RU2750780C1 - Способ изготовления уран-гадолиниевого ядерного топлива - Google Patents

Способ изготовления уран-гадолиниевого ядерного топлива Download PDF

Info

Publication number
RU2750780C1
RU2750780C1 RU2020132997A RU2020132997A RU2750780C1 RU 2750780 C1 RU2750780 C1 RU 2750780C1 RU 2020132997 A RU2020132997 A RU 2020132997A RU 2020132997 A RU2020132997 A RU 2020132997A RU 2750780 C1 RU2750780 C1 RU 2750780C1
Authority
RU
Russia
Prior art keywords
uranium
fuel
blowing agent
sintering
added
Prior art date
Application number
RU2020132997A
Other languages
English (en)
Inventor
Анастасия Евгеньевна Карпеева
Дмитрий Сергеевич Пахомов
Андрей Евгеньевич Скомороха
Игнат Сергеевич Тимошин
Original Assignee
Акционерное общество "Машиностроительный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Машиностроительный завод" filed Critical Акционерное общество "Машиностроительный завод"
Priority to RU2020132997A priority Critical patent/RU2750780C1/ru
Priority to PCT/RU2021/000174 priority patent/WO2022075880A1/ru
Application granted granted Critical
Publication of RU2750780C1 publication Critical patent/RU2750780C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/01Oxides; Hydroxides
    • C01G43/025Uranium dioxide
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Geology (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к атомной промышленности, в частности к технологии изготовления керамического ядерного топлива для тепловыделяющих элементов АЭС. Способ изготовления таблеток уран-гадолиниевого ядерного топлива включает подготовку исходного порошка диоксида урана, его смешивание с порошком закиси-окиси урана и оксидом гадолиния, грануляцию смеси порошков, смешивание гранулята с твердой смазкой для прессования, прессование и спекание с получением таблеток, шлифование полученных таблеток. К смеси порошков поэтапно добавляют 1,2 мас.% порообразователя в виде азодикарбонамида. Причем часть порообразователя добавляют на стадии грануляции, а оставшуюся часть порообразователя добавляют на стадии смешивания гранулята с твердой смазкой для прессования, в качестве которой используют стеарат алюминия. Техническим результатом изобретения является получение оптимальных значений плотности и пористости топливных таблеток, обеспечивающих стабилизацию «доспекаемости» топливных таблеток. 2 з.п. ф-лы, 1 ил., 1 табл.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к атомной промышленности, в частности к технологии изготовления керамического ядерного топлива для тепловыделяющих элементов (ТВЭЛ) АЭС.
Существующая технология изготовления ядерного топлива гарантированно обеспечивает требуемые свойства, позволяющие надежно и безопасно эксплуатировать его до уровня выгорания ~ 60 МВт⋅сут./кг урана [Молчанов В.Л. Ядерное топливо для реакторов ВВЭР Современное состояние и перспективы: материалы 6-й Международной конференции «Обеспечение безопасности АЭС с ВВЭР». - Подольск: ОАО «ОКБ «Гидропресс», 2009]. Для более высоких степеней выгорания необходимо повышение качественных и эксплуатационных характеристик топлива, что требует проведения комплексных исследований на всех стадиях производства ядерного топлива, включая установления зависимостей "технология-структура-свойства".
На радиационную и механическую стойкость спеченных топливных таблеток оказывают влияние их свойства, например, плотность и микроструктура, зависящие от размера зерна, размера, формы и характера распределения пор. В условиях облучения конкурируют два процесса: уплотнение из-за уменьшения объема пор и их исчезновения (в основном мелких), и распухание матрицы. В зависимости от начальной плотности топлива, и характера пор доминирует тот или другой процесс.
Опыт эксплуатации топлива ВВЭР с использованием выгорающего поглотителя показывает отличительные особенности при облучении в вопросе удлинения по сравнению с твэлами [Демьянов П.Г., Новиков В.В. и др. Моделирование удлинения уран-гадолиниевых твэлов ВВЭР-1000. XI конференция по реакторному материаловедению, 2019]. В работах авторов Божко Ю.В., Малыгина В.Б. и др. показано, что лучшая размерная стабильность на начальной стадии облучения у топлива с большим размером зерна и низким содержанием пор малого размера, которые определяют величину радиационного уплотнения [Божко Ю.В., Малыгин В.Б. Изменение размеров таблеток из модифицированного диоксида урана в процессе облучения. Электронный научный журнал «Современные проблемы науки и образования». Выпуск журнала №3, 2013].
Для прогнозирования поведения таблеток под облучением проводят тест на доспекаемость. «Доспекаемость» топлива представляет собой термическую стабильность геометрических размеров (диаметра) и плотности топливных таблеток вне реактора, т.е. то максимальное значение уплотнения, которое топливо могло бы показать в реакторе. После спекания топливные таблетки не достигают своего максимального уплотнения, поэтому в реакторе чаще происходит их «остаточное» доуплотнение (десятые или сотые доли процентов). При этом таблетки могут уплотняться с разной скоростью в зависимости от свойств топлива и условий облучения, что может привести к риску отказа, образованию осевых зазоров или взаимодействию топлива с оболочкой и т.д.
Поэтому стабилизация «доспекаемости» позволяет уменьшить возможные риски и гарантировать работоспособность топлива в реакторе.
