RU2813642C1 - Способ изготовления таблетированного топлива из уран-молибденовых порошков - Google Patents

Способ изготовления таблетированного топлива из уран-молибденовых порошков Download PDF

Info

Publication number
RU2813642C1
RU2813642C1 RU2023101192A RU2023101192A RU2813642C1 RU 2813642 C1 RU2813642 C1 RU 2813642C1 RU 2023101192 A RU2023101192 A RU 2023101192A RU 2023101192 A RU2023101192 A RU 2023101192A RU 2813642 C1 RU2813642 C1 RU 2813642C1
Authority
RU
Russia
Prior art keywords
uranium
molybdenum
tablets
powder
fuel
Prior art date
Application number
RU2023101192A
Other languages
English (en)
Inventor
Леонид Александрович КАРПЮК
Александр Владимирович Лысиков
Евгений Николаевич Михеев
Денис Сергеевич Миссорин
Владимир Владимирович Новиков
Роман Борисович Сивов
Николай Иванович Шипунов
Original Assignee
Акционерное Общество "Твэл"
Filing date
Publication date
Application filed by Акционерное Общество "Твэл" filed Critical Акционерное Общество "Твэл"
Application granted granted Critical
Publication of RU2813642C1 publication Critical patent/RU2813642C1/ru

Links

Abstract

Изобретение относится к способу изготовления таблетированного топлива из уран-молибденовых порошков и может быть использовано при изготовлении топливных таблеток из уран-молибденовых металлических порошков, обогащенных ураном 235 до 7%, для тепловыделяющих элементов ядерных реакторов. Спекание таблеток осуществляют в инертной среде аргона в температурном диапазоне от 1100 до 1155°С. В качестве исходного порошка используют уран-молибденовый порошок с размером фракции 160 мкм с содержанием молибдена от 9,0 до 10,5 мас.%. При этом порошок предварительно нагревают при температуре 500°С в течение 10-20 часов (в среде аргона) с последующим холодным прессованием таблеток в матрице усилием до 950 МПа. Возможен вариант осуществления способа, в котором при изготовления уран-молибденовых таблеток со связующим веществом (пластификатором) перед спеканием таблетки нагревают в среде аргона от 300 до 450°С в течение 2-4 часов для удаления связующего. Техническим результатом является увеличение ураноемкости топлива, уменьшение количества тепла, накопленного в активной зоне ядерного реактора, и снижение энерговыделения в случае нарушения нормальных условий эксплуатации ядерного реактора, что позволит повысить безопасность и аварийную устойчивость реактора. 2 н. и 8 з.п. ф-лы, 1 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к атомной промышленности и может быть использовано при изготовлении топливных таблеток из уран-молибденовых металлических порошков обогащенных ураном 235 до 7% для тепловыделяющих элементов (твэл) ядерных реакторов.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Общеизвестная стандартная технология получения топливных таблеток при производстве керамического ядерного топлива из диоксида урана (обогащенного ураном 235 до 5%) включает: получение и подготовку пресс-порошка диоксида урана (в смеси со связующим), прессование таблеток в матрице, спекание таблеток в газообразной среде, сухое или мокрое шлифование таблеток, сушку и контроль таблеток на соответствие требованиям технических условий и чертежа, упаковку годной продукции, передачу ее на снаряжение твэлов ядерных реакторов (Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов. Под редакцией Ф.Г. Решетникова - М.: Энергоатомиздат, 1995 г., книга 1, с. 93 - с. 106).
Известен способ получения уран-молибденового сплава U-9 мас. % молибдена при помощи холодного прессования с последующим спеканием [Eiss A.L. Kalish H.S. 3rd Nucl. Eng. And Sci. Conference, USA, Paper 178,1958]. В данном способе порошки урана и молибдена смешивали в течение 2 часов без добавления связующего вещества. После смешивания порошков урана и молибдена осуществляли прессование с получением брикетов длиной ~ 4,5 см и квадратным сечением 1,9 см на 1,9 см, в также брикетов цилиндрической формы. Спекание осуществляли в течение 4 часов в вакууме при температуре 1150°С. Металлографическая проверка холоднопрессованных и спеченных образцов показала, что сплавляемые элементы полностью реагируют друг с другом. Плотность полученных таблеток составила 17,18 г/см3.
