RU2513652C2 - Способ получения оксида магния - Google Patents

Способ получения оксида магния Download PDF

Info

Publication number
RU2513652C2
RU2513652C2 RU2012122273/05A RU2012122273A RU2513652C2 RU 2513652 C2 RU2513652 C2 RU 2513652C2 RU 2012122273/05 A RU2012122273/05 A RU 2012122273/05A RU 2012122273 A RU2012122273 A RU 2012122273A RU 2513652 C2 RU2513652 C2 RU 2513652C2
Authority
RU
Russia
Prior art keywords
nitric acid
leaching
nitrate hexahydrate
temperature
magnesium
Prior art date
Application number
RU2012122273/05A
Other languages
English (en)
Other versions
RU2012122273A (ru
Inventor
Татьяна Васильевна Бондарчук
Олег Владимирович Жданов
Светлана Викторовна Орлова
Original Assignee
Татьяна Васильевна Бондарчук
Олег Владимирович Жданов
Светлана Викторовна Орлова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Татьяна Васильевна Бондарчук, Олег Владимирович Жданов, Светлана Викторовна Орлова filed Critical Татьяна Васильевна Бондарчук
Priority to RU2012122273/05A priority Critical patent/RU2513652C2/ru
Publication of RU2012122273A publication Critical patent/RU2012122273A/ru
Application granted granted Critical
Publication of RU2513652C2 publication Critical patent/RU2513652C2/ru

Links

Images

Abstract

Изобретение относится к области химии. Оксид магния получают путем измельчения исходного сырья - брусита. В измельченное сырье добавляют маточный раствор, затем его выщелачивают азотной кислотой с добавлением барита. Азотнокислую пульпу нейтрализуют пылью электрофильтров. Осадок отделяют фильтрацией и промывают с получением промывочных вод, направляемых на стадию выщелачивания. Фильтрат, образовавшийся после отделения осадка, охлаждают до температуры кристаллизации гексагидрата нитрата магния, отделяют кристаллы гексагидрата нитрата магния от маточного раствора, который направляют в выпариватель для выведения кальция и получения удобрений. Кристаллы гексагидрата нитрата магния подвергают термическому гидролизу перегретыми парами воды с получением оксида магния и паронитрозных газов, направляемых в абсорбер для регенерации азотной кислоты. Полученную азотную кислоту направляют на выщелачивание исходного сырья. Изобретение позволяет повысить качество продукта и снизить его потери. 9 з.п. ф-лы, 1 ил., 2 пр.