УРОВЕНЬ ТЕХНИКИ
Известен способ получения ядерного уран-гадолиниевого топлива высокого выгорания на основе диоксида урана, в соответствии с которым готовят порошки диоксида урана, оксида гадолиния, оксида хрома и оксида алюминия, пластификатора, порошки оксида хрома и оксида алюминия предварительно прокаливают на воздухе при температуре от 700 до 800°С и измельчают до размера частиц менее 40 мкм; готовят однородную смесь порошков диоксида урана, оксида гадолиния, оксидов алюминия и хрома с пластификатором, проводят подготовку пресс-порошка, прессование таблеток из пресс-порошка, их высокотемпературное спекание и шлифование (RU 2362223, опуб. 20.07.2009).
Недостатком данного способа является дополнительная операция смешивания порообразователя со смесью порошков ручным способом (в поддоне) и ограничение добавки азодикарбонамида до 1% мас. Также существенным недостатком является использование в качестве твердой смазки стеарата цинка, который при разложении и отгонки остатка оседает и накапливается на поверхности футеровки нагревательной печи, что приводит к необходимости зачистки печи и в дальнейшем ее разрушению.
Известен способ изготовления таблеток ядерного топлива, включающий измельчение исходных порошков ядерного топлива мелющими телами, прессование и спекание. Измельчение исходных порошков ядерного топлива осуществляют при ускорении мелющих тел не менее 4,12 g, где g - ускорение свободного падения, прессование осуществляют при давлении 0,52-2,35 т/см2 (RU 2165651, опуб. 20.04.2001).
Недостатком данного способа является использование чистого UO2 или смеси UO2 с PuO2, т.е. без добавления выгорающего поглотителя. Несмотря на использование механической обработки порошков в предложенных смесителях в смесях порошков отсутствуют дополнительные добавки для роста зерна (легирующие добавки) и для регулирования плотности и пористости (порообразователь), которые играют важную роль в получении перспективных свойств топливных таблеток.
Наиболее близким к предлагаемому способу является способ изготовления таблетированного топлива для тепловыделяющих элементов, включающий подготовку пресс-порошка диоксида урана UO2, обогащенного ураном 235 до 5%, смешение с порошком оксида урана U3O8, с сухим связующим - стеаратом цинка и порообразователем - азодикарбонамидом, формование прессовок из шихты в матрице, термическое удаление связующего, спекание таблеток в газообразной восстановительной среде, мокрое шлифование таблеток алмазным кругом, сушку и отбраковку бракованных таблеток. На первой стадии подготовки пресс-порошка осуществляют смешение оксидов урана UO2 с U3O8, на второй стадии осуществляют смешение смеси оксидов, полученной на первой стадии, с сухим связующим - стеаратом цинка в количестве до 0,3% масс., и с азодикарбонамидом в количестве от 0,01 до 1,0% масс., далее полученную на второй стадии смесь подвергают предварительному уплотнению, виброизмельчению и виброгрануляции, далее проводят окончательное смешение и гомогенизирование смеси полученного гранулята со стеаратом цинка так, чтобы суммарное количество стеарата цинка с учетом ранее введенного не превышало 0,5% масс. (RU 2569928, опуб. 10.03.2015).
Недостатком способа прототипа является использование дополнительного оборудования в виде непрерывной линии механической обработки и грануляции порошков, в котором применяется инертный газ, который используется и на первой стадии смешения порошков в барабанном смесителе, в результате чего данная схема получения пресспорошка становится экономически не целесообразной.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является обеспечение стабильных технологических показателей уран-гадолиниевых таблеток, а именно получение оптимальной пористости и плотности, а также других характеристик топливных таблеток (размер зерна, кислородный коэффициент).
Технический результат изобретения заключается в стабилизации «доспекаемости», что способствует безопасной эксплуатации топлива в реакторе.
Технический результат достигается тем, что способ изготовления уран-гадолиниевого ядерного топлива включает подготовку исходного порошка диоксида урана, смешение с порошком закиси-окиси урана, с оксидом гадолиния, грануляция смеси порошков, смешение гранулята с твердой смазкой, прессование пресспорошка, спекание и шлифование полученных таблеток. К порошку на стадии грануляции, вводят часть добавки порообразователя, а оставшуюся часть порообразователя добавляют на стадии смешения гранулята с твердой смазкой.
Содержание порообразователя в топливных таблетках составляет 1,2% мас. В качестве порообразователя используют азодикарбонамид. В качестве твердой смазки для прессования используют стеарат алюминия, содержание которого в топливных таблетках составляет 0,2-0,4% мас. Спекание спрессованного топлива осуществляют в восстановительных средах (в том числе с добавлением N2). Подаваемые газы насыщены парами воды, при этом влажность атмосферы спекания составляет от 8000-15000 ppm (в зависимости от содержания выгорающего поглотителя), а температура спекания 1680-1750°С.
Для получения необходимой пористости и стабилизации «доспекаемости» добавляют большее количество порообразователя (до 1,2% мас.), а для сохранения значений плотности, вводят порообразователь поэтапно, в две стадии.
