RU2751333C1 - Способ получения противогрибкового полусинтетического полиенового антибиотика - Google Patents

Способ получения противогрибкового полусинтетического полиенового антибиотика Download PDF

Info

Publication number
RU2751333C1
RU2751333C1 RU2020141432A RU2020141432A RU2751333C1 RU 2751333 C1 RU2751333 C1 RU 2751333C1 RU 2020141432 A RU2020141432 A RU 2020141432A RU 2020141432 A RU2020141432 A RU 2020141432A RU 2751333 C1 RU2751333 C1 RU 2751333C1
Authority
RU
Russia
Prior art keywords
amphotericin
amfamide
amide
ethylenediamine
synthesis
Prior art date
Application number
RU2020141432A
Other languages
English (en)
Inventor
Анна Николаевна Тевяшова
Андрей Егорович Щекотихин
Елена Николаевна Бычкова
Светлана Евгеньевна Соловьева
Original Assignee
Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе" filed Critical Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе"
Priority to RU2020141432A priority Critical patent/RU2751333C1/ru
Application granted granted Critical
Publication of RU2751333C1 publication Critical patent/RU2751333C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к способу получения N-(2-аминоэтил)амида амфотерицина В (Амфамида) формулы I, который заключается в том, что синтез проводят путем конденсации амфотерицина В с этилендиамином в виде свободного основания в присутствии конденсирующего агента и соли органического основания и минеральной кислоты, а очистку образующегося амфамида-сырца проводят методом обращенно-фазовой хроматографии. Технический результат - разработан новый способ получения амфамида с высоким выходом, который может найти свое применение в медицине в качестве средства, обладающего противогрибковыми свойствами. 5 з.п. ф-лы, 2 ил., 3 пр.

