RU2651024C1 - Способ получения боргидридов титана, циркония, гафния - Google Patents
Способ получения боргидридов титана, циркония, гафния Download PDFInfo
- Publication number
- RU2651024C1 RU2651024C1 RU2017104277A RU2017104277A RU2651024C1 RU 2651024 C1 RU2651024 C1 RU 2651024C1 RU 2017104277 A RU2017104277 A RU 2017104277A RU 2017104277 A RU2017104277 A RU 2017104277A RU 2651024 C1 RU2651024 C1 RU 2651024C1
- Authority
- RU
- Russia
- Prior art keywords
- zirconium
- hafnium
- titanium
- borohydrides
- sodium borohydride
- Prior art date
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 31
- 229910052726 zirconium Inorganic materials 0.000 title claims abstract description 31
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910052735 hafnium Inorganic materials 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 25
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000012279 sodium borohydride Substances 0.000 claims abstract description 27
- 229910000033 sodium borohydride Inorganic materials 0.000 claims abstract description 27
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims abstract description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 239000000047 product Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000011261 inert gas Substances 0.000 claims abstract description 12
- 229910052786 argon Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 239000003960 organic solvent Substances 0.000 claims abstract description 8
- 239000010802 sludge Substances 0.000 claims abstract description 7
- 239000000706 filtrate Substances 0.000 claims abstract description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 238000004458 analytical method Methods 0.000 claims abstract description 4
- 238000009835 boiling Methods 0.000 claims abstract description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 3
- 239000005373 porous glass Substances 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims abstract description 3
- 239000002904 solvent Substances 0.000 claims abstract 2
- 238000002156 mixing Methods 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 6
- 239000012467 final product Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000004880 explosion Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 21
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 20
- 238000005303 weighing Methods 0.000 description 18
- 238000000227 grinding Methods 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 10
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical class Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 7
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 5
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 5
- 239000012448 Lithium borohydride Substances 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- VCZXRQFWGHPRQB-UHFFFAOYSA-N CC(C)CC(C)(C)C.CC(C)CC(C)(C)C Chemical compound CC(C)CC(C)(C)C.CC(C)CC(C)(C)C VCZXRQFWGHPRQB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum chloroborohydrides Chemical class 0.000 description 1
- 238000001897 boron-11 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010303 mechanochemical reaction Methods 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000011215 ultra-high-temperature ceramic Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/06—Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
- C01B6/10—Monoborane; Diborane; Addition complexes thereof
- C01B6/13—Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
- C01B6/15—Metal borohydrides; Addition complexes thereof
- C01B6/19—Preparation from other compounds of boron
- C01B6/23—Preparation of borohydrides of other metals, e.g. aluminium borohydride; Addition complexes thereof, e.g. Li[Al(BH4)3H]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G27/00—Compounds of hafnium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
Abstract
Изобретение относится к получению боргидридов титана, циркония и гафния, используемых при создании композиционных материалов. Способ включает взаимодействие тетрахлоридов титана, или циркония, или гафния с боргидридом натрия в среде органического растворителя в планетарной мельнице при перемешивании насадкой. Процесс ведут в присутствии катализатора, в качестве которого используют безводный хлорид лития, взятый в количестве 1-10 мол.% от вводимого боргидрида натрия. В качестве растворителя используют высококипящие абсолютированные предельные и ароматические углеводороды С7-С10 с Ткип. 90-190°С. Перемешивание смеси проводят при температуре 20-90°С три раза по 20 минут с двумя 30-минутными перерывами. Смесь отфильтровывают от насадки и шлама в атмосфере сухого инертного газа - аргона или азота на воронке с пористой стеклянной пластиной - воронке Шотта при вакууме 10-100 мм рт.ст. Полученные фильтраты с растворенными боргидридами титана, циркония и гафния после анализа на содержание конечных продуктов хранят в закрытом сосуде в атмосфере сухого инертного газа при температуре не выше -18°С. Изобретение позволяет повысить пожаро- и взрывобезопасность получения боргидридов титана, циркония и гафния, повысить выход целевых продуктов. 2 ил., 9 пр.