На стадии грануляции часть порообразователя добавляют в вибромельницу при изготовлении однородной смеси (U, Gd)Ox. Благодаря механическому измельчению порообразователя (на стадии обработки в вибромельнице), появляется возможность получать микронные поры для регулирования плотности. Оставшуюся часть порообразователя добавляют в смеситель вместе с твердой смазкой. На этой стадии порообразователь не измельчается и в результате образует крупные поры (фиг. 1), которые играют роль газосборников, и способствуют стабилизации «доспекаемости», это влияет на уменьшение выхода под оболочку ТВЭЛа газообразных продуктов деления, которые в свою очередь оказывают негативное влияние на его работоспособность. Полученную смесь прессуют и спекают с получением таблеток ядерного топлива с выгорающим поглотителем. Данный способ обеспечивает стабильные эксплуатационные свойства керамического ядерного топлива.
Изобретение поясняется иллюстрациями:
На фигуре 1 изображена характерная пористость (х100) уран-гадолиниевых таблеток, изготовленных с добавлением порообразователя на последней стадии приготовления пресспорошка (а) и изготовленных по предложенному способу (б).
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Реализация описываемого способа продемонстрирована на нескольких вариантах изготовления-уран-гадолиниевых таблеток.
Примеры реализации предлагаемого способа:
1 вариант: к исходному порошку UO2 добавляли 15% закиси-окиси урана, 8,00% оксида гадолиния, легирующие добавки и 0,6% порообразователя (азодикарбонамид), смешивали в лопастном смесителе не менее 5 мин и механически обрабатывали в вибромельнице 50 минут. К полученной смеси добавляли 0,2% стеарата алюминия и 0,6% порообразователя (предварительно просеивали через сито с размером ячейки 100 мкм) и смешивали в трехосевом смесителе в течение 60 минут. Пресс-порошок прессовали на роторном прессе и проводили спекание при температуре 1730°С.
2 вариант: к исходному порошку UO2 добавляли 15% закиси-окиси урана, 8,00% оксида гадолиния, легирующие добавки и 0,6% порообразователя (азодикарбонамид), смешивали в лопастном смесителе не менее 5 мин и механически обрабатывали в вибромельнице 50 минут. К полученной смеси добавляли 0,2% стеарат алюминия и 0,6% порообразователя (предварительно просеивали через сито с размером ячейки 100 мкм) и смешивали в трехосевом смесителе в течение 60 минут. Пресс-порошок прессовали на роторном прессе и проводили спекание при температуре 1700°С.
3 вариант: к исходному порошку UO2 добавляли 15% закиси-окиси урана, 8,00% оксида гадолиния, легирующие добавки и 0,6% порообразователя (азодикарбонамид), смешивали в лопастном смесителе не менее 5 мин и механически обрабатывали в вибромельнице 50 минут. К полученной смеси добавляли 0,2% стеарат алюминия и 0,6% порообразователя (предварительно просеивали через сито с размером ячейки 100 мкм) и смешивали в трехосевом смесителе в течение 60 минут. Пресс-порошок прессовали на роторном прессе и проводили спекание при температуре 1680°С.
Полученный пресспорошок для всех вариантов прессовали на роторном прессе. Спекание таблеток осуществляли в высокотемпературной печи с температурой рабочей зоны 1680-1750°С, в восстановительной атмосфере, в том числе с добавлением N2. Подаваемые газы насыщены парами воды, при этом влажность атмосферы спекания составляет от 8000-15000 ppm (в зависимости от содержания Gd2O3). Операцию шлифования проводили на бесцентровом шлифовальном станке («сухой» способ).
Для сравнения приведены свойства уран-гадолиниевых таблеток, которые изготовлены с добавлением порообразователя, в количестве 1,2% (4 вариант) и 0,2% (5 вариант), на стадии смешивания гранулята с твердой смазкой. Смешивали исходные порошки диоксида урана, закиси-окиси урана (или закись-окись урана с гадолинием), оксида гадолиния и легирующие добавки в лопастном смесителе не менее 5 минут, полученную смесь обрабатывали в вибромельнице в течение 50 минут. В полученный гранулят добавляли порообразователь и твердую смазку и смешивали в трехосевом смесителе в течение 60 минут.
Качественные характеристики уран-гадолиниевых таблеток для каждого варианта изготовления приведены в таблице 1.
Figure 00000001
Из таблицы 1 следует, что поэтапное добавление порообразователя позволяет сохранить значения доспекаемости топлива, без уменьшения плотности, за счет того что процесс отделения пор от границ зерен во время заключительной стадии спекания является своеобразным барьером в завершении уплотнения материала. Поры, закрепленные на границах зерен, сокращаются в объеме под действием лапласовского давления в результате процессов зернограничной диффузии. В результате чего, такое топливо при работе в реакторе на начальной стадии облучения уплотняется из-за уменьшения объема пор и их исчезновения, и процесс распухания матриц наступает позже.
Таким образом, предложенный способ изготовления уран-гадолиниевого топлива способствует получению оптимальных значений плотности и пористости таблеток, которые непосредственно влияют на стабилизацию «доспекаемости» топливных таблеток.
Практическое использование предлагаемой технологии изготовления уран-гадолиниевого топлива позволит повысить надежность твэгов при переходе на перспективные требования и способствует безопасной эксплуатации топлива в реакторе.

