.
Достигнутый технический результат синтеза: боргидриды тугоплавких металлов, представляют собой следующий ряд: боргидриды циркония, гафния, тантала, ниобия и вольфрама, что расширяет ассортимент продукции. Применение в синтезе боргидрида лития, способствует ускорению процесса получения боргидридов, малый расход исходных реактивов, более безопасный процесс механохимической активации, экологичность процесса, за счет получения в результате процесса в 2 раза меньшего количество побочных продуктов для утилизации. Способ механохимической активации проводится в инертной атмосфере инертного газа, предпочтительно особой чистоты, что позволяет пожаро- и взрывобезопасно получать растворы боргидридов тугоплавких металлов, а также повысить их чистоту. Заключительный процесс фильтрования растворов боргидридов тугоплавких металлов позволяет в кротчайший период времени получать необходимые растворы высокой чистоты. При этом повышается производительность технологии, за счет применения боргидрида лития, который существенно снижает расход исходных реагентов, ускоряет процесс механохимической активации за счет образования хлорида лития в ходе проведения процесса, который служит дополнительным катализатором, снижает в 2 раза выход конечных побочных продуктов для утилизации, повышая экологичность процесса, а применение предельных углеводородов (Гексан, Пентан) в качестве растворителей для получения боргидридов тугоплавких металлов, позволяет применять данные растворители без предварительной подготовки, а также представляет возможность для расширения группы боргидридов тугоплавких металлов в качестве конечных растворов, для дальнейшего получения покрытий, при значительно низких температурах из боргидридов, выступающих в виде прекурсоров.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Сущность изобретения поясняется чертежами, на которых:
Фиг. 1 - Принципиальная технологическая схема получения растворов боргидридов тугоплавких металлов (боргидридов гафния, циркония, тантала, ниобия и вольфрама).
Фиг. 2 - Диаграмма способа получения растворов боргидридов тугоплавких металлов.
Фиг. 3 - схема системы для фильтрования «воронка Шотта (пористость - 5) - колба Бунзена - мембранный насос»
Эти чертежи не охватывают и, кроме того, не ограничивают весь объем вариантов реализации данного технического решения, а представляют собой только иллюстративный материал частного случая его реализации.
Синтез (Фиг. 1) представляет собой механохимическую реакцию и протекает в соответствии с уравнениями:
При механохимической активации применяют шаровую планетарную мельницу 3 с системой обеспечения инертной атмосферы 16 (азот или аргон осч.) в размольных стаканах 4 и керамическую насадку диаметром 3-5 мм. Процесс проводят в течение 40 минут (четыре раза по 10 минут с тремя 10-минутными перерывами для охлаждения стаканов) при температуре 20-60°С в жидкой фазе, с последующим процессом фильтрования раствора от насадки и сухого остатка. Для процесса фильтрования применяют систему (Фиг. 3) «воронка Шотта 6 (пористость - 5) - колба Бунзена 7 - мембранный насос 9» в циркулируемой инертной атмосфере 14. Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 0,1-1 мм рт. ст., при помощи мембранного насоса 9 и вакуума в перчаточном боксе 2-20 мм рт. ст., давление которого осуществляют роторным насосом 8.