Description

Область техники
Настоящее изобретение относится к химико-фармацевтической промышленности и касается способа получения производного амфотерицина В - N-(2-аминоэтил)амида амфотерицина В (амфамида), формулы I, обладающего противогрибковыми свойствами и низкой токсичностью в сравнении с амфотерицином В. Способ получения N-(2-аминоэтил)амида амфотерицина В (амфамида) включает реакцию амидирования амфотерицина В этилендиамином в виде свободного основания в присутствии конденсирующего агента и соли органического основания и минеральной кислоты, а также очистку получающегося амфамида-сырца методом обращено-фазовой хроматографии. Технический результат - повышение выхода и снижение себестоимости производства целевого продукта.
Уровень техники
На сегодняшний день грибковые заболевания - одни из самых распространенных, ими страдает каждый четвертый житель нашей планеты [Biotechnology and Bioprocess Engineering 24: 436-444 (2019)]. Заболеваемость инвазивными грибковыми инфекциями значительно ниже, чем поверхностными, однако инвазивные заболевания ассоциируются с недопустимо высокими показателями летальности. Увеличение числа инвазивных микозов имеет многочисленные основополагающие причины, такие как рост числа иммунокомпрометированных больных, в том числе пациентов после иммуносупрессивной терапии при трансплантации, онкологических больных с индуцированной химиотерапией нейтропенией, а также ВИЧ-инфицированных пациентов. Кроме того, за последние несколько десятилетий увеличилось число онкологических больных, склонных к грибковым инфекциям [Open Forum Infectious Diseases, 2018, 5(8), ofyl87]. В настоящее время препаратом выбора для лечения тяжелых системных грибковых инфекций является амфотерицин В, клиническое использование которого значительно ограничено серьезными побочными эффектами лечения (нефро- и гепатотоксичность, поражения центральной нервной системы) и его крайне низкой растворимостью в воде. Таким образом, разработка лекарственного средства для лечения системных грибковых инфекций, подходящего, в частности, иммунокомпрометированным пациентам, обладающего высокой противогрибковой активностью при сниженной токсичности и повышенной растворимостью в воде и высокой стабильностью, является актуальной задачей современной фармацевтики и медицины. Ранее был описан N-(2-аминоэтил)амид амфотерицина В (Амфамид, Формула I), продемонстрировавший преимущества перед исходным амфотерицином В, в том числе, улучшенные фармакологические свойства и повышенную растворимость в воде [ACS Infect. Dis. 2020, V. 6, P. 2029-2044; Химико-фармацевтический журнал, 2019, 53, №10, 50-54; Химико-фармацевтический журнал, 2019, 53, №11, 30-33; Патент на изобретение РФ №2688658]. Амфамид обладает более высокой противогрибковой активностью в сравнении с амфотерицином В в экспериментах in vitro на панели штаммов грибков и дрожжей, играющих ведущую роль в патогенезе системных грибковых инфекций человека, а также демонстрирует высокую эффективность в эксперименте in vivo на модели кандидозного сепсиса мышей [ACS Infect. Dis. 2020, V. 6, P. 2029-2044]. Установлено, что амфамид обладает значительно сниженной токсичностью в сравнении с амфотерицином В: дозы, характеризующие острую токсичность амфотерицина В при внутривенном введении составляют: LD50 1,2 мг/кг (мыши), 1,6 мг/кг (крысы), в то время как для Амфамида - LD50 13,8 мг/кг (мыши). Таким образом, Амфамид превосходит по специфической фармакологической активности Амфотерицин В при действии на клинически важные грибные патогены при улучшенных фармакокинетических характеристиках.
Figure 00000001
Исходя из уровня техники процесс получения Амфамида из амфотерицина В включает три синтетических стадии (Рис. 1) [ACS Infect. Dis. 2020, V. 6, P. 2029-2044; Патент на изобретение РФ №2688658]. Синтез включает получение N'-Fmoc-амфотерицина В реакцией амфотерицина В с N-(9Н-флуорен-2-ил-метоксикарбонил)сукцинимидом, амидирование N'-Fmoc-амфотерицина В этилендиамином (2 экв.) в ДМСО в присутствии РуВОР (бензотриазол-1-ил-оксотрипирролидинофосфониум гексафторфосфата) (1.5 экв.) в качестве конденсирующего агента и триэтиамина в качестве основания (для поддержание рН реакционной среды около рН 7-8) и удаление Fmoc-защитных групп на заключительной стадии действием пиперидина (3 экв.) [ACS Infect. Dis. 2020, V. 6, P. 2029-2044; Патент на изобретение РФ №2688658].
Для получения конечного амфамида требуемой степени чистоты (около 95% по данным ВЭЖХ) требовалась очистка промежуточных интермедиатов, N'-Fmoc-амфотерицина В (II) и N'-Fmoc-N-(2-аминоэтил)амида амфотерицина В (III), методом колоночной хроматографии на силикагеле. Лабильность интермедиатов и конечного соединения (Амфамида), крайне низкая растворимость в воде и органических растворителях полиеновых антибиотиков, необратимая сорбция на хроматографических сорбентах, а также высокие требования к чистоте конечного препарата (не менее 95%) обуславливают невысокий выход (36%) Амфамида исходя из амфотерцина В при получении его по трехстадийной схеме, что повышает стоимость конечной фармацевтической субстанции Амфамида [ACS Infect. Dis. 2020, V. 6, P. 2029-2044].