Claims (3)

1. Способ изготовления таблеток уран-гадолиниевого ядерного топлива, включающий подготовку исходного порошка диоксида урана, его смешивание с порошком закиси-окиси урана и оксидом гадолиния, грануляцию смеси порошков, смешивание гранулята с твердой смазкой для прессования, прессование и спекание с получением таблеток, шлифование полученных таблеток, отличающийся тем, что к смеси порошков поэтапно добавляют 1,2 мас.% порообразователя в виде азодикарбонамида, при этом часть порообразователя добавляют на стадии грануляции, а оставшуюся часть порообразователя добавляют на стадии смешивания гранулята с твердой смазкой для прессования, в качестве которой используют стеарат алюминия.
2. Способ по п. 1, отличающийся тем, что стеарат алюминия добавляют в количестве 0,2-0,4 мас.%.
3. Способ по п. 1, отличающийся тем, что спекание спрессованного топлива осуществляют в восстановительных средах, в том числе с добавлением N2, при этом подаваемые газы насыщены парами воды, влажность атмосферы спекания составляет от 8000-15000 ppm в зависимости от содержания выгорающего поглотителя, а температура спекания - 1680-1750°С.
RU2020132997A 2020-10-06 2020-10-06 Способ изготовления уран-гадолиниевого ядерного топлива RU2750780C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020132997A RU2750780C1 (ru) 2020-10-06 2020-10-06 Способ изготовления уран-гадолиниевого ядерного топлива
PCT/RU2021/000174 WO2022075880A1 (ru) 2020-10-06 2021-04-26 Способ изготовления уран-гадолиниевого ядерного топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020132997A RU2750780C1 (ru) 2020-10-06 2020-10-06 Способ изготовления уран-гадолиниевого ядерного топлива

Publications (1)

Publication Number Publication Date
RU2750780C1 true RU2750780C1 (ru) 2021-07-02

Family

ID=76755802

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020132997A RU2750780C1 (ru) 2020-10-06 2020-10-06 Способ изготовления уран-гадолиниевого ядерного топлива

Country Status (2)

Country Link
RU (1) RU2750780C1 (ru)
WO (1) WO2022075880A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2814275C1 (ru) * 2023-07-10 2024-02-29 Акционерное общество "Машиностроительный завод" Способ изготовления уран-гадолиниевого ядерного топлива