Процесс получения боргидридов гафния, циркония, тантала, ниобия и вольфрама 21 проводят в несколько этапов (Фиг. 2). На первом этапе в перчаточном боксе 1 с циркулируемой инертной атмосферой 14 (азот или аргон осч.) помещают стальные стаканы 4, в которые последовательно загружают керамическую насадку диаметром 3-5 мм (500 г) навеску хлорида гафния, или циркония, или тантала, или ниобия, или вольфрама 10, навеску боргидрида щелочных металл (боргидрид лития) 11 и навеску хлорида лития 12, предварительно отмерив необходимое количество на весах 5, в массовом отношении 8:5:1. Затем добавляют органический растворитель (Гексан, Пентан) 13. Данную смесь 15 перемешивают. Стаканы 4 закрывают стальной крышкой и фиксируют зажимными устройствами. На втором этапе стаканы 4 с реакционной смесью 15 устанавливают в планетарную мельницу 3 и закрепляют в ней. В планетарную мельницу 3 и размольные стаканы 4 подается инертная атмосфера 16 (азот или аргон осч.) и осуществляют запуск с заранее выбранным режимом. Механохимическую активацию проводят в течение 40 минут (четыре раза по 10 минут с тремя 10-минутными перерывами). Температура в стакане повышается от комнатной до 60°С. По окончании процесса стаканы с реакционной смесью 17, помещают в перчаточный бокс 1 с циркулируемой инертной атмосферой (азот или аргон осч.) 14. На третьем этапе производят разгерметизацию стаканов 4 и их содержимое 17 переливают в систему для фильтрования «воронка Шотта 6 (пористость - 5) - колба Бунзена 7 - мембранный насос 9». Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 0,1-1 мм рт. ст., при помощи мембранного насоса 9 и вакуума в перчаточном боксе 2-20 мм рт. ст., которое осуществляют за счет роторного насоса 8. Откачиваемый загрязненный инертный газ 18 из колбы Бунзена 7 поступает в мембранный насос 9, а оттуда в блок управления перчаточным боксом с очистными колоннами 2. Откачиваемый загрязненный инертный газ а 19 из перчаточного бокса 1 поступает в роторный насос 8, а от туда в блок управления перчаточным боксом с очистными колоннами 2. Конечный продукт - раствор с боргидридом гафния, циркония, ниобия, тантала или вольфрама 21 разливают в темную тару из темного стекла, предварительно производят отбор проб для проведения ряда анализов на содержание конечных продуктов полученный раствор с боргидридом гафния, циркония, ниобия, тантала или вольфрама. Сухой остаток 20 на воронке Шотта 6 отправляют на утилизацию. Полученные растворы боргидридов тугоплавких металлов содержат 35% боргидридов тугоплавких металлов и 65% растворителя (пентан или гексан). Содержание примесей в полученных растворах боргидридов тугоплавких металлов не более 0,01%, представляющих собой хлориды тугоплавких металлов и хлорид лития, что позволяет ускорить процесс получения боргидридов за счет образования хлорида лития, служащего катализатором. Тару с раствором боргидрида гафния, циркония, ниобия, тантала или вольфрама 21 хранят в закрытом сосуде из темного стекла в инертной атмосфере (азот или аргон) при температуре не выше минус 20°С. Срок хранения без заметного разложения при минус 20°С составляет 6-12 месяцев.
ПРИМЕРЫ ОСУЩЕСТВЛЕНИЯ ПРЕДЛАГАЕМОГО СПОСОБА
Пример 1. Процесс получения раствора Hf(BH4)5.
В перчаточный бокс с циркулируемой инертной атмосферой (азотом осч) помещают 2 стальных размольных стакана, в которые загружают керамическую насадку диаметром 3 мм по 500 г. Производят подготовку реагентов. Отмеряют навеску HfCl4 (99,9%) 64 г x 2 штуки, навеску LiBH4 (99,9%) 40 г x 2 штуки и навеску LiCl (99,9%) 8 г x 2 штуки. Подготовленные навески засыпают в стальные размольные стаканы поверх керамической насадки, в последовательности HfCl4, LiBH4, LiCl. Затем добавляют 450 мл органического растворитель (Гептан) в каждый из стаканов. Данные смеси тщательно перемешивают. Стаканы закрывают стальной крышкой и фиксируют зажимными устройствами. Далее стаканы устанавливают в планетарную мельницу и фиксируют. Включают подачу инертной атмосферы (азот осч) в планетарную мельницу со скоростью 5 л/ч и осуществляют запуск с режимом четыре раза по 10 минут с тремя 10-минутными перерывами для охлаждения стаканов. Механохимическую активацию проводят в течение 40 минут без учета времени на охлаждение стаканов. Температура в стакане повышается от комнатной до 60°С. По окончании процесса стаканы с реакционной смесью, помещают в перчаточный бокс с циркулируемой инертной атмосферой (азот осч). Далее производят разгерметизацию стаканов и их содержимое переливают в систему для фильтрования «воронка Шотта (пористость - 5) - колба Бунзена - мембранный насос». Включают роторный насос перчаточного бокса и устанавливают давление атмосферы 20 мм рт. ст. Включают мембранный насос системы фильтрования и устанавливают давление 0,1 мм рт. ст. Открывают кран на линии колба Бунзена - мембранный насос. Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 0,1 мм рт. ст., при помощи мембранного насоса и вакуума в перчаточном боксе 20 мм рт. ст., которое осуществляют за счет роторного насоса. По истечении 40 минут конечный продукт - Hf(BH4)5 (850-870 мл) сливают из колбы Бунзена в темную тару из темного стекла, предварительно производят отбор проб для проведения ряда анализов на содержание конечных продуктов полученного раствора Hf(BH4)5. Сухой остаток (LiCl) на воронке Шотта отправляют на утилизацию. Тару с раствором Hf(BH4)5 хранят в закрытом сосуде из темного стекла в инертной атмосфере (азот) при температуре не выше минус 20°С.