Description
Изобретение относится к технологии получения неорганических веществ, в частности боргидридов титана, циркония и гафния, при термическом разложении которых образуются ультравысокотемпературные керамические бориды титана, циркония и гафния, используемые при создании специальных композиционных материалов. Разработанные на их основе керамические ультравысокотемпературные и окислительно-стойкие конструкционные материалы применяются для создания деталей летательных аппаратов эксплуатируемых в экстремальных условиях (Е.Р. Simonenko, D.V. Sevast'yanov, N.P. Simonenko, V.G. Sevast'yanov, N.T. Kuznetsov Russian Journal of Inorganic Chemistry, 2013, Vol. 58, No. 14, pp. 1669-1693.).
Способ получения боргидридов титана, циркония и гафния включает взаимодействие хлоридов титана, циркония и гафния с боргидридом натрия в среде органического растворителя при температуре 20-90°С в присутствии катализатора при механохимической обработке в планетарной мельнице с последующим выделением конечного продукта путем фильтрации его раствора в органическом растворителе. В качестве органического растворителя используют высококипящие абсолютированные (безводные) предельные и ароматические углеводороды С7-С10 с температурой кипения 90-190°С, например, изооктан, гептан, метил циклогексан, декалин, толуол, ксилолы и тетралин. В качестве катализатора используют безводный хлорид лития (LiCl) в количестве 1-10 мольн. %.
Известен способ получения боргидридов циркония и гафния реакцией тетрахлорида циркония и тетрахлорида гафния с жидким боргидридом алюминия (H.R. Hoekstra and J.J. Katz, JACS, 1949, V. 71, 2488-2492.).
Недостатком способа является использование весьма реакционноактивного и способного к детонации боргидрида алюминия, а также трудности выделения боргидридов циркония и гафния из смеси летучих продуктов.
Также известен способ получения боргидридов циркония и гафния путем взаимодействия твердого тетрахлорида циркония и тетрахлорида гафния с твердым боргидридом лития в инертной атмосфере при перемешивании металлической насадкой (Патент SU 1096901, МПК C01B 6/23, 1985).
Выход целевого продукта не выше 75%. При использовании более дешевых и удобных в работе боргидридов натрия и калия выход был близок к нулю.
Недостатком способа является как низкий выход конечных продуктов, так и использование дорогостоящего и способного к воспламенению при контакте с влажным воздухом боргидрида лития.
Известен способ получения боргидрида титана взаимодействием тетрахлорида титана с боргидридом лития (H.R. Hoekstra and J.J. Katz, JACS,. 1949, V. 71, 2488-2492).
Недостатком способа является образование в качестве побочных таких взрывоопасных продуктов, как диборан и водород, а также применение пожароопасного боргидрида лития.
Известен способ получения боргидрида титана путем взаимодействия тетрахлорида титана с боргидридом натрия в среде диметоксиэтана с последующим выделением продукта в виде комплекса с диэтиловым эфиром (Franz, K., Fusstetter, H., Noth H., Z. Anorg. Allg. Chem. 1976, 427, 97-113. Borisov, A.P., Makhaev V.D., Lobkovskii, E.B., Semenenko K.N. Zh. Neorg. Khim. 1986, 31, 86-92).
К недостатку способа относится сложность выделения продукта, его идентификация и применение в определенных задачах.
Известен способ получения боргидрида циркония с помощью реакции боргидрида алюминия с тетрахлоридом циркония, приготовленным по методу Смита и Харриса (H.R. Hoekstra and J.J. Katz, JACS, 1949, V. 71, 2488-2492.). Реакция проходит за относительно короткое время.
Недостатком способа является образование сложной смеси алюминиевых хлороборгидридов, которые трудно разделить.