Недостатком данного способа является то, что в полученных таким способом образцах наблюдается неравномерное распределение молибдена по всему объему и необходимость создания высокого давления при холодном прессовании смешанных порошков урана и молибдена.
Известен также способ изготовления керамических топливных таблеток для твэлов ядерного реактора, включающий: подготовку пресс-порошка диоксида урана в смеси со связующим, прессование таблеток в две стадии и их спекание (см. патент РФ №2421834, МПК G21C 3/02, БИ №17 от 20.06.2011 г.).
Недостатком данного способа является двух стадийность прессования таблеток из диоксида урана и использование пластификатора при приготовлении пресс-порошка.
Наиболее близким является способ изготовления керамических топливных таблеток для твэлов ядерного реактора (патент РФ №2360308 МПК G21C 3/62, БИ №18 от 27.06.2009 г.), включающий: подготовку пресс-порошка диоксида урана, обогащенного ураном 235 до 1,6 - 5%, постадийное смешивание с сухим связующим (не содержащим металлы) и порошком закиси-окиси урана, прессование таблеток в матрице, термическое удаление связующего, спекание таблеток в газообразной восстановительной среде, мокрое шлифование таблеток алмазным кругом, сушку и отбраковку таблеток.
Недостатком способа является то, что способ требует значительных энергозатрат при прессовании, а также полученное топливо обладает меньшей ураноемкостью.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей изобретения является разработка способа изготовления таблетированного топлива из уран-молибденовых сплавов обогащенных по урану 235 до 7% для тепловыделяющих элементов ядерных реакторов, при использовании которого повышается безопасность условий эксплуатации ядерного реактора и эффективность его работы.
Технический результат предлагаемого изобретения по первому и второму варианту направлен на получение уран-молибденовых таблеток обогащенных по урану 235 до 7% для твэлов ядерных реакторов, что приводит к увеличению ураноемкости топлива, уменьшению количества тепла, накопленного в активной зоне ядерного реактора и снижению энерговыделения в случае нарушения нормальных условий эксплуатации ядерного реактора, что позволит повысить его безопасность и аварийную устойчивость.
Технический результат по первому варианту достигается в способе изготовления таблетированного топлива из уран-молибденовых порошков для тепловыделяющих элементов ядерного реактора, включающем подготовку порошка, прессование таблеток в матрице, спекание их в газообразной среде, шлифование, сушку, отбраковку таблеток, причем спекание таблеток осуществляют в инертной среде, а в качестве исходного порошка используют уран-молибденовый порошок с обогащением по урану 235 до 7% и с содержанием молибдена от 9,0 до 10,5 мас. %. Размер фракции уран- молибденового порошка составляет не более 160 мкм. Перед прессованием таблеток в матрице уран-молибденовый порошок нагревают в среде аргона при температуре 500°С в течение 10-20 часов. Прессование таблеток в матрице осуществляют усилием до 950 МПа. Спекание таблеток проводят в среде аргона при температуре 1100°С - 1155°С в течение 4-12 часов.
Технический результат по второму варианту достигается в способе изготовления таблетированного топлива из уран-молибденовых порошков для тепловыделяющих элементов ядерного реактора, включающем подготовку порошка, постадийное смешивание со связующим, прессование таблеток в матрице, термическое удаление связующего, спекание таблеток в газообразной среде, шлифование, сушку, отбраковку таблеток, причем спекание таблеток осуществляют в инертной среде, а в качестве исходного порошка используют уран-молибденовый порошок с обогащением по урану 235 до 7% и с содержанием молибдена от 9,0 до 10,5 мас. %. Размер фракции уран- молибденового порошка составляет не более 160 мкм. Прессование таблеток в матрице осуществляют усилием до 950 МПа
