RU2749824C1 - Способ переработки сыннырита на сульфаты калия, магния и глинозем - Google Patents

Способ переработки сыннырита на сульфаты калия, магния и глинозем Download PDF

Info

Publication number
RU2749824C1
RU2749824C1 RU2020121263A RU2020121263A RU2749824C1 RU 2749824 C1 RU2749824 C1 RU 2749824C1 RU 2020121263 A RU2020121263 A RU 2020121263A RU 2020121263 A RU2020121263 A RU 2020121263A RU 2749824 C1 RU2749824 C1 RU 2749824C1
Authority
RU
Russia
Prior art keywords
synnyrite
magnesium
potassium
alumina
alum
Prior art date
Application number
RU2020121263A
Other languages
English (en)
Inventor
Инна Германовна Антропова
Арюна Дугаржаповна Будаева
Дарья Петровна Хомоксонова
Original Assignee
Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)
Priority to RU2020121263A priority Critical patent/RU2749824C1/ru
Application granted granted Critical
Publication of RU2749824C1 publication Critical patent/RU2749824C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/02Preparation of sulfates from alkali metal salts and sulfuric acid or bisulfates; Preparation of bisulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/40Magnesium sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/20Preparation of aluminium oxide or hydroxide from aluminous ores using acids or salts
    • C01F7/26Preparation of aluminium oxide or hydroxide from aluminous ores using acids or salts with sulfuric acids or sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • C01F7/32Thermal decomposition of sulfates including complex sulfates, e.g. alums
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/74Sulfates
    • C01F7/745Preparation from alums, e.g. alunite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/74Sulfates
    • C01F7/76Double salts, i.e. compounds containing, besides aluminium and sulfate ions, only other cations, e.g. alums
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к цветной металлургии и может быть использовано при производстве глинозема и сульфата калия из высококалиевого алюмосиликатного сырья – сыннырита (К2О 19-21 %). Способ получения сульфата калия и глинозема из сыннырита включает термическую обработку, разложение активированного сыннырита серной кислотой, отделение раствора квасцов от нерастворимого остатка, кристаллизацию квасцов из сернокислотного раствора и спекание полученных квасцов с поташом с последующей их переработкой на сульфат калия и глинозем, при этом исходный сыннырит перед кислотным разложением смешивают с одной из магнийсодержащих сырьевых добавок природного происхождения: доломитом CaMg(CO3)2, или магнезитом MgCO3, или бруситом Mg(OH)2 при массовом соотношении 2:1 и спекают при температуре 1100-1150 °С, а после сернокислотного разложения, наряду с алюмокалиевыми квасцами, из раствора выпариванием выделяют магниевый компонент в виде гексагидрата сульфата магния MgSO4⋅6H2O. Технический результат - повышение эффективности комплексной переработки сыннырита за счет использования на стадии термохимического разложения основных кислотоупорных минералов исходного сырья (микроклин, ортоклаз), в качестве сырьевой добавки - одно из дешевых природных магниевых соединений, выбранное из доломита CaMg(CO3)2, или магнезита MgCO3, или брусита Mg(OH)2, при массовом соотношении сыннырита к добавке, равном 2:1,что приводит к понижению температуры процесса термообработки на 150-200 °С с получением кислоторастворимых соединений. Кроме того, технический результат заключается в увеличении ассортимента производимой продукции: помимо сульфата калия и глинозема магний всех выше перечисленных добавок в процессе сернокислотного разложения активированного сыннырита можно выделить в сульфат магния в качестве дополнительного продукта. 5 ил., 2 пр.