Наиболее близким по технической сущности, достигаемому результату и принятым авторами в качестве прототипа, является способ получения боргидридов циркония и гафния путем взаимодействия твердых тетрахлорида циркония и тетрахлорида гафния с твердым боргидридом натрия в инертной атмосфере при перемешивании металлической насадкой весом 5-6 кг на 1 кг реакционной смеси в течение 8-10 часов (Патент SU 1096901, МПК C01B 6/23, 1985).
Недостатком известного способа является низкий выход боргидридов циркония и гафния, трудности выделения и применения индивидуальных соединений и относительно длительный период времени протекания реакции.
Задача данного изобретения заключается в создании простого пожаро- и взрывобезопасного способа получения боргидридов титана, гафния и циркония с высоким выходом целевых продуктов.
Поставленная задача получения боргидридов титана, циркония и гафния достигается тем, что взаимодействие тетрахлоридов титана, циркония и гафния с боргидридом натрия протекает в инертной атмосфере в среде абсолютированного (безводного) органического растворителя в присутствии каталитического количества безводного хлорида лития (LiCl), при перемешивании шаровой насадкой в планетарной мельнице в течение 60 минут (20+20+20 с двумя 30 мин перерывами) при температуре 20-90°С с последующим отделением конечного продукта путем фильтрации его раствора от насадки и шлама. При осуществлении предложенного способа синтез представляет собой механохимическую реакцию (трибохимия) метатезиса и протекает в соответствии с уравнениями:
MCl4 + 4 NaBH4 = М (ВН4)4 + 4NaCl, где М = Hf, Zr
2MCl4 + 8NaBH4 = 2М (ВН4)3 + 8NaCl + В2Н6 + Н2, где М = Ti
Достигнутый технический результат состоит в упрощении синтеза боргидридов титана, циркония и гафния за счет следующих факторов: в присутствии катализатора сокращается продолжительность реакции, за счет использования органического растворителя исключается стадия выделения индивидуальных летучих пожаро- и взрывоопасных конечных продуктов, повышается выход целевых продуктов.
Процесс получения боргидридов титана, циркония и гафния осуществляют в планетарной мельнице в стальном стакане с насадкой в виде керамических шариков. В продуваемый сухим азотом или аргоном бокс помещают стальной стакан, в который последовательно загружают навеску тетрахлорида титана, циркония или гафния, насадку в виде шариков из диоксида циркония, навеску боргидрида натрия и навеску хлорида лития. Затем приливают отмеренное количество осушенного (абсолютированного) органического растворителя. Стакан герметично закрывают стальной крышкой, устанавливают в планетарную мельницу, закрепляют в ней и включают вращение. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Температура в стакане повышается от комнатной до 90°С. По окончании реакции стакан с реакционной смесью, не нарушая герметичности, охлаждают сначала до комнатной температуры, затем до минус 18°С. Далее проводят отделение раствора продукта от насадки и шлама путем фильтрования в боксе в атмосфере сухого инертного газа (азота или аргона) на воронке Шотта с пористой стеклянной пластиной (пористость-4) под вакуумом 10-100 мм рт. ст. После процедуры анализа на содержание конечных продуктов полученный фильтрат с растворенным боргидридом титана, циркония или гафния хранят в закрытом сосуде в атмосфере сухого инертного газа (азота или аргона) при температуре не выше минус 18°С. Срок хранения без заметного разложения при минус 18°С составляет 5-7 месяцев.
Ниже приведены примеры осуществления предлагаемого способа.
Пример 1. Получение боргидрида циркония Zr(BH4)4.