Термическое удаление связующего осуществляют путем нагревания таблеток в среде аргона при температуре от 300°С до 450°С в течение 2-4 часов. Спекание таблеток проводят в среде аргона при температуре 1100°С - 1155°С в течение 4-12 часов.
Такая технология получения таблетированного топлива из уран-молибденовых металлических порошков для твэлов ядерных реакторов, позволяет получать уран-молибденовые таблетки с обогащением по урану 235 до 7%, содержанием молибдена от 9,0 до 10,5 мас. % и с плотностью таблеток не ниже 15,7 г/см3 (более 90% от теоретической плотности). Эффективность работы ядерного реактора с топливом из уран-молибденовых таблеток повышается вследствие повышенной теплопроводности уран-молибденового топлива по сравнению с применяемым топливом из диоксида урана и использование более низкого обогащения по урану 235, так как плотность уран-молибденовых таблеток в 1,5 раза больше плотности таблеток из диоксида урана. Повышенная по массе урана загрузка топлива в ядерный реактор вследствие более высокой плотности уран-молибденового сплава (от 9,0 до 10,5 мас. %) по сравнению с плотностью диоксида урана позволяет увеличить продолжительность цикла работы ТВС в реакторе без необходимости увеличения обогащения топлива. Плотность диоксида урана по урану составляет 9,7 г/см3, а плотность уран-молибденового сплава (от 9,0 до 10,5 мас. %) по урану составляет ~15,75 г/см3. Таким образом, при одинаковой загрузке уран-молибденового топлива в реактор количество делящего компонента возрастает и составляет ~60%.
Известно [В.В. Калашников, В.В. Титов, Г.Я. Сергеев, А.Г. Самойлов. Уран-молибденовые сплавы в реактростроении, журнал, Атомная энергия, том 5,выпуск 4, октябрь 1958 г., с. 422], что при отпуске γ-сплава U-Mo в температурном интервале 350-550°С происходит превращение γ-фазы в эвтектоидную смесь α-урана и интерметаллида U2Mo (γ'-фаза). Однако этот процесс протекает медленно. При выдержке исходного порошка в вакууме в течение от 10 до 20 часов при температуре 500°С происходит частичное разделение фаз с получением γ-фазы, эвтектоидной смеси α-фазы и γ'-фазы. Использование порошка, представляющего собой эвтектоидную смесь фаз, позволяет получать прочные «сырые» таблетки при меньших усилиях прессования (до 950 МПа). Последующее спекание таких прессовок (таблеток) при температуре выше 1100°С сопровождается обратным полным переходом эвтектоида в γ-состояние.
Оптимальный результат достигается при выдержке, исходного металлического порошка уран-молибдена с содержанием молибдена от 9,0 до 10,5 мас. %, в инертной газовой среде при температуре 500°С в течение от 10 до 20 часов, за счет того, что исходный металлический порошок уран-молибдена в виде γ-фазы подвергается частичному разделению фаз до γ-фазы, эвтектоидной смеси α-фазы и γ'-фазы, все это позволяет получать прочные «сырые» таблетки при усилиях прессования до 950 МПа.
Снижение содержания молибдена в исходном уран-молибденовом порошке менее 9,0 мас. % приводит к повышенной плотности спеченных уран-молибденовых таблеток (до 19,05 г/см3 при нулевом содержание молибдена), а повышение содержания молибдена в исходном уран-молибденовом порошке более 10,5 мас. %, приводит к снижению плотности таблеток, что не допускается техническими требованиями на изготовление таблетированного топлива для ядерных реакторов.
Повышение температуры спекания выше 1155°С приводит к расплавлению уран-молибденовой таблетки, а температура менее 1100°С не позволяет получить таблетку без внутренних пор. При этом плотность таблетки остается низкой и составляет всего 13-14 г/см3.
Наилучшие результаты достигнуты на уран-молибденовых таблетках с содержанием молибдена от 9,0 до 10,5 мас. % при температуреспекания (в инертной газовой среде) от 1100°С до 1155°С в течение от 4 до 12 часов.