Синтез N-(2-аминоэтил)амида амфотерицина В описан также в патенте WO 2015/164289 А1. Синтез включает получение N'-Fmoc-амфотерицина В реакцией амфотерицина В с N-(9H-флуорен-2-ил-метоксикарбонил)сукцинимидом, амидирование N'-Fmoc-амфотерицина В гидрохлоридом моно N-Fmoc-этилендиамина (1.5 экв.) при 0°C в ДМФА в присутствии диизопропилэтиламина (2.5 экв.) в качестве основания и COMU (1-циано-2-этокси-2-оксоэтилиденаминоокси)диметиламино-морфолино-карбениум гексафторфосфата) (1 экв.) в качестве конденсирующего агента и удаление Fmoc-защитных групп добавлением пиперидина (3 экв.). Очистку получающегося N-(2-аминоэтил)амида амфотерицина В вели методом ВЭЖХ, выход целевого соединения составил 20%.
Таким образом, разработка более эффективного способа получения Амфамида, позволяющего повысить выход целевого продукта, является актуальной задачей, решение которой позволит организовать рентабельное производство фармацевтической субстанции и лекарственной формы Амфамида для лечения пациентов с системными грибковыми инфекциями.
Указанная техническая задача решена путем перехода к одностадийной схеме синтеза Амфамида из амфотерицина В и подбору условий реакции амидирования С-16 карбоксильной группы антибиотика, обеспечивающих высокую селективность протекания реакции и минимальное количество побочных продуктов при отсутствии защитных групп в молекуле антибиотика и диамина.
Необходимо отметить, что в литературе описаны способы получения амидов амфотерицина В напрямую реакцией амидирования аминами различного строения в присутствии конденсирующих агентов [PLoS ONE 11(9): е0162171; The Journal of Antibiotics (2016), 1-12; J. Am. Chem. Soc. 1995,117, 6249-6253], однако, случай получения амидов амфотерицина В с свободными диаминами является особым случаем реакции амидирования, поскольку в этом случае возможно образование побочных продуктов димерных амидов, содержащих два антибиотика, присоединенных амидной связью по каждой из аминогрупп аминосахала или диамина, как это описано, например, в работе Yamaju N. с соавт. [Tetrahedron Letters, 2007, 49(19), 3393-3396].
В литературе имеется два примера осуществления реакции амидирования амфотерицина В напрямую аминами, имеющими две свободные аминогруппы.
Jarzebski А. с соавт. [The Journal of Antibiotics, 1982, 35(2), 220-229] описали синтез N-(3-аминопропил)амида амфотерицина В реакцией конденсации антибиотика с 10-кратным избытком 1,3-диаминопропана в N,N-диметилацетамиде в присутствии 10 эквивалентов дифенилфосфорилазида (DPPA) и 10 эквивалентов триэтиламина. Очистку производного проводили методом противоточного распределения (хлороформ : метанол : вода, 2:2:1). Чистота конечного амида была неудовлетворительной и составила всего 66%, выход конечного продукта не указан.
Тевяшова с соавт. [ACS Infect. Dis. 2020, V. 6, P. 2029-2044] описали синтез 1-(пиперазин-1-ил)амида амфотерицина В, N-(2-((2-гидроксиэтил)амино)этил)амида амфотерицина В и N-(2-(2-аминоэтокси)этил)амида амфотерицина В. Синтез вели добавлением соответствующего амина (0.44 ммоль, 2 экв.) к раствору амфотерицина В AmB (200 мг, 0.22 ммоль) в ДМСО (5 мл), добавлением РуВОР (бензотриазол-1-ил-оксотрипирролидинофосфониум гексафторфосфата) (137 мг, 0.26 ммоль, 1.18 экв.) в качестве конденсирующего агента и триэтиамина в качестве основания (для поддержания рН реакционной среды около рН ~8). Очистку целевых амидов проводили методом колоночной хроматографии на силикагеле, выходы амидов составили 12-25%.
Таким образом, известные из уровня техники способы синтеза амидов амфотерицина В, исходя незащищенного антибиотика и свободных аминов, имеющих две первичных или вторичных аминогруппы, не позволяют получать такие амиды с высоким выходом и приемлемой чистоты, а, следовательно, не могут быть использованы для препаративного синтеза амфамида в одну стадию из амфотерицина В.
Раскрытие сущности изобретения
Техническая задача получения амфамида (I) с высоким выходом и высокой степени чистоты решена путем перехода к одностадийной схеме синтеза амфамида из амфотерицина В, подбора условий реакции амидирования амфотерицина В, в частности нахождении оптимальной буферной системы для проведения реакции и очистке получающегося амфамида-сырца методом обращенно-фазовой хроматографии (Рис. 2).