В атмосфере сухого азота (аргона) помещают на дно стального размольного стакана емкостью 500 мл и массой 3 кг 11,7 г (50 ммоль) безводного хлорида циркония (с учетом 99,9% чистоты). Засыпают шаровую измельчающую насадку весом 800 г из оксида циркония (ZrO2), стабилизированного оксидом иттрия (Y2O3). Поверх шаров загружают 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 856 мг (20 ммоль или 8 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного изооктана (2,2,4-триметилпентан), дополнительные 100 мл безводного изооктана используют для смыва реагентов с весовой тары в размольный стакан. Стакан закрывают стальной крышкой массой 1200 г, снабженной тефлоновым употнением (прокладкой), и размещают в планетарной мельнице. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Температура в стакане повышается от комнатной до 90°С. По окончании реакции стакан с реакционной смесью, не нарушая герметичности, охлаждают сначала до комнатной температуры, затем до минус 18°С. Далее проводят отделение раствора продукта от насадки и шлама путем фильтрования в боксе в атмосфере сухого инертного газа (азота или аргона) на воронке Шотта (пористость-4) при вакууме 10-100 мм рт. ст. Получают примерно 210-230 мл раствора боргидрида циркония Zr(BH4)4 в изооктане, содержащего 7,15 г целевого продукта. Выход 95% от теории. Полученный фильтрат, с растворенным боргидридом циркония, хранят в закрытом сосуде в атмосфере сухого инертного газа (азота или аргона) при температуре не выше минус 18°С.
Пример 2. Получение боргидрида титана Ti(BH4)3.
В атмосфере сухого азота (аргона) помещают на дно стального размольного стакана емкостью 500 мл и массой 3 кг 9,6 г (50 ммоль) тетрахлорида титана (с учетом 99% чистоты). Засыпают шаровую измельчающую насадку весом 800 г из оксида циркония (ZrO2), стабилизированного оксидом иттрия (Y2O3). Поверх шаров загружают 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 1,07 г (25 ммоль или 10 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного изооктана (2,2,4-триметилпентан), дополнительные 100 мл безводного изооктана используют для смыва реагентов с весовой тары в размольный стакан. Стакан закрывают стальной крышкой массой 1200 г, снабженной тефлоновым употнением (прокладкой), и размещают в планетарной мельнице. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Температура в стакане повышается от комнатной до 90°С. По окончании реакции стакан с реакционной смесью, не нарушая герметичности, охлаждают сначала до комнатной температуры, затем до минус 18°С. Далее проводят отделение раствора продукта от насадки и шлама путем фильтрования в боксе в атмосфере сухого инертного газа (азота или аргона) на воронке Шотта (пористость-4) при вакууме 10-100 мм рт.ст. Получают примерно 220-240 мл раствора боргидрида титана Ti(BH4)3 в изооктане, содержащего 4,35 г целевого продукта. Выход 94% от теории. Полученный фильтрат, с растворенным боргидридом титана, хранят в закрытом сосуде в атмосфере сухого инертного газа (азота или аргона) при температуре не выше минус 18°С.
Пример 3. Получение боргидрида гафния Hf(BH4)4.
В атмосфере сухого азота (аргона) помещают на дно стального размольного стакана емкостью 500 мл и массой 3 кг 16,03 г (50 ммоль) безводного хлорида гафния (с учетом 99,9% чистоты). Засыпают шаровую измельчающую насадку весом 800 г из оксида циркония (ZrO2), стабилизированного оксидом иттрия (Y2O3). Поверх шаров загружают 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 1,07 г (25 ммоль или 10 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного изооктана (2,2,4-триметилпентан), дополнительные 100 мл безводного изооктана используют для смыва реагентов с весовой тары в размольный стакан. Стакан закрывают стальной крышкой массой 1200 г, снабженной тефлоновым употнением (прокладкой), и размещают в планетарной мельнице. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Температура в стакане повышается от комнатной до 90°С. По окончании реакции стакан с реакционной смесью, не нарушая герметичности, охлаждают сначала до комнатной температуры, затем до минус 18°С. Далее проводят отделение раствора продукта от насадки и шлама путем фильтрования в боксе в атмосфере сухого инертного газа (азота или аргона) на воронке Шотта (пористость-4) при вакууме 10-100 мм рт.ст. Получают примерно 200-220 мл раствора боргидрида гафния Hf(BH4)4 в изооктане, содержащего 11,4 г целевого продукта. Выход 96% от теории. Полученный фильтрат, с растворенным боргидридом гафния, хранят в закрытом сосуде в атмосфере сухого инертного газа (азота или аргона) при температуре не выше минус 18°С.