Description

Изобретение относится к цветной металлургии и может быть использовано при производстве глинозема и сульфата калия из высококалиевого алюмосиликатного сырья - сыннырита (К2О 19-21 %).
Основными породообразующими минералами сыннырита являются калиевый полевой шпат (65-75 %) и природная калиевая разновидность нефелина - кальсилит (20-30 %). Прогнозные ресурсы сырья только в Сыннырском массиве (Республика Бурятия), доступные для открытой разработки, оцениваются в 2.6 млрд. тонн. Из-за относительно низкого содержания оксида алюминия в сынныритах (22-23 %, а в нефелиновых рудах - 28-30 %) исключает их использование только как глиноземное сырье, поэтому сынныриты нужно рассматривать при комплексной переработке как источник для получения не только глинозема, но и бесхлорных калийных удобрений.
Известен способ переработки сыннырита [Пат. № 2372290 RU, МПК С01F 7/24. Способ переработки нефелин-полевошпатового сырья / Е. С. Горбунова, В. И. Захаров, С. Г. Федоров и др.; ЗАО СЗФСК. - № 2008105853/15; заявл. 15.02.2008; опубл.10.11.2009, Бюл. № 42.] на глинозем и нитраты щелочных элементов, согласно которому исходное сырье смешивают с продуктом щелочной активации полевошпатового концентрата, полученную смесь обрабатывают азотной кислотой с переводом алюминия и щелочных элементов в азотнокислый раствор, а кремнезема и полевого шпата - в нерастворимый остаток, отделяют азотнокислый раствор от нерастворимого остатка, выделяют из нерастворимого остатка кремнеземный и полевошпатовый концентраты, последний смешивают с поташом при массовом соотношении суммы K2O и Na2O в концентрате и K2O в поташе, равном 1:1-2, спекают при температуре 850-950 °С с получением продукта щелочной активации, подаваемого на смешение с исходным сырьем, азотнокислый раствор упаривают с получением смеси азотнокислых солей алюминия и щелочных элементов и подвергают ее термической обработке, полученный при этом спек перерабатывают на глинозем и нитраты щелочных элементов.
Недостатками данного способа являются громозкость технологической схемы, использование при спекании полевошпатового концентрата с получением кислоторастворимого продукта (кальсилита) в большом количестве дорогостоящего реагента поташа (K2CO3).
Также известен способ переработки cыннырита [Авторское свидетельство СССР № 1421693 СССР, МКИ5 С 01 F 7/26. Способ переработки сыннырита / К.К. Константинова, К.А. Никифоров, М.В. Мохосоев. - № 4237719/31-02; заявл. 31.03.87; опубл. 07.09.1988, Бюл. № 33.], основанный на спекании сыннырита с кальцитом при соотношении по массе 1:0,5 и температуре 1250-1300 °С для получения калиофилитового (искусственного кальсилитового) продукта, затем затворении измельченного спека в тесто 60 % серной кислотой при Т:Ж равном 1:1. Эту густую массу периодически перетирают, длительность такой сернокислотной обработки составляет не менее 5 часов, затем тесто выщелачивают горячей водой и отделяют раствор от нерастворимого остатка и проводят кристаллизацию из растворов алюмокалиевых квасцов.
Недостатками известного способа переработки сыннырита являются высокая температура спекания, большой выход твердого отхода в виде гипса.
Наиболее близким техническим решением к предлагаемому является способ, принятый за прототип, предусматривающий получение из сыннырита сульфата калия и глинозема [Авторское свидетельство СССР № 1761671, МКИ5 C 01 F 7/26. Способ получения сульфата калия и глинозема из сыннырита / Ю. С. Сафрыгин, Н. И. Степанова, Л. А. Филоненко, В. Я. Поляковский, В. И. Захаров. - № 4827152/26; заявл. 21.05.90; опубл. 15.09.1992, Бюл. № 34.]. Сущность данного способа: сыннырит подвергают термообработке в трубчатой вращающейся печи при 1350 °С без добавок для получения кислоторастворимого лейцитового продукта, затем разложению серной кислотой. Раствор алюмокалиевых квасцов отделяют от твердого остатка (кремнеземистый продукт). Далее квасцы кристаллизуют и спекают с поташом при 600-650 °С для предотвращения выделения сернистого газа. При этой температуре сульфат калия не разлагается, а алюминий вытесняется калием с образованием дополнительного количества сульфата калия по реакции:
2KAl(SO4)2 + 2K2CO3 = 4K2SO4 + Al2O3 + 3CO2
Полученный спек выщелачивают водой. В раствор переходит сульфат калия, а в осадок - глинозем.
К недостаткам данной технологии следует отнести высокую температуру термической обработки (1350 °С).
Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении эффективности переработки сыннырита за счет использования на стадии термохимического разложения основных кислотоупорных минералов исходного сырья (минералов калиево-шпатовой группы) в качестве сырьевой добавки одну из дешевых природных магниевых соединений доломит CaMg(CO3)2, или магнезит MgCO3, или брусит Mg(OH)2, приводящие к понижению температуры процесса термообработки и увеличении ассортимента производимой продукции: магний всех выше перечисленных добавок в процессе сернокислотного разложения активированного сыннырита можно выделить в сульфат магния в качестве дополнительного продукта.
Технический результат достигается тем, что в способе переработки сыннырита, исходное сырье смешивают с дешевой сырьевой добавкой, выбранной из доломита, или магнезита, или брусита и спекают при температуре 1100-1150 °С во вращающейся трубчатой печи в течение одного часа, полученный магнийсодержащий кальсилит-лейцитовый концентрат выщелачивают серной кислотой для перевода алюминия, калия и магния в сернокислый раствор, а кремнезема - в нерастворимый остаток. Из сернокислотного раствора последовательно выделяют сначала алюмокалиевые квасцы, затем магнийсодержащий компонент в виде сульфатного кристаллогидрата (MgSO4·6H2O), затем алюмокалиевые квасцы подвергают термической обработке с поташом по аналогии с прототипом, полученный спек перерабатывают на глинозем и сульфат калия.