Серия экспериментов по оптимизации количества используемого аминного компонента и буферной системы при получении амфамида показала, что использование свободного 1,2-этилендиамина в качестве аминного компонента и соли органического основания с минеральной кислотой для поддержания оптимального для проведения реакции рН приводят к неожиданному результату - а именно, повышению выхода и качества (чистоты) конечного продукта, и лучшей воспроизводимости результатов синтеза. Использование такой буферной системы, позволяет создать в реакционной смеси оптимальное значение рН, обеспечивающее минимальное количество побочных реакций, таких как конденсация двух молекул антибиотика или получения димеров амфотерицина В, сшитых этилендиаминовым спейсером, что приводит к повышению чистоты амфамида-сырца, выделяемого осаждением из реакционной смеси, и в дальнейшем облегчает процесс хроматографической очистки, в частности, уменьшает число смешанных фракций, что в конечном итоге позволяет значительно повысить выход целевого амфамида по сравнению с трехстадийной схемой, известной из уровня техники. В качестве органического основания могут быть использованы такие органические основания, как третичные амины, пиридин и алкилпиридины, хинолины и другие. В качестве минеральной кислоты могут быть использованы такие минеральные кислоты как соляная кислота, бромистоводородная кислота, серная кислота, фосфорная кислота и другие. Соль органического основания и минеральной кислоты может быть предварительно получена смешением эквимолярных количеств органического основания и минеральной кислоты. Предпочтительным является использование коммерчески доступных солей органического основания и минеральной кислоты, таких как гидрохлорид триэтиламина, гидробромид триэтиламина, гидрохлорид триметиламина, трипропиламин фосфат, гидрохлорид пиридина, гидробромид пиридина. В предпочтительном варианте осуществления изобретения в качестве соли органического основания и минеральной кислоты используется соль третичного амина или пиридина и минеральной кислоты, в наиболее предпочтительном варианте - гидрохлорид триэтиламина.
Кроме того, повысить выход целевого амфамида позволил переход от хроматографической очистки на силикагеле полупродуктов II и III, получаемых по трехстадийной схеме, к очистки конечного N-(2-аминоэтил)амида амфотерицина В (I) методом обращенно-фазовой хроматографии. Введение в молекулу амфотерицина В дополнительной группы, способной к протонированию, значительно повысило растворимость производного I в воде, что позволило осуществлять его очистку на силанизированном силикагеле или методом препаративной ВЭЖХ на обращенно-фазовых носителях (С9 или С18). Дополнительным преимуществом такого метода является использование в качестве элюентов водно-органических смесей, таких как вода - ацетонитрил, вода - изопропанол, вода - этанол, вода - н-пропанол, являющихся гораздо менее токсичными, чем хлороформ и метанол, используемые при очистке интермедиатов II и III методом хроматографии на силикагеле. Кроме того, более высокая растворимость в воде амфамида обеспечивает его меньшую сорбцию на обращенно-фазовом носителе, что, во-первых, позволяет, повысить выход целевого препарата, а во-вторых, делает возможным повторное использование носителей для обращенно-фазовой хроматографии после их регенерации.
Использованные в совокупности приемы, а именно, переход на одностадийную схему синтеза амфамида, проведение реакции амидирования амфотерицина В этилендиамином в виде свободного основания в присутствии конденсирующего агента и соли третичного основания или придина и минеральной кислоты, а также очистка получающегося амфамида-сырца методом обращено-фазовой хроматографии позволили достичь выхода N-(2-аминоэтил)амида амфотерицина В (I) в 65-70% при соблюдении требования к чистоте не менее 95% по данным ВЭЖХ, что значительно превышает выход амфамида при получении его по трехстадийной схеме, а также выходы амидов амфтерицина В, получаемых прямым амидированием антибиотика аминами, содержащими две свободные аминогруппы.
Одностадийный синтез Амфамида I, описываемый в настоящем изобретении, может быть осуществлен методами органической химии, известными из уровня техники, и включает активацию С16-карбоксильной группы амфотерицина В реагентами Кастро (ВОР или РуВОР) или другими конденсирующими агентами (TBTU, HBTU, COMU), предпочтительно РуВОР, с последующим взаимодействием с этилендиамином в виде свободного основания в присутствии гидрохлорида триэтиламина. Реакцию проводят в полярном апротонном растворителе, таком как диметилсульфоксид (ДМСО), диметилформамид (ДМФА), диметилацетамид (ДМАА) или их смеси, предпочтительно, в ДМСО. Соотношение реагентов может варьироваться в пределах антибиотик : этилендиамин : конденсирующий агент : соль третичного амина или пиридина и минеральной кислоты от 1:1:1:1 до 1:10:10:10, в более предпочтительном варианте 1:5-7:1.5-2:5-8, предпочтительно 1:5:1.5:6 (моль/моль/моль/моль). Ключевым фактором, обеспечивающий неожиданный результат - максимальный выход целевого амфамида - является добавление в реакционную смесь соли органического основания и минеральной кислоты, предпочтительно третичного амина или пиридина и минеральной кислоты, более предпочтительно, гидрохлорида триэтиламина, от в количестве от 1 от до 10 эквивалентов в расчет на исходный амфотерицин В, предпочтительно от 6 до 8 эквивалентов, более предпочтительно 6 эквивалентов.