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720540B3 (fr) * 1995-06-15 1996-04-12 Siemens Ag Procédé de fabrication de comprimés d'oxyde mixte de (U,Pu)O2.
RU2148279C1 (ru) * 1997-05-20 2000-04-27 Открытое акционерное общество "Машиностроительный завод" Способ получения топливных таблеток
RU2362223C1 (ru) * 2007-10-11 2009-07-20 Открытое акционерное общество "Высокотехнический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" Ядерное уран-гадолиниевое топливо высокого выгорания на основе диоксида урана и способ его получения (варианты)
RU2569928C2 (ru) * 2013-02-25 2015-12-10 Акционерное общество "Ульбинский металлургический завод" Способ изготовления таблетированного топлива для тепловыделяющих элементов
RU2690492C1 (ru) * 2018-05-31 2019-06-04 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ получения таблетированного пористого диоксида урана
RU2713619C1 (ru) * 2016-12-29 2020-02-05 Акционерное Общество "Твэл" Таблетка ядерного топлива и способ её получения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720540B3 (fr) * 1995-06-15 1996-04-12 Siemens Ag Procédé de fabrication de comprimés d'oxyde mixte de (U,Pu)O2.
RU2148279C1 (ru) * 1997-05-20 2000-04-27 Открытое акционерное общество "Машиностроительный завод" Способ получения топливных таблеток
RU2362223C1 (ru) * 2007-10-11 2009-07-20 Открытое акционерное общество "Высокотехнический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" Ядерное уран-гадолиниевое топливо высокого выгорания на основе диоксида урана и способ его получения (варианты)
RU2569928C2 (ru) * 2013-02-25 2015-12-10 Акционерное общество "Ульбинский металлургический завод" Способ изготовления таблетированного топлива для тепловыделяющих элементов
RU2713619C1 (ru) * 2016-12-29 2020-02-05 Акционерное Общество "Твэл" Таблетка ядерного топлива и способ её получения
RU2690492C1 (ru) * 2018-05-31 2019-06-04 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ получения таблетированного пористого диоксида урана

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2814275C1 (ru) * 2023-07-10 2024-02-29 Акционерное общество "Машиностроительный завод" Способ изготовления уран-гадолиниевого ядерного топлива

Also Published As

Publication number Publication date
WO2022075880A1 (ru) 2022-04-14

Similar Documents

Publication Publication Date Title
EP2082401B1 (de) Kugelförmiges brennelement und dessen herstellung für gasgekühlte hochtemperatur-kugelhaufen-kernreaktoren (htr)
JP2645463B2 (ja) 核燃料体
RU2352004C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ТАБЛЕТОК ЯДЕРНОГО ТОПЛИВА НА ОСНОВЕ СМЕШАННОГО ОКСИДА (U, Pu)O2 ИЛИ (U, Th)O2
JP2008145435A (ja) 核燃料焼結体の製造方法
US9966156B2 (en) Process for manufacturing a pellet of at least one metal oxide
JPS6119952B2 (ru)
RU2750780C1 (ru) Способ изготовления уран-гадолиниевого ядерного топлива
JPH01201190A (ja) 二酸化ウラン焼結体の製造方法及び核燃料体
WO2018124915A1 (ru) Таблетка ядерного топлива и способ её получения
Balakrishna et al. Uranium dioxide powder preparation, pressing, and sintering for optimum yield
KR20110089801A (ko) 니켈 산화물과 알루미늄 산화물을 첨가한 이산화우라늄 소결체 및 그 제조방법
JP2790548B2 (ja) 核燃料燒結体の製造方法
Kang et al. Improvement of UO2 pellet properties by controlling the powder morphology of recycled U3O8 powder
RU2814275C1 (ru) Способ изготовления уран-гадолиниевого ядерного топлива
KR100812952B1 (ko) 지르코니아가 첨가된 중성자 흡수 소결체 및 이의 제조방법
RU2396611C1 (ru) Способ изготовления таблеток ядерного топлива
US3254030A (en) Plutonium enriched uranium fuel for nuclear reactors
JP3071671B2 (ja) Uo2焼結ペレットの結晶粒径の制御方法
RU2813642C1 (ru) Способ изготовления таблетированного топлива из уран-молибденовых порошков
JP2981580B2 (ja) 核燃料体の製造方法
KR20090109238A (ko) 고연소도 사용후핵연료를 이용한 핵연료 소결체 제조방법
KR100424331B1 (ko) M3o8 스크랩 분말의 첨가방법 및 소결공정에 의한혼합핵연료 펠렛의 특성제어기술
KR102334244B1 (ko) 다공성 uo2 펠렛의 제조방법 및 이에 따라 제조되는 다공성 uo2 펠렛
EP4145469A1 (en) Method for producing pelletized fuel from uranium-molybdenum powders
RU2193242C2 (ru) Таблетка ядерного топлива