Достижению технического результата способствует то, что термохимическое разложение сыннырита с использованием одной из магниевых добавок (CaMg(CO3)2, MgCO3, Mg(OH)2) осуществляется при массовом соотношении сыннырита к добавке равном 2:1.
Достижению технического результата способствует и то, что полученный термохимическим обогащением магнийсодержащий кальсилит-лейцитовый концентрат (активированный сыннырит) перерабатывают на глинозем, сульфат калия и сульфат магния. Для достижения этого результата из продуктивного сернокислотного раствора сначала осаждают алюмокалиевые квасцы, затем остаточный магнийсодержащий раствор концентрируют выпариванием при температуре 40-50 °С и выделяют гексагидрат сульфата магния (MgSO4×6H2O).
Сущность и преимущества заявляемого способа наглядно проиллюстрированы следующими Примерами и рисунками.
Пример 1
По данным минералогического и рентгенофазового анализов в соответствии с рисунком 1 установлено, что основными минеральными составляющими сынныритов являются микроклин и ортоклаз из группы калиевых полевых шпатов (65,3 %) с общей химической формулой K[AlSi3O8] и калиевая разновидность нефелина K[AlSiO4], кальсилит (23,2 %).
Шихта, приготовленная из 1000 г сыннырита с массовой долей, %: SiO2 - 51.86; Al2O3 - 22.50; K2O -19.16 и 500 г доломита с массовой долей CaO - 37.63 и MgО - 23.13 % (измельченной до класса крупности - 0, 071 мм), спекается в трубчатой печи при температуре 1100°С в течение 1 ч. В этих условиях по данным рентгенофазового анализа спека (рисунок 2) происходит направленное превращение кислотоупорных минералов исходного сырья (микроклин-МК и ортоклаз-ОР) в лейцитовую форму, наряду с лейцитом (Л) K[AlSi2O6] синтезируется акерманит (АК) Ca2Mg(Si2O7), а кислотовскрываемый кальсилит (КС) в составе шихты при этой температуре остается без изменений. Далее полученный кальций- и магнийсодержащий кальсилит-лейцитовый концентрат выщелачивают 60 % серной кислотой (нагретой до 80°С) при интенсивном перемешивании. Полученную суспензию фильтруют. Твердая фаза представляет смесь гипса CaSO4×2H2O и аморфного кремнезема SiO2. Из сульфатного раствора, содержащего ионы калия, алюминия и магния, кристаллизуют алюмокалиевые квасцы состава KAl(SO4)2×12H2O. Далее раствор после осаждения квасцов выпаривают при температуре 40-50°С и выделяют магниевый компонент в виде кристаллогидрата MgSO4×6H2O (рисунок 3). Полученные алюмокалиевые квасцы перерабатывают на глинозем и сульфат калия по аналогии с прототипом: для предотвращения выделения сернистого газа термическую обработку квасцов проводят в присутствии поташа при 650 °С. Далее спек выщелачивают водой. В раствор переходит сульфат калия, а в осадок - глинозем.
Выход продуктов при спекании 1 кг сыннырита с 0,5 кг доломита при температуре 1100 °С и последующем выщелачивании серной кислотой составляет: алюмокалиевых квасцов (KAl(SO4)2×12H2O) 1,70 кг; гексагидрата сульфата магния (MgSO4×6H2O) 0,26 кг; гипса (CaSO4×2H2O) 0,39 кг и аморфного кремнезема (SiO2) 0,46 кг.
Пример 2
Шихта, приготовленная из 1000 г сыннырита с массовой долей, %: SiO2 - 51.86; Al2O3 - 22.50; K2O -19.16 и 500 г магнезита с массовой долей MgО -46,61 % или брусита с массовой долей MgO до 69,1% (измельченной до класса крупности - 0, 071 мм), спекается в трубчатой печи при температуре 1150°С в течение 1 ч. В этих условиях по данным рентгенофазового анализа спеков, полученных при спекании сыннырита с магнезитом (рисунок 4) и бруситом (рисунок 5) происходит направленное превращение кислотоупорных минералов исходного сырья (микроклин, ортоклаз) в лейцитовую форму, наряду с лейцитом K[AlSi2O6] синтезируется форстерит Mg2SiO4, а кислотовскрываемый кальсилит K[AlSiO4] в составе шихты при этой температуре остается без изменений. Далее полученный магнийсодержащий кальсилит-лейцитовый концентрат (спек) выщелачивают серной кислотой (нагретой до 80°С) при интенсивном перемешивании. Полученную суспензию фильтруют. Твердая фаза состоит в основном из аморфного кремнезема SiO2 (90 %) и неразложившегося алюмосиликата - лейцита. Из сульфатного раствора, содержащего ионы калия, алюминия и магния, кристаллизуют алюмокалиевые квасцы состава KAl(SO4)2×12H2O. Далее раствор после осаждения квасцов выпаривают при температуре 40-50°С и выделяют магниевый компонент в виде кристаллогидрата MgSO4×6H2O. Полученные алюмокалиевые квасцы перерабатывают на глинозем и сульфат калия по аналогии с прототипом.
Выход алюмокалиевых квасцов, сульфата магния и аморфного кремнезема при спекании 1 кг сыннырита с 0,5 кг магнезита составляет: KAl(SO4)2×12H2O 1,70 кг; MgSO4×6H2O 1,18 кг; SiO2 0,45 кг.
Выход алюмокалиевых квасцов, сульфата магния и аморфного кремнезема при спекании 1 кг сыннырита и 0,5 кг брусита cоставляет: KAl(SO4)2×12H2O 1,71 кг; MgSO4×6H2O 1,60 кг; SiO2 0,46 кг.
Таким образом, в отличие от прототипа за счет использования на стадии термохимического разложения сыннырита с получением кислоторастворимых соединений в качестве сырьевой добавки дешевые магнийсодержащие минералы (CaMg(CO3)2, MgCO3, Mg(OH)2) достигнуто уменьшение температуры на 150-200 °С и увеличение выпуска товарных продуктов. При спекании сыннырита с магнезитом или бруситом увеличивается количество получаемого сульфата магния и исключается образование гипса. Маточные растворы после отделения целевых продуктов (алюмокалиевые квасцы и сульфат магния) можно возвращать на стадию сернокислотного разложения в качестве раствора разбавления.