Выделение сырца полученного антибиотика (в виде основания из реакционной смеси ведут, осаждая антибиотик растворителем, таким как диэтиловый эфир, гексан, петролейный эфир, ацетон, предпочтительно, диэтиловый эфир, и отфильтровывая выпавший осадок. Очистку выделяемого амфамида-сырца проводят методом обращенно-фазовой хроматографии, в том числе на силанизированном силикагеле или с С9 или С18 силанизированном силикагеле, предпочтительно силанизированном силикагеле. Фракции, содержащие целевой амфамид объединяют, удаляют органический растворитель, и выделяют целевой амфамид осаждением из водного раствора добавлением ацетона или оставшийся водный раствор замораживают при температуре -18°C, и высушивают с помощью лиофильной сушки.
Описанная последовательность операция позволяет получать позволяет получить целевой N-(2-аминоэтил)амид амфотерицина В с выходом 65-70% и чистотой 93-95% по данным ВЭЖХ.
Нижеприведенные неограничивающие примеры даны для демонстрации предпочтительных вариантов осуществления настоящего изобретения.
Пример 1. Синтез N-(2-аминоэтил)амида амфотерицина В (Амфамида I)
К раствору амфотерицина В (460 мг, 0.5 ммоль) в ДМСО (10 мл) прибавляют этилендиамин (166 μл, 2.5 ммоль, 5 экв.), гидрохлорид триэтиламина (411 мг, 3 ммоль, 6 экв.) и конденсирующий агент РуВОР (388 мг, 0.75 ммоль. 1.5 экв.). Реакционную смесь перемешивают 1 ч при комнатной температуре (контроль методом ТСХ, система хлороформ-метанол 7:1). К реакционной смеси прибавляют ацетон (10 мл) и диэтиловый эфир (25 мл), после чего фильтруют образовавшийся осадок, промывают его ацетоном и диэтиловым эфиром и сушат в вакууме. Выход ~500 мг (95%) амфамида-сырца.
Пример 1. Синтез N-(2-аминоэтил)амида амфотерицина В (Амфамида I)
К раствору амфотерицина В (460 мг, 0.5 ммоль) в ДМСО (10 мл) прибавляют этилендиамин (166 μл, 2.5 ммоль, 5 экв.), гидрохлорида пиридина (346 мг, 3 ммоль, 6 экв.) и конденсирующий агент РуВОР (388 мг, 0.75 ммоль. 1.5 экв.). Реакционную смесь перемешивают 1 ч при комнатной температуре (контроль методом ТСХ, система хлороформ-метанол 7:1). К реакционной смеси прибавляют ацетон (10 мл) и диэтиловый эфир (25 мл), после чего фильтруют образовавшийся осадок, промывают его ацетоном и диэтиловым эфиром и сушат в вакууме. Выход ~500 мг (95%) амфамида-сырца.
Пример 3. Очистка N-(2-аминоэтил)амида амфотерицина В (Амфамида I)
Исходный образец Амфамида-сырца (~500 мг) растворяли в 10 мл воды, к которой добавляли уксусную кислоту до рН раствора ~3-4. Раствор наносят на колонку с силанизированным силикагелем, продукт элюируют, используя в качестве элюента смесь 0.01% водного раствора уксусной и ацетонитрила, градиаент ацетонитрила от 0% до 95%. Собирают фракции по 9 мл. Фракции, содержащие целевой Амфамид объединяли, отгоняли органический растворитель на роторном вакуумном испарителе при температуре не выше 40°C, оставшийся водный раствор замораживали при температуре -18°C, и лиофилизировали. Чистота полученного Амфамида составила 95% по данным ВЭЖХ, общий выход - 355 мг (65% в расчет на исходный амфотерицин В).
Тпл 115-118°C (разл). Вычислено для C49H79N3O16: С, 60,91; Н, 8,24; N, 4,35; О, 26,49. Найдено: С, 60,88; Н, 8,26; N, 4,33. 1Н NMR (400 MHz, DMSO-d6) δ: 7,01 (1H, m, 3'-NH); 6,43 (1H, m, 24-CH); 6,38 (1H, m, 22-CH); 6,32 (1H, m, 26-CH); 6,29 (1H, m, 29-CH); 6,29 (1H, m, 30-CH); 6,28 (1H, m, 25-CH); 6,25 (1H, m, 23-CH); 6,16 (1H, m, 31-CH); 6,15 (1H, m, 27-CH); 6,08 (1H, m, 21-CH); 6,07 (1H, m, 32-CH); 5,96 (1H, m, 20-CH); 5,43 (1H, m, 33-CH); 5,20 (3H, m, 37-CH3); 4,47 (1H, m, 1'-СН); 4,37 (m, 1H, 19-CH); 4,22 (1H, m, 11-CH); 4,19 (1H, m, 17-CH); 4,05 (1H, m, 3-CH); 3,96 (1H, m, 15-CH); 3,66 (m, 2C-CH); 3,52 (m, 1H, 5-CH); 3,45 (m, 1H, 9-CH); 3,42 (m, 1H, C3'-H); 3,17 (1H, m, 1H, 4'-CH); 3,17 (1H, m, 5'-CH); 3,09 (1H, m, 35-CH); 3,08 (1H, m, 8-CH); 2,54 (4H, m, NH-CH2-CH2-NH); 2,28 (1H, m, 34-CH); 2,16 (2H, m, 2-CH2); 2,06 (1H, m, 18-CH); 1,9 (1H, m, 16-CH); 1,86 (1H, m, 14-CH); 1,72 (1H, m, 36-CH); 1,57 (1H, m, 7-CH); 1,57 (1H, m, 18-CH); 1,55 (1H, m, 10-CH); 1,53 (2H, m, 12-CH2); 1,39 (1H, m, 6-СН); 1,39 (1H, m, 4-CH); 1,31 (1H, m, 4-CH); 1,30 (1H, m, 10-CH); 1,25 (1H, m, 6-CH); 1,24 (1H, m, 7-CH); 1,16 (3H, m, 6'-CH3); 1,11 (3H, m, 37-CH3); 1,09 (1H, m, 14-CH); 1,03 (3H, m, 34-CH3); 0,91 (3H, m, 36-CH3). 13C NMR (100 MHz, DMSO-d6) δ: 136,6 (C20); 136,5 (C33); 133,7 (C24; 133,4 (C26); 133,3 (C22); 132,9 (C30); 132,0 (C29); 131,9 (C27); 131,9 (C25); 131,6 (C23); 131,6 (C31); 131,0 (C32); 128,4 (C21); 96,7 (С1'); 76,9 (C8); 74,5 (19); 73,5 (C9); 73,3 (C35); 73,0 (C5'); 69,4 (C4'); 69,0 (5); 68,8 (C2'); 68,6 (C37); 66,0 (C3); 65,4 (С11); 65,2 (C15); 65,1 (C17); 56,7 (C3'); 56,5 (C16); 50,0 (CNH); 48,0 (CNH); 46,0 (C12); 44,5 (C4); 44,1 (C14); 42,2 (C34); 41,8 (C2); 39,4 (C36); 39,3 (C10); 37,0 (С18); 35,9 (С6); 28,8 (С7); 18,2 (34Ме); 17,9 (С6'); 16,7 (С37Ме); 11,8 (С36Ме). ЭСП (0,01 мг/мл) λмакс., нм: 235, 345, 365, 385, 406. ИК-спектр, λмакс.: 3394, 3008, 2924, 1774, 1720, 1705, 161, 1635, 1558, 1543, 1458, 1442, 1381, 1319, 1265, 1180, 1111, 1072, 1018, 956, 887, 848, 802 см-1. MW (HR ESI-MS) вычислено для [M+H]+1 C49H79N3O16: 966,5539. Найдено: 966,5775 [M+H]+1. Rt 7.24 мин (Колонка 4×250 мм с октадецилсиланом (С-18) с зернением 5 мкм, подвижная фаза: 0,01 М раствор фосфорной кислоты (рН 2,6): ацетонитрил, линейный градиент ацетонитрила от 30 до 60% за 15 мин).