Пример 2. Процесс получения раствора W(BH4)5.
В перчаточный бокс с циркулируемой инертной атмосферой (азотом осч) помещают 2 стальных размольных стакана, в которые загружают керамическую насадку диаметром 5 мм по 500 г. Производят подготовку реагентов. Отмеряют навеску WCl4 (99,9%) 32 г x 2 штуки, навеску LiBH4 (99,9%) 20 г x 2 штуки и навеску LiCl (99,9%) 4 г x 2 штуки. Подготовленные навески засыпают в стальные размольные стаканы поверх керамической насадки, в последовательности WCl4, LiBH4, LiCl. Затем добавляют 400 мл органического растворитель (Гексан) в каждый из стаканов. Данные смеси тщательно перемешивают. Стаканы закрывают стальной крышкой и фиксируют зажимными устройствами. Далее стаканы устанавливают в планетарную мельницу и фиксируют. Включают подачу инертной атмосферы (азот осч) в планетарную мельницу со скоростью 5 л/ч и осуществляют запуск с режимом четыре раза по 10 минут с тремя 10-минутными перерывами для охлаждения стаканов. Механохимическую активацию проводят в течение 40 минут без учета времени на охлаждение стаканов. Температура в стакане повышается от комнатной до 60°С. По окончании процесса стаканы с реакционной смесью, помещают в перчаточный бокс с циркулируемой инертной атмосферой (азот осч). Далее производят разгерметизацию стаканов и их содержимое переливают в систему для фильтрования «воронка Шотта (пористость - 5) - колба Бунзена - мембранный насос». Включают роторный насос перчаточного бокса и устанавливают давление атмосферы 2 мм рт. ст. Включают мембранный насос системы фильтрования и устанавливают давление 1 мм рт. ст. Открывают кран на линии колба Бунзена - мембранный насос. Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 1 мм рт. ст., при помощи мембранного насоса и вакуума в перчаточном боксе 2 мм рт. ст., которое осуществляют за счет роторного насоса. По истечении 90 минут конечный продукт - W(BH4)5 (760-780 мл) сливают из колбы Бунзена в темную тару из темного стекла, предварительно производят отбор проб для проведения ряда анализов на содержание конечных продуктов полученного раствора W(BH4)5. Сухой остаток (LiCl) на воронке Шотта отправляют на утилизацию. Тару с раствором W(BH4)5 хранят в закрытом сосуде из темного стекла в инертной атомсфере (азот) при температуре не выше минус 20°С.
Пример 3. Процесс получения раствора Zr(BH4)5.