Разработанный способ позволяет получить γ-фазу из уран-молибденовых порошков для твэлов ядерных реакторов, при этом молибден является основным легирующим элементом, способствующим сохранению γ-фазы урана во всей области рабочих температур твэла. Молибден не только модифицирует кинетику фазовых превращений для получения беспорядочно ориентированной мелкозернистой структуры, но и стабилизирует γ-фазу урана, вследствие этого повышается эффективность работы твэла.
Вследствие того, что теплопроводность уран-молибденового топлива выше, чем у топлива из диоксида урана, все это позволяет уменьшить количество накопленного в активной зоне реактора тепла и, тем самым снизить энерговыделение в случае нарушения нормальных условий эксплуатации ядерного реактора, повысив его безопасность и соответственно устойчивость к аварийным ситуациям.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Ниже приведены примеры реализации предлагаемого способа изготовления уран-молибденовых топливных таблеток.
Пример 1(по первому варианту исполнения). В качестве исходного порошка используют уран-молибденовый порошок с содержанием молибдена в сплаве 9,0 мас. %, полученный методом центробежного распыления из слитка этого же сплава, с обогащением по урану 235 до 7%.
Центробежное распыление уран-молибденового слитка с содержанием молибдена в сплаве 9,0 мас. % позволяет получить равномерное содержание молибдена в исходном порошке. Порошок просеивают через сито с размером ячейки 160 мкм. Просеянный порошок уран-молибдена с содержанием молибдена 9,0 мас. % нагревают при температуре 500°С в течение 20 часов в вакуумной печи СШВЭ с вертикальной загрузкой (в среде аргона). Полученный порошок прессуют в цилиндрической матрице при давлении прессования 750 МПа без добавления связующего (пластификатора). Таблетки спекают в среде аргона (при содержании воды не более 80 ppm) при температуре (1125+10/-5)°C изотермической выдержке 4 часа в печи СШВЭ (или XERION XVAC-2200). Нагрев до изотермической выдержки осуществляют в потоке аргона 1 л/мин со скоростью нагрева не более 5°С/мин с последующим охлаждением в статической атмосфере аргона со скоростью охлаждения (15-20)°С/мин. После этого проводят шлифование, сушку и отбраковку таблеток на соответствие техническим требованиям.
Пример 2(по первому варианту исполнения). В качестве исходного порошка используют уран-молибденовый порошок с содержанием молибдена в сплаве 10,5 мас. %, полученный методом центробежного распыления из слитка этого же сплава, с обогащением по урану 235 до 7%. Центробежное распыление уран-молибденового слитка с содержанием молибдена в сплаве 10,5 мас. % позволяет получить равномерное содержание молибдена в исходном порошке. Порошок просеивают через сито с размером ячейки 160 мкм. Просеянный уран-молибденовый порошок с содержанием молибдена 10,25 мас. % выдерживают при температуре 500°С в течение 10 часов в вакуумной печи СШВЭ с вертикальной загрузкой (в среде аргона). Полученный порошок прессуют в цилиндрической матрице при давлении прессования 950 МПа без добавления связующего (пластификатора). Таблетки спекают в среде аргона (при содержании воды не более 80 ppm) при температуре (1125+10/-5)°C при изотермической выдержке 12 часов в печи СШВЭ (или XERION XVAC-2200). Нагрев до изотермической выдержки осуществляют в потоке аргона 1 л/мин со скоростью нагрева не более 5°С/мин с последующим охлаждением в статической атмосфере аргона со скоростью охлаждения (15-20)°С/мин. После этого проводят шлифование, сушку и отбраковку таблеток на соответствие техническим требованиям. Пример 3 (по второму варианту исполнения). В качестве исходного порошка используют уран-молибденовый порошок с содержанием молибдена в сплаве 9,0 мас. %, полученный методом центробежного распыления из слитка этого же сплава, с обогащением по урану 235 до 7% и просеянный через сито с размером ячейки 160 мкм. Центробежное распыление