Claims (8)

1. Способ получения N-(2-аминоэтил)амида амфотерицина В (Амфамида) формулы I
Figure 00000002
отличающийся тем, что синтез амфамида проводят путем конденсации амфотерицина В с этилендиамином в виде свободного основания в присутствии конденсирующего агента и соли органического основания и минеральной кислоты, а также очистку образующегося амфамида-сырца проводят методом обращенно-фазовой хроматографии.
2. Способ получения соединения I по п. 1, в котором в качестве органического основания используется третичный амин или пиридин.
3. Способ получения соединения I по п. 1, в котором в качестве соли минеральной кислоты и третичного амина используется гидрохлорид триэтиламина.
4. Способ получения соединения I по п. 1, в котором в качестве конденсирующего агента используется РуВОР (бензотриазол-1-ил-оксотрипирролидинофосфониум гексафторфосфат).
5. Способ получения соединения I по п. 1, в котором в качестве растворителя используется ДМСО.
6. Способ получения соединения I по п. 1, в котором мольное соотношение реагентов амфотерицин В:этилендиамин:РуВОР:гидрохлорид триэтиламина выбрано в диапазоне от 1:1:1:1 до 1:10:10:10, предпочтительно около 1:5:1.5:6.
RU2020141432A 2020-12-16 2020-12-16 Способ получения противогрибкового полусинтетического полиенового антибиотика RU2751333C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020141432A RU2751333C1 (ru) 2020-12-16 2020-12-16 Способ получения противогрибкового полусинтетического полиенового антибиотика