Пример 4. Получение боргидрида титана Ti(BH4)3.
Процесс осуществляют аналогично примеру 2. В размольный стакан загружают 9,6 г (50 ммоль) безводного тетрахлорида титана (с учетом 99% чистоты), 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 107 мг (2,5 ммоль или 1 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного декалина (декагидронафталин), дополнительные 100 мл безводного декалина используют для смыва реагентов с весовой тары в размольный стакан. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Выход 93% от теории (4,3 г).
Пример 5. Получение боргидрида циркония Zr(BH4)4.
Процесс осуществляют аналогично примеру 1. В размольный стакан загружают 11,7 г (50 ммоль) безводного хлорида циркония (с учетом 99,9% чистоты), 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 107 мг (2,5 ммоль или 1 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного декалина (декагидронафталин), дополнительные 100 мл безводного декалина используют для смыва реагентов с весовой тары в размольный стакан. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Выход 91% от теории (6,85 г).
Пример 6. Получение боргидрида гафния Hf(BH4)4.
Процесс осуществляют аналогично примеру 3. В размольный стакан загружают 16,03 г (50 ммоль) безводного хлорида гафния (с учетом 99,9% чистоты), 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 214 мг (5 ммоль или 2 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного декалина (декагидронафталин), дополнительные 100 мл безводного декалина используют для смыва реагентов с весовой тары в размольный стакан. Перемешивание смеси проводят в течение 120 минут (20+20+20 с двумя 30-мин перерывами). Выход 92% от теории (10,94 г).
Пример 7. Получение боргидрида циркония Zr(BH4)4.
Процесс осуществляют аналогично примеру 1. В размольный стакан загружают 11,7 г (50 ммоль) безводного хлорида циркония (с учетом 99,9% чистоты), 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 107 мг (2,5 ммоль или 1 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного толуола, дополнительные 100 мл безводного толуола используют для смыва реагентов с весовой тары в размольный стакан. Перемешивание смеси проводят в течение 120 минут (20+20+20 с двумя 30-мин перерывами). Выход 95% от теории (7,15 г).
Пример 8. Получение боргидрида гафния Hf(BH4)4.
Процесс осуществляют аналогично примеру 3. В размольный стакан загружают 16,03 г (50 ммоль) безводного хлорида гафния (с учетом 99,9% чистоты), 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 107 мг (2,5 ммоль или 1 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного толуола, дополнительные 100 мл безводного толуола используют для смыва реагентов с весовой тары в размольный стакан. Перемешивание смеси проводят в течение 120 минут (20+20+20 с двумя 30-мин перерывами). Выход 96% от теории (11,42 г).
Пример 9. Получение боргидрида титана Ti(BH4)3.
Процесс осуществляют аналогично примеру 2. В размольный стакан загружают 9,6 г (50 ммоль) безводного тетрахлорида титана (с учетом 99% чистоты), 10 г (250 ммоль) боргидрида натрия (с учетом 95% чистоты) и 214 мг (5 ммоль или 2 мол. % от вводимого в реакцию боргидрида натрия) безводного хлорида лития (с учетом 99% чистоты). Заливают в стакан 200 мл безводного н-гептана, дополнительные 100 мл безводного н-гептана используют для смыва реагентов с весовой тары в размольный стакан. Перемешивание смеси проводят в течение 60 минут (20+20+20 с двумя 30-мин перерывами). Выход 94% от теории (4,34 г).