Description

Изобретение относится к способам получения оксида магния, в частности из брусита, и может быть использовано в химической промышленности.
Известен способ получения оксида магния, описанный в патенте РФ на изобретение №2078039, опубликованном 27.04.1997 г. Сущность способа заключается в том, что исходный магнезит растворяют в азотной кислоте и проводят обработку суспензии аммиаком при pH 5,8-6,0 для осаждения примесей. Далее осадок гидроксидного шлама отделяют от раствора, из которого осаждают гидроксид магния при pH 10,0-10,5. После отделения осадка проводят его отмывку таким образом, чтобы содержание кальция в гидроксиде магния на этой операции изменялось в пределах 0.03-0.25 мас.%.
Недостатком данного способа является то, что при его реализации возможна переработка магнезита, но известный способ не обеспечивает эффективной комплексной переработки брусита. Оксид магния, получаемый описанным способом, является низкокачественным с большим количеством примесей. Данный способ позволяет получить только один продукт, пригодный для дальнейшего использования, а образовавшийся осадок примесей сам по себе является отходом этого производства, при реализации способа безвозвратно расходуется значительное количество азотной кислоты и аммиака, а образовавшийся осадок примесей сам по себе является отходом этого производства.
Известен способ получения окиси магния, описанный в авторском свидетельстве №1442504, опубликованном 07.12.1988 г. Способ заключается в том, что магнезиальное сырье растворяют азотной кислотой, выделяют гексагидрат нитрата магния охлаждением раствора, затем просушивают при температуре 270-320°C до получения гидрата нитрата магния состава Mg(NO3)2·(0,3-1,4)H2O, после ведут термическое разложение при температуре 340-400°C в течение 0,5-5,0 часов при постоянном перемешивании.
Недостатком данного способа является то, что при его реализации возможна переработка магнезита, но известный способ не обеспечивает эффективной комплексной переработки брусита. Оксид магния, получаемый описанным способом, является низкокачественным с большим количеством примесей. Данный способ позволяет получить только один продукт, пригодный для дальнейшего использования, а образовавшийся осадок примесей сам по себе является отходом этого производства.
Наиболее близким аналогом, выбранным в качестве прототипа, является способ переработки серпентинита, описанный в патенте РФ на изобретение №2292300, опубликованном 27.01.2007 г. Способ переработки серпентинита включает проведение магнитной сепарации с разделением на немагнитную и магнитную части, выделение осадка в виде двуокиси кремния из пульпы, полученной в результате выщелачивания. Выщелачивание исходного сырья ведут азотной кислотой в течение 3-х часов при температуре кипения. Нейтрализацию фильтрата, образовавшегося после отделения осадка, ведут водным раствором оксида магния. Фильтрат, образовавшийся после отделения осадка гидроксидов металлов, обрабатывают путем введения в него карбоната магния с последующим отделением образовавшегося осадка карбоната кальция. Оставшийся в фильтрате нитрат магния подвергают термическому гидролизу перегретыми парами воды с получением оксида магния, окислов азота и паров воды. последние подвергают конденсации с получением азотной кислоты, полученную азотную кислоту направляют в начало процесса для выщелачивания исходного сырья. Гидроксиды металлов, высаженные в результате нейтрализации, отделяют, промывают, прокаливают с получением оксидов металлов и смешивают с ранее полученной магнитной частью. Результат изобретения: обеспечение комплексной переработки серпентинита с получением оксида магния высокого качества при одновременном повышении эффективности процесса.
Недостатком данного способа является то, что способ рассчитан на переработку серпентинита и не обеспечивает эффективной комплексной переработки брусита. Способ имеет высокие потери магния на этапах переработки, за счет того что промывочные воды утилизируют. При реализации способа производится большое количество попутных магнийсодержащих продуктов-отходов, что приводит к значительным потерям магния.
Также способ имеет высокие энергозатраты за счет того, что смесь при выщелачивании выдерживают в течение 3-х часов при постоянном кипении.
Технической задачей заявляемого изобретение является повышение качества получаемого из брусита оксида магния, снижение количества примесей в готовом продукте при минимальных потерях магния на всех стадиях переработки.
Поставленная задача решается тем, что способ получения оксида магния реализуют путем кислотного выщелачивания предварительно измельченного исходного сырья, согласно изобретению в качестве исходного сырья берут измельченный брусит, добавляя маточный раствор предварительно распульповывают, выщелачивают азотной кислотой с добавлением барита, нейтрализуют азотнокислую пульпу пылью электрофильтров, осадок отделяют фильтрацией и промывают с получением промывочных вод, направляемых на стадию выщелачивания, фильтрат, образовавшийся после отделения осадка, охлаждают до температуры кристаллизации гексагидрата нитрата магния, отделяют кристаллы гексагидрата нитрата магния от маточного раствора, который направляют в выпариватель для выведения кальция и получения удобрений, а кристаллы гексагидрата нитрата магния подвергают термическому гидролизу перегретыми парами воды с получением оксида магния и паронитрозных газов, направляемых в абсорбер для регенерации азотной кислоты, полученную азотную кислоту направляют на выщелачивание исходного сырья.
Техническим результатом заявляемого способа получения оксида магния является получение чистого оксида магния из брусита, снижение потерь магния и снижение энергозатрат на производство оксида магния. Это обеспечивается за счет того, что в качестве исходного сырья берут измельченный брусит, добавляя маточный раствор предварительно распульповывают, выщелачивают азотной кислотой с добавлением барита, нейтрализуют азотнокислую пульпу пылью электрофильтров, осадок отделяют фильтрацией и промывают с получением промывочных вод, направляемых на стадию выщелачивания, фильтрат, образовавшийся после отделения осадка, охлаждают до температуры кристаллизации гексагидрата нитрата магния, отделяют кристаллы гексагидрата нитрата магния от маточного раствора, который направляют в выпариватель для выведения кальция и получения удобрений, а кристаллы гексагидрата нитрата магния подвергают термическому гидролизу перегретыми парами воды с получением оксида магния и паронитрозных газов, направляемых в абсорбер для регенерации азотной кислоты, полученную азотную кислоту направляют на выщелачивание исходного сырья.