уран-молибденового слитка с содержанием молибдена в сплаве 9,0 мас. % позволяет получить равномерное содержание молибдена в исходном порошке. В качестве пластификатора (связующего вещества) используют 8% водный раствор поливинилового спирта с 1% глицерина (3% от массы от массы уран-молибденового сплава). Смешивание проводят в три стадии. На первой стадии смешивают все количество связующего и порошок уран-молибденового сплава в количестве до 10 мас. % до получения однородной смеси. На второй стадии полученную смесь смешивают с порошком уран-молибденового сплава в количестве до 40 мас. % до получения однородной смеси. На третьей стадии в смесь, полученную на второй стадии, вводят оставшееся количество порошка уран-молибденового сплава и смешивают до получения однородной смеси. Смешивание порошка проводят в смесителе типа «Турбула» в течение 20-30 минут. Подготовленный порошок прессуют в цилиндрической матрице при давлении прессования 850 МПа. Перед спеканием таблетки нагревают в атмосфере аргона при температуре от 300°С до 450°С в течение 4 часов для удаления связки. Таблетки спекают в среде аргона (с содержанием воды не более 80 ppm) при температуре (1125+10/-5)°С, при изотермической выдержке порядка 4 часа в печи СШВЭ с вертикальной загрузкой. Нагрев до изотермической выдержки осуществляют в потоке аргона 1 л/мин со скоростью нагрева не более 5°С/мин с охлаждением в статической атмосфере аргона со скоростью охлаждения (15-20)°С/мин. После этого проводят шлифование, сушку и отбраковку таблеток не соответствующих техническим требованиям.
Пример 4(по второму варианту исполнения). В качестве исходного порошка используют уран-молибденовый порошок с содержанием молибдена в сплаве 10,5 мас. %, полученный методом центробежного распыления из слитка этого же сплава, с обогащением по урану 235 до 7% и просеянный через сито с размером ячейки 160 мкм. Центробежное распыление уран-молибденового слитка с содержанием молибдена в сплаве 10,5 мас. % позволяет получить равномерное содержание молибдена в исходном порошке. В качестве пластификатора (связующего вещества) используют 8% водный раствор поливинилового спирта с 1% глицерина (3% от массы от массы уран-молибденового сплава). Смешивание проводят в три стадии. На первой стадии смешивают все количество связующего и порошок уран-молибденового сплава в количестве до 10 мас. % до получения однородной смеси. На второй стадии полученную смесь смешивают с порошком уран-молибденового сплава в количестве до 40 мас. % до получения однородной смеси. На третьей стадии в смесь, полученную на второй стадии, вводят оставшееся количество порошка уран-молибденового сплава и смешивают до получения однородной смеси. Смешивание порошка проводят в смесителе типа «Турбула» в течение 20-30 минут. Подготовленный порошок прессуют в цилиндрической матрице при давлении прессования 950 МПа. Перед спеканием таблетки нагревают в среде аргона при температуре от 300°С до 450°С в течение 2 часов для удаления связки. Таблетки спекают в среде аргона (с содержанием воды не более 80 ppm) при температуре (1125+10/-5)°C при изотермической выдержке порядка 12 часов в печи СШВЭ с вертикальной загрузкой. Нагрев до изотермической выдержки осуществляют в потоке аргона 1 л/мин со скоростью нагрева не более 5°С/мин с охлаждением в статической атмосфере аргона со скоростью охлаждения (15-20)°С/мин. После этого проводят шлифование, сушку и отбраковку таблеток не соответствующих техническим требованиям.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
На Фиг. 1 представлены уран-молибденовые таблетки после спекания и механической обработки.
Таким образом, предлагаемый способ, по сравнению с ранее известными, позволяет получать топливные таблетки из уран-молибденовых порошков, с обогащением по урану 235 до 7% и с содержанием молибдена от 9,0 до 10.5 мас. % для тепловыделяющих элементов ядерных реакторов с повышенными эксплуатационными характеристиками.