В перчаточный бокс с циркулируемой инертной атмосферой (азотом осч) помещают 2 стальных размольных стакана, в которые загружают керамическую насадку диаметром 3 мм по 500 г. Производят подготовку реагентов. Отмеряют навеску ZrCl4 (99,9%) 48 г x 2 штуки, навеску LiBH4 (99,9%) 30 г x 2 штуки и навеску LiCl (99,9%) 6 г x 2 штуки. Подготовленные навески засыпают в стальные размольные стаканы поверх керамической насадки, в последовательности ZrCl4, LiBH4, LiCl. Затем добавляют 450 мл органического растворитель (Гептан) в каждый из стаканов. Данные смеси тщательно перемешивают. Стаканы закрывают стальной крышкой и фиксируют зажимными устройствами. Далее стаканы устанавливают в планетарную мельницу и фиксируют. Включают подачу инертной атмосферы (азот осч) в планетарную мельницу со скоростью 5 л/ч и осуществляют запуск с режимом четыре раза по 10 минут с тремя 10-минутными перерывами для охлаждения стаканов. Механохимическую активацию проводят в течение 40 минут без учета времени на охлаждение стаканов. Температура в стакане повышается от комнатной до 60°С. По окончании процесса стаканы с реакционной смесью, помещают в перчаточный бокс с циркулируемой инертной атмосферой (азот осч). Далее производят разгерметизацию стаканов и их содержимое переливают в систему для фильтрования «воронка Шотта (пористость - 5) - колба Бунзена - мембранный насос». Включают роторный насос перчаточного бокса и устанавливают давление атмосферы 20 мм рт. ст. Включают мембранный насос системы фильтрования и устанавливают давление 1 мм рт.ст. Открывают кран на линии колба Бунзена - мембранный насос. Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 1 мм рт. ст., при помощи мембранного насоса и вакуума в перчаточном боксе 20 мм рт. ст., которое осуществляют за счет роторного насоса. По истечении 65 минут конечный продукт - Zr(BH4)5 (860-880 мл) сливают из колбы Бунзена в темную тару из темного стекла, предварительно производят отбор проб для проведения ряда анализов на содержание конечных продуктов полученного раствора Zr(BH4)5. Сухой остаток (LiCl) на воронке Шотта отправляют на утилизацию. Тару с раствором Zr(BH4)5 хранят в закрытом сосуде из темного стекла в инертной атмосфере (азот) при температуре не выше минус 20°С.
Пример 4. Процесс получения раствора Ta(BH4)5.
В перчаточный бокс с циркулируемой инертной атмосферой (азотом осч) помещают 2 стальных размольных стакана, в которые загружают керамическую насадку диаметром 3 мм по 500 г. Производят подготовку реагентов. Отмеряют навеску TaCl5 (99,9%) 24 г x 2 штуки, навеску LiBH4 (99,9%) 15 г x 2 штуки и навеску LiCl (99,9%) 3 г x 2 штуки. Подготовленные навески засыпают в стальные размольные стаканы поверх керамической насадки, в последовательности TaCl5, LiBH4, LiCl. Затем добавляют 450 мл органического растворитель (Гептан) в каждый из стаканов. Данные смеси тщательно перемешивают. Стаканы закрывают стальной крышкой и фиксируют зажимными устройствами. Далее стаканы устанавливают в планетарную мельницу и фиксируют. Включают подачу инертной атмосферы (азот осч) в планетарную мельницу со скоростью 5 л/ч и осуществляют запуск с режимом четыре раза по 10 минут с тремя 10-минутными перерывами для охлаждения стаканов. Механохимическую активацию проводят в течение 40 минут без учета времени на охлаждение стаканов. Температура в стакане повышается от комнатной до 60°С. По окончании процесса стаканы с реакционной смесью, помещают в перчаточный бокс с циркулируемой инертной атмосферой (азот осч). Далее производят разгерметизацию стаканов и их содержимое переливают в систему для фильтрования «воронка Шотта (пористость - 5) - колба Бунзена - мембранный насос». Включают роторный насос перчаточного бокса и устанавливают давление атмосферы 2 мм рт. ст. Включают мембранный насос системы фильтрования и устанавливают давление 0,1 мм рт. ст. Открывают кран на линии колба Бунзена - мембранный насос. Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 0,1 мм рт. ст., при помощи мембранного насоса и вакуума в перчаточном боксе 2 мм рт. ст., которое осуществляют за счет роторного насоса. По истечении 60 минут конечный продукт - Та(BH4)5 (840-860 мл) сливают из колбы Бунзена в темную тару из темного стекла, предварительно производят отбор проб для проведения ряда анализов на содержание конечных продуктов полученного раствора Та(ВН4)5. Сухой остаток (LiCl) на воронке Шотта отправляют на утилизацию. Тару с раствором Ta(BH4)5 хранят в закрытом сосуде из темного стекла в инертной атмосфере (азот) при температуре не выше минус 20°С.
Пример 5. Процесс получения раствора Nb(BH4)5.