Таким образом, совокупность заявляемых признаков позволяет повысить качество получаемого из брусита оксида магния и снизить количество примесей в готовом продукте, при минимальных потерях магния на всех стадиях переработки.
Проведенный анализ общедоступных источников информации об уровне техники не позволил выявить техническое решение, тождественное заявленному, на основании чего делается вывод о неизвестности последнего, т.е. соответствии представленного в настоящей заявке изобретения критерию "новизна". Сопоставительный анализ заявленного решения с известными техническими решениями позволил выявить, что представленная совокупность отличительных признаков неизвестна для специалиста в данной области и не следует явным образом из известного уровня техники, на основании чего делается вывод о соответствии представленного в настоящей заявке изобретения критерию "изобретательский уровень".
Технологическая схема способа получения оксида магния представлена на Фиг.1.
В качестве исходного сырья использован брусит. В реактор-растворитель 1 подают размельченный брусит с размером частиц 1-2 мм из бункера 2 и маточный раствор (на первом запуске можно использовать воду, а после прохождения первого цикла использовать остаточный маточный раствор после кристаллизации и/или промывочные воды) из сборника 3 для предварительной распульповки. Температура маточного раствора 90-95°C. Соотношение массы брусита и объема маточного раствора 2,0 т/м3. Полученная масса интенсивно перемешивается в реакторе-растворителе 1 в течение 15-20 минут. При завершении перемешивания реактор-растворитель 1 герметизируется и в него подается азотная кислота в концентрации 45-65% с добавлением барита из емкости 4 в количестве, соответствующем стехиометрическому значению, для растворения оксидов магния, железа, алюминия и других присутствующих металлов. Барит добавляют в количестве 1-5% от объема азотной кислоты в зависимости от количества кальция, содержащегося в исходном продукте. Температура подаваемой азотной кислоты от 20°C до 80°C. Выделяющийся пар отводят в абсорбер 17. После подачи расчетного объема азотной кислоты пульпу в реакторе-растворителе 1 перемешивают в течение 30 минут при температуре 90°C, после чего перемешивание выключают для отстаивания. Через 10 минут из реактора 5 добавляют пыль электрофильтров для нейтрализации пульпы и корректировки pH. В конце корректировки pH пульпы должно быть ≥7. Затем нейтрализованную азотно-кислую пульпу, имеющую температуру 80-90°C, подают на фильтр-пресс 6. Протечки фильтрации с фильтр-пресса 6 сливаются в сборник для очищенного раствора 7. По завершении основной фильтрации осадок в фильтр-прессе 6 промывается водой, которая сливается в сборник промывочных вод 8, а из него возвращается на начальные этапы выщелачивания в сборник 3. Температуру промывочной воды поддерживают в пределах 80-90°C. После завершения процесса промывки осадок направляют в шламонакопитель 9 и фильтр-пресс готовят к следующей операции.
Основной очищенный раствор нитратов магния и кальция из сборника для очищенных растворов 7 с помощью насоса подают в кристаллизатор 10. Раствор подают в объемном соотношении 1,4 т/м3.
Очищенный раствор в кристаллизаторе 10 охлаждают до температуры 15-20°C, из него кристаллизуется крупнокристаллический гексагидрат нитрата магния. Полученную суспензию направляют в фильтр-центрифугу 11 для выведения из схемы кальция. Фильтрат основной фильтрации направляется в выпариватель 12. В результате выпаривания получается раствор удобрений 13. Осадок из фильтр-центрифуги 11 направляют в реактор-плавитель 14 для упаривания при температуре 370°C.
Упаренный осадок нитрата магния поступает в реактор-накопитель концентрированного раствора 15, откуда его подают в реактор термического разложения 16, где при температуре 400-900°C производят термический гидролиз нитрата магния перегретыми парами воды в течение 30 минут. Отходящие от реактора термического разложения 16 топочные газы обеспечивают работу реактора-плавителя 14.
Образующиеся паронитрозные газы направляются в абсорбер 17, где регенерируются в азотную кислоту. Слив горячей азотной кислоты из абсорбера производится в сборник азотной кислоты 18, из которого после его наполнения направляется в емкость-питатель азотной кислоты 4. Хвостовые газы абсорбции выводят через дроссель абсорбера и направляют в топку реактора термического разложения 16.
Получившийся оксид магния шнековым транспортером направляют в сборник оксида магния 19, а затем затаривают в мешки.
Пример 1
Берут брусит, измельченный до 0,1 мм (состава MgO 60%, CaO 2%, SiO2 2%, Fe2O3 1,9%, Al2O3 1%) в количестве 0,5 кг, добавляют 1,0 кг воды, затем при интенсивном перемешивании добавляют азотную кислоту 45% в количестве 2,5 кг с добавлением барита. Через 40 минут доводят до pH 6,5 путем разбавления водой и добавления 0,05 кг пыли электрофильтров. Полученный раствор 4,5 кг отделяют на пресс-фильтре от шлама и отправляют на кристаллизацию в емкость-кристаллизатор (t=20°C). Затем с помощью центрифуги отделяют кристаллы от маточного раствора. Полученные 1.7 кг гексагидрата нитрата магния Mg(NO3)2×6H2O помещают в изолированный от атмосферы термический реактор с температурой 650°C. Образующиеся паронитрозные газы направляются в абсорбер для регенерации в азотную кислоту. По завершении процесса термического гидролиза (30 минут) выгружают окись магния в количестве 245 г, содержания: MgO 99%, CaO 0,15%, SiO2, Fe2O3, Al2O3 - остальное 0,12%.
Пример 2
Берут брусит измельченный до 0,1 мм (состава MgO 90%, CaO 3%, SiO2 2%, Fe2O3 2%, Al2O3 1,5%) в количестве 0,5 кг, добавляют 1,0 кг воды, затем при интенсивном перемешивании добавляют азотную кислоту 45% в количестве 3,15 кг с добавлением барита. Через 40 минут доводят до pH 6,5 путем разбавления водой и добавления 0,07 кг пыли электрофильтров. Полученный раствор 5,7 кг отделяют на пресс-фильтре от шлама и отправляют на кристаллизацию в емкость-кристаллизатор (t=20°C). Затем с помощью центрифуги отделяют кристаллы от маточного раствора. Полученные 2,2 кг гексагидрата нитрата магния Mg(NO3)2×6H2O помещают в изолированный от атмосферы термический реактор с температурой 650°C. Образующиеся паронитрозные газы направляются в абсорбер для регенерации в азотную кислоту. По завершении процесса термического гидролиза (30 минут) выгружают окись магния в количестве 315 г, содержания: MgO 99,2%, CaO 0,11%, SiO2, Fe2O3, Al2O3 - остальное 0,1%.