Claims (1)

  1. Способ получения сульфата калия и глинозема из сыннырита, включающий термическую обработку, разложение активированного сыннырита серной кислотой, отделение раствора квасцов от нерастворимого остатка, кристаллизацию квасцов из сернокислотного раствора и спекание полученных квасцов с поташом с последующей их переработкой на сульфат калия и глинозем, отличающийся тем, что исходный сыннырит перед кислотным разложением смешивают с одной из магнийсодержащих сырьевых добавок природного происхождения: доломитом CaMg(CO3)2, или магнезитом MgCO3, или бруситом Mg(OH)2 при массовом соотношении 2:1 и спекают при температуре 1100-1150 °С, а после сернокислотного разложения наряду с алюмокалиевыми квасцами из раствора выпариванием выделяют магниевый компонент в виде гексагидрата сульфата магния MgSO4⋅6H2O.
RU2020121263A 2020-06-26 2020-06-26 Способ переработки сыннырита на сульфаты калия, магния и глинозем RU2749824C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020121263A RU2749824C1 (ru) 2020-06-26 2020-06-26 Способ переработки сыннырита на сульфаты калия, магния и глинозем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020121263A RU2749824C1 (ru) 2020-06-26 2020-06-26 Способ переработки сыннырита на сульфаты калия, магния и глинозем

Publications (1)

Publication Number Publication Date
RU2749824C1 true RU2749824C1 (ru) 2021-06-17

Family

ID=76377558

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020121263A RU2749824C1 (ru) 2020-06-26 2020-06-26 Способ переработки сыннырита на сульфаты калия, магния и глинозем

Country Status (1)