В перчаточный бокс с циркулируемой инертной атмосферой (азотом осч) помещают 2 стальных размольных стакана, в которые загружают керамическую насадку диаметром 3 мм по 500 г. Производят подготовку реагентов. Отмеряют навеску NbCl5 (99,9%) 16 г x 2 штуки, навеску LiBH4 (99,9%) 10 г x 2 штуки и навеску LiCl (99,9%) 2 г x 2 штуки. Подготовленные навески засыпают в стальные размольные стаканы поверх керамической насадки, в последовательности NbCl5, LiBH4, LiCl. Затем добавляют 450 мл органического растворитель (Гексан) в каждый из стаканов. Данные смеси тщательно перемешивают. Стаканы закрывают стальной крышкой и фиксируют зажимными устройствами. Далее стаканы устанавливают в планетарную мельницу и фиксируют. Включают подачу инертной атмосферы (азот осч) в планетарную мельницу со скоростью 5 л/ч и осуществляют запуск с режимом четыре раза по 10 минут с тремя 10-минутными перерывами для охлаждения стаканов. Механохимическую активацию проводят в течение 40 минут без учета времени на охлаждение стаканов. Температура в стакане повышается от комнатной до 60°С. По окончании процесса стаканы с реакционной смесью, помещают в перчаточный бокс с циркулируемой инертной атмосферой (азот осч). Далее производят разгерметизацию стаканов и их содержимое переливают в систему для фильтрования «воронка Шотта (пористость - 5) - колба Бунзена - мембранный насос». Включают роторный насос перчаточного бокса и устанавливают давление атмосферы 20 мм рт. ст. Включают мембранный насос системы фильтрования и устанавливают давление 0,1 мм рт. ст. Открывают кран на линии колба Бунзена - мембранный насос. Процесс фильтрования обеспечивают дифференциальным давлением за счет локального вакуума, создаваемого в системе для фильтрования 0,1 мм рт. ст., при помощи мембранного насоса и вакуума в перчаточном боксе 20 мм рт. ст., которое осуществляют за счет роторного насоса. По истечении 40 минут конечный продукт - Nb(BH4)5 (830-850 мл) сливают из колбы Бунзена в темную тару из темного стекла, предварительно производят отбор проб для проведения ряда анализов на содержание конечных продуктов полученного раствора Nb(BH4)5. Сухой остаток (LiCl) на воронке Шотта отправляют на утилизацию. Тару с раствором Nb(BH4)5 хранят в закрытом сосуде из темного стекла в инертной атмосфере (азот) при температуре не выше минус 20°С.
Claims (15)
1. Способ получения растворов боргидридов тугоплавких металлов, содержащий взаимодействие хлорида тугоплавкого металла с боргидридом щелочных металлов в среде органического растворителя в присутствии катализатора при механохимической активации с последующим фильтрованием конечного продукта, отличающийся тем, что
используют хлорид тугоплавкого металла, относящегося к группе, включающей в себя: цирконий, гафний, тантал, ниобий, вольфрам;
в качестве боргидрида щелочного металла применяют боргидрид лития,
механохимическую активацию проводят в атмосфере инертного газа,
фильтрование производят при откачке инертного газа через фильтр с обеспечением дифференциального давления инертного газа на фильтре,
получают конечный продукт в виде раствора боргидрида тугоплавкого металла, относящегося к группе, включающей в себя: цирконий, гафний, тантал, ниобий или вольфрам,
в качестве органического растворителя используют предельные углеводороды.
2. Способ по п. 1, в котором в качестве органического растворителя используют пентан либо гексан.
3. Способ по п. 1, в котором фильтрование применяют при помощи воронки Шотта с пористостью 0,9-5,5 мкм.
4. Способ по п. 1, в котором в качестве катализатора используют безводный хлорид лития в количестве 0,2-1 мол.%.
5. Способ по п. 1, в котором механохимическую активацию проводят при температуре 20-60°С четыре раза по 10 минут с тремя 10-минутными перерывами.
6. Раствор боргидрида тугоплавкого металла для получения ультравысокотемпературных керамоматричных диборидов, полученный способом по любому из пп. 1-5.