Claims (10)

1. Способ получения оксида магния путем кислотного выщелачивания предварительно измельченного исходного сырья, отличающийся тем, что в качестве исходного сырья берут измельченный брусит, добавляя маточный раствор, предварительно распульповывают, выщелачивают азотной кислотой с добавлением барита, нейтрализуют азотнокислую пульпу пылью электрофильтров, осадок отделяют фильтрацией и промывают с получением промывочных вод, направляемых на стадию выщелачивания, фильтрат, образовавшийся после отделения осадка, охлаждают до температуры кристаллизации гексагидрата нитрата магния, отделяют кристаллы гексагидрата нитрата магния от маточного раствора, который направляют в выпариватель для выведения кальция и получения удобрений, а кристаллы гексагидрата нитрата магния подвергают термическому гидролизу перегретыми парами воды с получением оксида магния и паронитрозных газов, направляемых в абсорбер для регенерации азотной кислоты, полученную азотную кислоту направляют на выщелачивание исходного сырья.
2. Способ по п.1, отличающийся тем, что температура маточного раствора 90-95°С.
3. Способ по п.1, отличающийся тем, что предварительная распульповка проводится при перемешивании в течение 15-20 минут.
4. Способ по п.1, отличающийся тем, что выщелачивание ведут азотной кислотой с концентрацией 45-65%.
5. Способ по п.1, отличающийся тем, что в азотную кислоту добавляют барит в количестве 1-5% от объема азотной кислоты.
6. Способ по п.1, отличающийся тем, что для выщелачивания подают азотную кислоту температурой от 20°С до 80°С.
7. Способ по п.1, отличающийся тем, что выщелачивание проводят при постоянном перемешивании в течение 30 минут.
8. Способ по п.1, отличающийся тем, что пыль электрофильтров вводят в количестве, обеспечивающем достижение рН≥7.
9. Способ по п.1, отличающийся тем, что температуру промывочных вод поддерживают 80-90°С.
10. Способ по п.1, отличающийся тем, что термический гидролиз гексагидрата нитрата магния ведут при температуре 400-900°С перегретыми парами воды.
RU2012122273/05A 2012-05-29 2012-05-29 Способ получения оксида магния RU2513652C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012122273/05A RU2513652C2 (ru) 2012-05-29 2012-05-29 Способ получения оксида магния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012122273/05A RU2513652C2 (ru) 2012-05-29 2012-05-29 Способ получения оксида магния

Publications (2)