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020141432A RU2751333C1 (ru) 2020-12-16 2020-12-16 Способ получения противогрибкового полусинтетического полиенового антибиотика

Publications (1)

Publication Number Publication Date
RU2751333C1 true RU2751333C1 (ru) 2021-07-13

Family

ID=77020037

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020141432A RU2751333C1 (ru) 2020-12-16 2020-12-16 Способ получения противогрибкового полусинтетического полиенового антибиотика

Country Status (1)

Country Link
RU (1) RU2751333C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1152954A1 (ru) * 1979-04-09 1985-04-30 Политехника Гданьска (Инопредприятие) Амиды антибиотиков группы полиеновых макролидов и их производных,обладающие противогрибковой активностью
WO2013186384A1 (en) * 2012-06-15 2013-12-19 Blirt S.A. N-substituted second generation derivatives of antifungal antibiotic amphotericin b and methods of their preparation and application
WO2015164289A1 (en) * 2014-04-21 2015-10-29 Cidara Therapeutics, Inc. Compositions and methods for the treatment of fungal infections
WO2016112260A1 (en) * 2015-01-08 2016-07-14 The Board Of Trustees Of The University Of Illinois Concise synthesis of urea derivatives of amphotericin b
RU2688658C1 (ru) * 2018-04-10 2019-05-22 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе" Противогрибковый полусинтетический полиеновый антибиотик, его водорастворимые соли и фармацевтические композиции на их основе