7. Раствор боргидрида тугоплавкого металла по п. 6, в котором количество боргидрида тугоплавкого металла составляет 35%, а растворителя, относящегося к пентану либо гексану, составляет 65%.
8. Раствор боргидрида тугоплавкого металла по п. 6 или 7, в котором количество примесей не более 0,1%.
9. Раствор боргидрида тугоплавкого металла по любому из пп. 6-8, в котором примеси относятся к хлоридам тугоплавких металлов, хлориду лития.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2799781C1 true RU2799781C1 (ru) | 2023-07-11 |
Family
ID=
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1096901A1 (ru) * | 1965-04-05 | 1985-09-07 | Институт Неорганической Химии Со Ан Ссср | Способ получени борогидридов гафни и циркони |
CN102219181A (zh) * | 2011-05-10 | 2011-10-19 | 浙江大学 | 铌基配位硼氢化物复合储氢材料及制备方法与用途 |
RU2651024C1 (ru) * | 2017-02-09 | 2018-04-18 | Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") | Способ получения боргидридов титана, циркония, гафния |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1096901A1 (ru) * | 1965-04-05 | 1985-09-07 | Институт Неорганической Химии Со Ан Ссср | Способ получени борогидридов гафни и циркони |
CN102219181A (zh) * | 2011-05-10 | 2011-10-19 | 浙江大学 | 铌基配位硼氢化物复合储氢材料及制备方法与用途 |
RU2651024C1 (ru) * | 2017-02-09 | 2018-04-18 | Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") | Способ получения боргидридов титана, циркония, гафния |
Non-Patent Citations (1)
Title |
---|
Гафуров Б. А. Синтез, термическая устойчивость и термодинамические характеристики боро- и алюмогидридов щелочных, щелочноземельных и редкоземельных металлов. Диссертация. ТТУ им. акад. М.С.ОСИМИ. 2016 г., 250 с. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060150769A1 (en) | Preparation of alloys by the armstrong method | |
TW567168B (en) | A method of producing a metal-containing single-phase composition | |
Weckhuysen et al. | Spectroscopy of the formation of microporous transition metal ion containing aluminophosphates under hydrothermal conditions | |
RU2799781C1 (ru) | Способ получения растворов боргидридов тугоплавких металлов | |
US4409411A (en) | Process of hydrogenating benzenes and group IVa metal hydride catalysts therefor | |
RU2363659C1 (ru) | Способ получения бемита и водорода | |
KR100582048B1 (ko) | 알칼리 금속 치환된 수소화붕소 시약의 합성 | |
EP1867602A2 (en) | Process for the preparation of crystalline magnesium borohydride | |
JPS6255896B2 (ru) | ||
Turnbull et al. | f-Block hydride complexes–synthesis, structure and reactivity | |
Kajitani et al. | Additions of alkylidene groups between Co and S in the reactions of dithiolatocobalt complexes with diazo compounds | |
US4675465A (en) | Dehydrogenation reaction employing hydride forming metals, alloys and intermetallic compounds | |
CA2149994A1 (fr) | Catalyseurs a base d'heteropolyacide et leur utilisation pour la preparation d'acides carboxyliques aliphatiques | |
US20090010836A1 (en) | Hydrogen storage materials, metal hydrides and complex hydrides prepared using low-boiling-point solvents | |
German et al. | Powder processing of high temperature aluminides | |
Rice et al. | Hydroboration of sterically hindered olefins under high pressure | |
CN108866631B (zh) | 一种制备Al3V四方相单晶颗粒的方法 | |
CN1229858A (zh) | 一种镍铝基复合材料的制备方法 | |
US4514337A (en) | Group IVa metal hydride catalysts and preparation thereof | |
US3755555A (en) | Production of alkali hydridoaluminates | |
RU2651024C1 (ru) | Способ получения боргидридов титана, циркония, гафния | |
CN108862301B (zh) | 高纯度Ti3B2N材料的制备方法 | |
RU2484019C1 (ru) | Способ переработки тетрафторида циркония | |
SU1764814A1 (ru) | Шихта на основе титана дл получени пористого проницаемого материала | |
US3783054A (en) | High energy beryllium rocket fuel compositions and processes therefor |