Country Link
RU (1) RU2749824C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2820256C1 (ru) * 2023-02-14 2024-05-31 Акционерное Общество "Группа компаний "Русредмет" (АО "ГК "Русредмет") Способ переработки сыннырита с получением калийных удобрений и глинозема

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU876552A1 (ru) * 1979-12-26 1981-10-30 Институт Естественных Наук Бурятского Филиала Со Ан Ссср Способ переработки сыннырита
SU1421693A1 (ru) * 1987-03-31 1988-09-07 Институт Естественных Наук Бурятского Филиала Со Ан Ссср Способ переработки сыннырита
SU1761671A1 (ru) * 1990-05-21 1992-09-15 Всесоюзный научно-исследовательский и проектный институт галургии Способ получени сульфата кали и глинозема из сыннырита
RU2215690C2 (ru) * 2001-05-07 2003-11-10 Лебедев Валерий Николаевич Способ переработки нефелинового концентрата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU876552A1 (ru) * 1979-12-26 1981-10-30 Институт Естественных Наук Бурятского Филиала Со Ан Ссср Способ переработки сыннырита
SU1421693A1 (ru) * 1987-03-31 1988-09-07 Институт Естественных Наук Бурятского Филиала Со Ан Ссср Способ переработки сыннырита
SU1761671A1 (ru) * 1990-05-21 1992-09-15 Всесоюзный научно-исследовательский и проектный институт галургии Способ получени сульфата кали и глинозема из сыннырита
RU2215690C2 (ru) * 2001-05-07 2003-11-10 Лебедев Валерий Николаевич Способ переработки нефелинового концентрата

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. I. KHANTURGAEVA and other Prospects for the complex processing of synnyrites. Physical and technical problems of mining, 2013, N6, p. 158-166. *
ХАНТУРГАЕВА Г.И. и др. Перспективы комплексной переработки сынныритов. Физико-технические проблемы разработки полезных ископаемых, 2013, N6, с. 158-166. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2820256C1 (ru) * 2023-02-14 2024-05-31 Акционерное Общество "Группа компаний "Русредмет" (АО "ГК "Русредмет") Способ переработки сыннырита с получением калийных удобрений и глинозема

Similar Documents

Publication Publication Date Title
EP1097247B1 (en) A method for isolation and production of magnesium based products
CN101734698B (zh) 一种由含铝物料制备氧化铝的方法
US8721999B2 (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia
WO2012099637A1 (en) Production of high purity lithium compounds directly from lithium containing brines
RU2554136C2 (ru) Способ получения глинозема
US7041268B2 (en) Process for recovery of sulphate of potash
CN103950957A (zh) 一种硫酸镁制备氢氧化镁的工艺方法
RU2634017C2 (ru) Способ получения сульфата магния и железоокисных пигментов из отходов производств
RU2749824C1 (ru) Способ переработки сыннырита на сульфаты калия, магния и глинозем
JP2014080347A (ja) 半焼成ドロマイトからの酸化マグネシウム抽出方法
RU2535254C1 (ru) Способ комплексной переработки серпентин-хромитового рудного сырья
WO2005063626A1 (en) Process for recovery of sulphate of potash
WO2013061092A1 (en) Potash product and method
RU2753109C1 (ru) Способ переработки сыннырита
RU2707335C1 (ru) Способ переработки высококалиевого нефелин-полевошпатового сырья
Antropova et al. A new method of obtaining potassium magnesium sulfate and magnesium aluminate spinel from synnyrite, a potassium-rich aluminosilicate raw material
RU2566414C1 (ru) Способ получения сульфата калия из полигалитовой руды
RU2560802C1 (ru) Способ переработки природного фосфата для извлечения редкоземельных элементов
RU2513652C2 (ru) Способ получения оксида магния
RU2820256C1 (ru) Способ переработки сыннырита с получением калийных удобрений и глинозема
KR102487238B1 (ko) 랑베나이트계 황산칼륨고토 비료 및 황산알루미늄의 제조방법과 이를 이용하여 제조된 랑베나이트계 황산칼륨고토 비료 및 황산알루미늄
Chowdhury et al. Preparation of high pure refractory grade magnesium oxide from east coast sea water
RU2456250C2 (ru) Способ получения магнезиального вяжущего, способ получения затворителя магнезиального вяжущего
CN116534887A (zh) 一种两步铵解法磷矿富集并制备硝酸钙和碳酸镁的生产方法
CN115672540A (zh) 一种氨碱法碱渣的处理方法