Claims (10)

1. Способ изготовления таблетированного топлива из уран-молибденовых порошков для тепловыделяющих элементов ядерного реактора, включающий подготовку порошка, прессование таблеток в матрице, спекание их в газообразной среде, шлифование, сушку, отбраковку таблеток, отличающийся тем, что спекание таблеток осуществляют в инертной среде, а в качестве исходного порошка используют уран-молибденовый порошок с обогащением по урану 235 до 7% и с содержанием молибдена от 9,0 до 10,5 мас.%.
2. Способ по п. 1, отличающийся тем, что размер фракции уран-молибденового порошка составляет не более 160 мкм.
3. Способ по п. 1, отличающийся тем, что перед прессованием таблеток в матрице уран-молибденовый порошок нагревают в среде аргона при температуре 500°С в течение 10-20 часов.
4. Способ по п. 1, отличающийся тем, что прессование таблеток в матрице осуществляют усилием до 950 МПа.
5. Способ по п. 1, отличающийся тем, что спекание таблеток проводят в среде аргона при температуре 1100 - 1155°С в течение 4-12 часов.
6. Способ изготовления таблетированного топлива из уран-молибденовых порошков для тепловыделяющих элементов ядерного реактора, включающий подготовку порошка, постадийное смешивание со связующим, прессование таблеток в матрице, термическое удаление связующего, спекание таблеток в газообразной среде, шлифование, сушку, отбраковку таблеток, отличающийся тем, что спекание таблеток осуществляют в инертной среде, а в качестве исходного порошка используют уран-молибденовый порошок с обогащением по урану 235 до 7% и с содержанием молибдена от 9,0 до 10,5 мас.%.
7. Способ по п. 6, отличающийся тем, что размер фракции уран-молибденового порошка составляет не более 160 мкм.
8. Способ по п. 6, отличающийся тем, что прессование таблеток в матрице осуществляют усилием до 950 МПа.
9. Способ по п. 6, отличающийся тем, что термическое удаление связующего осуществляют путем нагревания таблеток в среде аргона при температуре от 300 до 450°С в течение 2-4 часов.
10. Способ по п. 6, отличающийся тем, что спекание таблеток проводят в среде аргона при температуре 1100 - 1155°С в течение 4-12 часов.
RU2023101192A 2020-07-23 Способ изготовления таблетированного топлива из уран-молибденовых порошков RU2813642C1 (ru)