Для подтверждения идентичности полученных боргидридов Ti, Zr и Hf использовали метод спектроскопии ЯМР на ядрах 11В. Примеры спектров ЯМР 11В-{Н}растворов Hf(BH4)4 и Zr(BH4)4 в изооктане с добавкой бензола-d6 на спектрометре Bruker AVANCE 600 на частоте 115,54 МГц приведены на фиг. 1 - Спектр ЯМР 11В-{Н}раствора Hf(BH4)4 в изооктане с добавкой бензола-d6 и на фиг. 2 - Спектр ЯМР 11В-{Н}раствора Zr(BH4)4 в изооктане с добавкой бензола-d6.
Claims (1)
- Способ получения боргидридов титана, циркония и гафния, включающий взаимодействие тетрахлоридов соответствующих металлов с боргидридом натрия в среде органического растворителя в присутствии катализатора в планетарной мельнице при перемешивании насадкой с последующим выделением конечного продукта в виде растворенного вещества, отличающийся тем, что процесс ведут в присутствии каталитического количества 1-10 мольн.% безводного хлорида лития, взятого от вводимого в реакцию боргидрида натрия, при этом в качестве растворителя используют высококипящие абсолютированные предельные и ароматические углеводороды С7-С10 с Ткип. = 90-190°С, причем перемешивание смеси проводят при температуре 20-90°С три раза по 20 минут с двумя 30-минутными перерывами, причем с целью исключения стадии выделения конечных продуктов в индивидуальном виде образовавшуюся смесь отфильтровывают от насадки и шлама в атмосфере сухого инертного газа - аргона или азота на воронке с пористой стеклянной пластиной - воронке Шотта при вакууме 10-100 мм рт.ст., а полученные фильтраты с растворенными в них боргидридами титана, циркония и гафния после процедуры анализа на содержание конечных продуктов хранят в закрытом сосуде в атмосфере сухого инертного газа при температуре не выше минус 18°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017104277A RU2651024C1 (ru) | 2017-02-09 | 2017-02-09 | Способ получения боргидридов титана, циркония, гафния |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017104277A RU2651024C1 (ru) | 2017-02-09 | 2017-02-09 | Способ получения боргидридов титана, циркония, гафния |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2651024C1 true RU2651024C1 (ru) | 2018-04-18 |
Family
ID=61977084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017104277A RU2651024C1 (ru) | 2017-02-09 | 2017-02-09 | Способ получения боргидридов титана, циркония, гафния |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2651024C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2799781C1 (ru) * | 2022-09-28 | 2023-07-11 | Акционерное общество "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (АО "ГНЦ РФ ТРИНИТИ") | Способ получения растворов боргидридов тугоплавких металлов |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB801401A (en) * | 1955-10-18 | 1958-09-10 | Distillers Co Yeast Ltd | Polymerisation process |
SU1096901A1 (ru) * | 1965-04-05 | 1985-09-07 | Институт Неорганической Химии Со Ан Ссср | Способ получени борогидридов гафни и циркони |
CN103496669A (zh) * | 2013-09-05 | 2014-01-08 | 华南理工大学 | 一种b-n-h体系储氢材料及其制备方法 |
-
2017
- 2017-02-09 RU RU2017104277A patent/RU2651024C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB801401A (en) * | 1955-10-18 | 1958-09-10 | Distillers Co Yeast Ltd | Polymerisation process |
SU1096901A1 (ru) * | 1965-04-05 | 1985-09-07 | Институт Неорганической Химии Со Ан Ссср | Способ получени борогидридов гафни и циркони |
CN103496669A (zh) * | 2013-09-05 | 2014-01-08 | 华南理工大学 | 一种b-n-h体系储氢材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