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1152954A1 (ru) * 1979-04-09 1985-04-30 Политехника Гданьска (Инопредприятие) Амиды антибиотиков группы полиеновых макролидов и их производных,обладающие противогрибковой активностью
WO2013186384A1 (en) * 2012-06-15 2013-12-19 Blirt S.A. N-substituted second generation derivatives of antifungal antibiotic amphotericin b and methods of their preparation and application
WO2015164289A1 (en) * 2014-04-21 2015-10-29 Cidara Therapeutics, Inc. Compositions and methods for the treatment of fungal infections
WO2016112260A1 (en) * 2015-01-08 2016-07-14 The Board Of Trustees Of The University Of Illinois Concise synthesis of urea derivatives of amphotericin b
RU2688658C1 (ru) * 2018-04-10 2019-05-22 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе" Противогрибковый полусинтетический полиеновый антибиотик, его водорастворимые соли и фармацевтические композиции на их основе

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TEVYASHOVA A. N. ET AL, ACS Infect. Dis. vol. 6, no. 8, 2020, pp. 2029-2044. *

Similar Documents

Publication Publication Date Title
EP0283055B1 (en) 10-dihydro-10-deoxo-11-azaerythronolide-a-compounds, methods and intermediates for the manufacture thereof and their use in pharmaceuticals and in the manufacture thereof
KR102454638B1 (ko) 항체 약물 접합체 중간체의 제조 방법
US5629288A (en) Lipopeptide derivatives, a process for their preparation and their use
BRPI0611435A2 (pt) derivados de 2-amido-6-amino-8-oxopurina, composições farmacêuticas, uso e processo de preparo dos mesmos
JPH054968A (ja) キノロンカルボン酸誘導体
WO1996038464A1 (en) Antimicrobial sterol conjugates
CN105481922B (zh) 一种坎格雷洛中间体的制备方法
Kumar et al. 1, 8-Naphthyridine-3-carboxamide derivatives with anticancer and anti-inflammatory activity
AU2020204250B2 (en) One-pot process for preparing intermediate of antibody-drug conjugate
WO2019034178A1 (zh) 一种dna毒性二聚体化合物
CA1191838A (en) Antibiotic derivatives, derived from cephalosporins
JP3113880B2 (ja) パートリシン誘導体
JPH0597853A (ja) Dc−89誘導体の臭化水素酸塩
RU2751333C1 (ru) Способ получения противогрибкового полусинтетического полиенового антибиотика
US11208386B2 (en) Inhibitors of protein arginine deiminases (PADs) and methods of preparation and use thereof
ZA200209410B (en) Pyridine-2-yl-aminoalkyl carbonyl glycyl-beta-alanine and derivatives thereof.
CN107089967A (zh) 一种r‑硫辛酸胆碱酯卤化物的制备方法
KR20140069097A (ko) 미카펀진 중간체의 제조
JPH08283269A (ja) ジヒドロアルテミシニンヘミスクシネートの製法
WO2014188445A1 (en) PROCESS FOR THE PREPARATION OF (3β)-17-(3-PYRIDINYL)ANDROSTA-5,16-DIEN-3-YL ACETATE AND POLYMORPH THEREOF
CN108864148B (zh) 一种雷帕霉素-40-苹果酸钠盐及其制备方法和应用
WO2021056754A1 (zh) 一种酸法制备抗体药物偶联物中间体的方法及其应用
WO2009006839A1 (fr) Dérivés d'indol-3-yl oxalylpodophyllotoxine substitués, leurs sels et leur application
US4861793A (en) D-nor-7-ergoline derivatives having anti-Parkinson and antipsychosis activity and pharmaceutical compositions containing them
CA1050023A (en) Process for the preparation of benzylamines