Publications (1)

Publication Number Publication Date
RU2813642C1 true RU2813642C1 (ru) 2024-02-14

Family

ID=

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985183A (en) * 1988-12-27 1991-01-15 Mitsubishi Metal Corporation UO2 pellet fabrication process
RU2158030C2 (ru) * 1998-11-18 2000-10-20 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного топлива для тепловыделяющих элементов и устройство для его осуществления
JP2003167084A (ja) * 2001-12-03 2003-06-13 Global Nuclear Fuel-Japan Co Ltd 核燃料ペレット、その製造方法、その核燃料ペレットを使用した燃料要素、及び燃料集合体
RU2002116628A (ru) * 2002-06-20 2003-12-27 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного топлива для тепловыделяющих элементов
KR100558323B1 (ko) * 2004-05-19 2006-03-10 한국원자력연구소 이중구조 핵연료 소결체 제조방법
RU2275700C2 (ru) * 2004-05-25 2006-04-27 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного ядерного топлива
FR3012127B1 (fr) * 2013-10-22 2016-10-28 Commissariat Energie Atomique Procede de preparation d'une poudre comprenant une solution solide de dioxyde uranium et d'au moins un autre element actinide et/ou lanthanide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985183A (en) * 1988-12-27 1991-01-15 Mitsubishi Metal Corporation UO2 pellet fabrication process
RU2158030C2 (ru) * 1998-11-18 2000-10-20 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного топлива для тепловыделяющих элементов и устройство для его осуществления
JP2003167084A (ja) * 2001-12-03 2003-06-13 Global Nuclear Fuel-Japan Co Ltd 核燃料ペレット、その製造方法、その核燃料ペレットを使用した燃料要素、及び燃料集合体
RU2002116628A (ru) * 2002-06-20 2003-12-27 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного топлива для тепловыделяющих элементов
KR100558323B1 (ko) * 2004-05-19 2006-03-10 한국원자력연구소 이중구조 핵연료 소결체 제조방법
RU2275700C2 (ru) * 2004-05-25 2006-04-27 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного ядерного топлива
FR3012127B1 (fr) * 2013-10-22 2016-10-28 Commissariat Energie Atomique Procede de preparation d'une poudre comprenant une solution solide de dioxyde uranium et d'au moins un autre element actinide et/ou lanthanide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Eliss A.L. и др., Dimentionally stable alloys, Sylvania-Corning Nuclear Corp., 30.10.1957, pp. 16-20, DOI:10.2172/4183803. *
RU 2360308 C1 (ОАО "НОВОСИБИРСКИЙ ЗАВОД ХИМКОНЦЕНТРАТОВ"). RU 2421834 C1 (НИЯУ МИФИ RU и др.). *

Similar Documents

Publication Publication Date Title
CN108335760B (zh) 一种高铀装载量弥散燃料芯块的制备方法
RU2175791C2 (ru) Композитный материал ядерного топлива и способ его получения
JP7469227B2 (ja) 耐酸化性に優れた粒界強化型UNおよびU3Si2ペレット
CN108039210A (zh) 燃料芯块及其制造方法
JPH01201191A (ja) 核燃料
US2814857A (en) Ceramic fuel element material for a neutronic reactor and method of fabricating same
RU2813642C1 (ru) Способ изготовления таблетированного топлива из уран-молибденовых порошков
WO2018124915A1 (ru) Таблетка ядерного топлива и способ её получения
RU2362223C1 (ru) Ядерное уран-гадолиниевое топливо высокого выгорания на основе диоксида урана и способ его получения (варианты)
EA045726B1 (ru) Способ изготовления таблетированного топлива из уран-молибденовых порошков
JP2004309453A (ja) タングステン金属網を含有した核燃料焼結体及びその製造方法
RU89904U1 (ru) Твэл ядерного реактора
US20230223162A1 (en) Method for producing pelletized fuel from uranium-molybdenum powders
KR101574224B1 (ko) 산화물 핵연료 소결체 및 이의 제조방법
US3342562A (en) High density urania fuel elements
RU2275700C2 (ru) Способ изготовления таблетированного ядерного топлива
RU2577272C1 (ru) Способ получения таблетированного диоксида урана
CN114044672A (zh) 控制棒吸收体材料及其制备方法
RU2701542C1 (ru) Способ изготовления таблетированного топлива для тепловыделяющих элементов ядерных реакторов
RU2803469C1 (ru) Способ изготовления таблетированного топлива из порошка дисилицида триурана для тепловыделяющих элементов ядерных реакторов (варианты)
CN111710443B (zh) 一种金刚石复合核燃料芯块及其制备方法
KR20040047522A (ko) 텅스텐 금속망을 함유한 핵연료 및 그 제조방법
US3327027A (en) Process for the production of plutonium oxide-containing nuclear fuel powders
RU2750780C1 (ru) Способ изготовления уран-гадолиниевого ядерного топлива
RU2193242C2 (ru) Таблетка ядерного топлива