Publication Number Publication Date
RU2012122273A RU2012122273A (ru) 2013-12-10
RU2513652C2 true RU2513652C2 (ru) 2014-04-20

Family

ID=49682612

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012122273/05A RU2513652C2 (ru) 2012-05-29 2012-05-29 Способ получения оксида магния

Country Status (1)

Country Link
RU (1) RU2513652C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459021B (zh) * 2017-07-25 2023-11-24 四川思达能环保科技有限公司 分解硝酸盐溶液的设备和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1570995A1 (ru) * 1988-01-05 1990-06-15 Всесоюзный Комплексный Проектно-Изыскательский, Научно-Исследовательский И Конструкторско-Технологический Институт Теплоизоляционных Материалов И Изделий "Впниитеплоизоляция" Способ получени оксида магни
RU2078039C1 (ru) * 1992-04-29 1997-04-27 Георгий Михайлович Антаков Способ получения оксида магния
RU2292300C1 (ru) * 2005-07-13 2007-01-27 Иван Иванович Калиниченко Способ переработки серпентинита
RU2295494C2 (ru) * 2004-11-09 2007-03-20 Открытое акционерное общество "Чепецкий механический завод" (ОАО ЧМЗ) Способ получения оксида магния
CN101219800A (zh) * 2007-01-08 2008-07-16 杜高翔 一种利用低品味菱镁矿制备纳米氢氧化镁的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1570995A1 (ru) * 1988-01-05 1990-06-15 Всесоюзный Комплексный Проектно-Изыскательский, Научно-Исследовательский И Конструкторско-Технологический Институт Теплоизоляционных Материалов И Изделий "Впниитеплоизоляция" Способ получени оксида магни
RU2078039C1 (ru) * 1992-04-29 1997-04-27 Георгий Михайлович Антаков Способ получения оксида магния
RU2295494C2 (ru) * 2004-11-09 2007-03-20 Открытое акционерное общество "Чепецкий механический завод" (ОАО ЧМЗ) Способ получения оксида магния
RU2292300C1 (ru) * 2005-07-13 2007-01-27 Иван Иванович Калиниченко Способ переработки серпентинита
CN101219800A (zh) * 2007-01-08 2008-07-16 杜高翔 一种利用低品味菱镁矿制备纳米氢氧化镁的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
. *

Also Published As

Publication number Publication date
RU2012122273A (ru) 2013-12-10

Similar Documents

Publication Publication Date Title
JP7018393B2 (ja) 廃水からリン生成物を生成するための方法
CA2974666C (en) Processing of lithium containing material including hcl sparge
CA2851786C (en) Processing of lithium containing material
US8721999B2 (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia
CN110699756B (zh) 一种利用氨碱废液制备α型石膏晶须的方法
CN107814370B (zh) 制备磷精矿的循环环保工艺方法及其产品和应用
US6447738B1 (en) Coproducing alumina, iron oxide, and titanium-dioxide from aluminum ore bodies and feedstocks
CN114667358A (zh) 氧化铝的制备工艺
EA010106B1 (ru) Способ комплексного использования составляющих оливина
US10144650B2 (en) Method for recovery of the constituent components of laterites
RU2535254C1 (ru) Способ комплексной переработки серпентин-хромитового рудного сырья
RU2513652C2 (ru) Способ получения оксида магния
RU2571244C1 (ru) Способ получения чистой вольфрамовой кислоты
CN108609661B (zh) 一种利用除铁树脂洗脱液制备氧化铁红、氧化铝、镓的方法
RU2701319C1 (ru) Способ комплексной переработки алюмосодержащих солевых шлаков
CN110606610B (zh) 一种氨法循环处理金属氯化盐废液的方法
RU2731225C1 (ru) Способ переработки датолитового концентрата
RU2525877C2 (ru) Способ переработки фосфогипса
RU2753809C1 (ru) Способ комплексной переработки алюмосодержащих солевых шлаков
CN104030333A (zh) 利用高钙菱锶矿和毒重石联合生产硝酸锶和硝酸钡的方法
RU2560802C1 (ru) Способ переработки природного фосфата для извлечения редкоземельных элементов
US9725785B2 (en) Process for cold hydrochemical decomposition of sodium hydrogen aluminosilicate
CN103073125A (zh) 一种酸解红土镍矿废水的利用方法
AU2010264079A1 (en) Polyhalite IMI process for KNO3 production
RU2480413C2 (ru) Способ очистки от железа кислых растворов солей, содержащих нитрат алюминия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150530