LINE H. RUDE et al., Synthesis and Structural Investigation of Zr(BH 4 ) 4 , J. Phys. Chem. C, 2012, vol. 116 (38), pp. 20239-20245. * |
YUKO NAKAMORI et al., Syntheses and Hydrogen Desorption Properties of Metal-Borohydrides M(BH 4 ) n (M=Mg, Sc, Zr, Ti, and Zn; n=2-4) as Advanced Hydrogen Storage Materials, Materials Transactions, 2006, Vol. 47, Issue 8, pp. 1898-1901. * |
YUKO NAKAMORI et al., Syntheses and Hydrogen Desorption Properties of Metal-Borohydrides M(BH 4 ) n (M=Mg, Sc, Zr, Ti, and Zn; n=2-4) as Advanced Hydrogen Storage Materials, Materials Transactions, 2006, Vol. 47, Issue 8, pp. 1898-1901. LINE H. RUDE et al., Synthesis and Structural Investigation of Zr(BH 4 ) 4 , J. Phys. Chem. C, 2012, vol. 116 (38), pp. 20239-20245. ХАИН В.С. и др., Борогидриды металлов, Применение борогидридов металлов и тетраалкиламония, Монография, т. 3, Ухта, 2005, сс. 32-37. * |
ХАИН В.С. и др., Борогидриды металлов, Применение борогидридов металлов и тетраалкиламония, Монография, т. 3, Ухта, 2005, сс. 32-37. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2799781C1 (ru) * | 2022-09-28 | 2023-07-11 | Акционерное общество "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (АО "ГНЦ РФ ТРИНИТИ") | Способ получения растворов боргидридов тугоплавких металлов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10336616B2 (en) | Method of converting red phosphorous to soluble polyphosphides using potassium ethoxide | |
Hercules et al. | Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts | |
US8377415B2 (en) | Methods for synthesizing alane without the formation of adducts and free of halides | |
Francis et al. | Carbene complexes of Group 13 trihydrides: synthesis and characterisation of [MH 3 {[upper bond 1 start] CN (Pr i) C 2 Me 2 N [upper bond 1 end](Pr i)}], Má= áAl, Ga or In | |
RU2651024C1 (ru) | Способ получения боргидридов титана, циркония, гафния | |
US7678356B2 (en) | Process for the preparation of crystalline magnesium borohydride | |
JP2006008440A (ja) | 金属アミド化合物およびその製造方法 | |
JP5795636B2 (ja) | スタンナン及び重水素化スタンナンの合成 | |
US2897055A (en) | Sulfur tetrafluoride adducts | |
Himmel et al. | [BeBr2 (SMe2) 2], a Versatile Starting Material for Beryllium Chemistry–One Pot Synthesis from Beryllium Powder | |
Feng et al. | Thermal Fragmentation of Acyl Thiolato Complexes to Reactive Metal Sulfido Intermediates. Structure of Ru (. eta. 6-SC3Me3COMe)(PPh3) 2 | |
EP0392445A1 (en) | Preparation of amine alanes | |
Ashby et al. | Direct synthesis of group Ia hexahydridoaluminates | |
SU1096901A1 (ru) | Способ получени борогидридов гафни и циркони | |
WO2020016709A1 (en) | Heterogeneous catalysts and process based on supported/grafted titanium hydrides for catalytic ammonia formation from nitrogen and hydrogen | |
Keller | Reactions of lithium dimethylamide with some borane derivatives. Evidence for the displacement of lithium hydride | |
Keller | Reaction of diborane with trimethylamine-alane and dimethylaminoalane | |
RU2799781C1 (ru) | Способ получения растворов боргидридов тугоплавких металлов | |
Sürdem | Synthesis and characterization of trimethoxy boroxine | |
Paul et al. | Catalytic oxidation of phosphorus on molybdena as studied by infrared spectroscopy | |
Barton et al. | Oxidation of 1, 1-dimethyldiborane. Isolation and characterization of 2, 5-dimethyl-1, 3, 4-trioxadiborolane | |
Nelson et al. | Deuterated sodium octahydrotriborate (1-) | |
US3063810A (en) | Process for the production of diborane | |
CN117050017A (zh) | 轴手性烯基-硫叶立德类化合物及其制备方法 | |
SU905190A1 (ru) | Способ получени гидрида натри |