RU2749493C1 - Method for manufacturing a thin-film transistor - Google Patents

Method for manufacturing a thin-film transistor Download PDF

Info

Publication number
RU2749493C1
RU2749493C1 RU2020132664A RU2020132664A RU2749493C1 RU 2749493 C1 RU2749493 C1 RU 2749493C1 RU 2020132664 A RU2020132664 A RU 2020132664A RU 2020132664 A RU2020132664 A RU 2020132664A RU 2749493 C1 RU2749493 C1 RU 2749493C1
Authority
RU
Russia
Prior art keywords
thin
film
film transistor
manufacturing
amorphous silicon
Prior art date
Application number
RU2020132664A
Other languages
Russian (ru)
Inventor
Асламбек Идрисович Хасанов
Арслан Гасанович Мустафаев
Гасан Абакарович Мустафаев
Аюб Рамзанович Умаев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет"
Priority to RU2020132664A priority Critical patent/RU2749493C1/en
Application granted granted Critical
Publication of RU2749493C1 publication Critical patent/RU2749493C1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

FIELD: physics.SUBSTANCE: invention relates to the field of technology for the production of semiconductor devices, in particular to the technology of manufacturing a thin-film transistor with a reduced value of leakage currents. A method for manufacturing a thin-film transistor includes the processes of forming areas of drain, source, gate, gate oxide, amorphous silicon film on a glass substrate. According to the invention, a film of amorphous silicon a-Si:H is formed by deposition in an HF discharge with decomposition in a glow discharge of disilane dissolved in helium at a ratio He/Si2H6=9/1 on a glass substrate at a gas pressure of 130 Pa, HF power of 8 W, at frequency of 13.56 MHz and a substrate temperature of 280°C, with a gas flow rate of 200 cm3/min and a film deposition rate of 1.2 nm/s.EFFECT: invention makes it possible to manufacture a thin-film transistor with a reduced value of leakage currents.1 cl, 1 tbl

Description

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочного транзистора с пониженным значением токов утечек.The invention relates to the field of technology for the production of semiconductor devices, in particular to the technology of manufacturing a thin-film transistor with a reduced value of leakage currents.

Известен способ изготовления тонкопленочного транзистора [Заявка 1276765 Япония, МКИ H01L 29/78] с повышенной подвижностью электронов, созданием в канале на стеклянной подложке квантово-размерной гетероструктуры Si/Ge/Si, которая покрывается изолирующим слоем. Боковые части структуры легируются фосфором для снижения последовательного сопротивления. Затвор из поликремния п-Si слоя изолируется слоем SiO2. В таких приборах из-за низкой технологичности процесса создания квантово-размерной гетероструктуры Si/Ge/Si, повышается дефектность структуры и ухудшаются электрические параметры приборов.A known method of manufacturing a thin-film transistor [Application 1276765 Japan, MKI H01L 29/78] with increased electron mobility, creating a quantum-dimensional Si / Ge / Si heterostructure in the channel on a glass substrate, which is covered with an insulating layer. The sides of the structure are doped with phosphorus to reduce series resistance. The polysilicon gate of the p-Si layer is insulated with a SiO 2 layer. In such devices, due to the low manufacturability of the process of creating a quantum-well Si / Ge / Si heterostructure, the defectiveness of the structure increases and the electrical parameters of the devices deteriorate.

Известен способ изготовления тонкопленочного транзистора [Патент 5382537 США, МКИ H01L 21/265] с повышенной подвижностью носителей в канале транзистора путем облучения слоя аморфного кремния a-Si эксимерным лазером с образованием затравочных кристаллов. Затем при температуре 600°С в течении 40 часов в атмосфере азота слой аморфного кремния a-Si, подвергается кристаллизации с формированием крупнозернистого активного слоя.A known method of manufacturing a thin-film transistor [US Patent 5382537, MKI H01L 21/265] with increased carrier mobility in the transistor channel by irradiating a layer of amorphous silicon a-Si with an excimer laser with the formation of seed crystals. Then, at a temperature of 600 ° C for 40 hours in a nitrogen atmosphere, a layer of amorphous silicon a-Si undergoes crystallization with the formation of a coarse-grained active layer.

Недостатками этого способа являются: повышенные значения токов утечек; высокая дефектность; низкая технологичность.The disadvantages of this method are: increased values of leakage currents; high defectiveness; low manufacturability.

Задача, решаемая изобретением: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.The problem solved by the invention: reducing leakage currents, ensuring manufacturability, improving the parameters of devices, improving quality and increasing the percentage of yield.

Задача решается формированием пленки аморфного кремния a-Si:H путем осаждения в ВЧ разряде с разложением дисилана в тлеющем разряде растворенного в гелии при соотношении He/Si2H6=9/l, на стеклянную подложку при давление газа 130 Па, ВЧ мощности 8 Вт, на частоте 13,56 МГц и температуре подложки 280°С, со скоростью потока газа 200 см3/мин и скоростью осаждения пленки 1,2 нм/с.The problem is solved by forming a film of amorphous silicon a-Si: H by deposition in an HF discharge with decomposition of disilane dissolved in helium in a glow discharge at a ratio He / Si2H6 = 9 / l, on a glass substrate at a gas pressure of 130 Pa, HF power of 8 W, on frequency of 13.56 MHz and a substrate temperature of 280 ° C, with a gas flow rate of 200 cm3 / min and a film deposition rate of 1.2 nm / s.

Технология способа состоит в следующем: наносят на подложку слой аморфного кремния a-Si:H путем осаждения в ВЧ разряде с разложением дисилана в тлеющем разряде растворенного в гелии при соотношении He/Si2H6=9/l, на стеклянную подложку при давлении газа 130 Па, ВЧ мощности 8 Вт, на частоте 13,56 МГц и температуре подложки 280°С, со скоростью потока газа 200 см3/мин и скоростью осаждения пленки 1,2 нм/с. Области тонкопленочного транзистора и контакты к этим областям формируют по стандартной технологии.The technology of the method is as follows: a layer of amorphous silicon a-Si: H is deposited on the substrate by deposition in an RF discharge with the decomposition of disilane dissolved in helium in a glow discharge at a ratio He / Si2H6 = 9 / l, on a glass substrate at a gas pressure of 130 Pa, RF power of 8 W, at a frequency of 13.56 MHz and a substrate temperature of 280 ° C, with a gas flow rate of 200 cm3 / min and a film deposition rate of 1.2 nm / s. Regions of the TFT and contacts to these regions are formed using standard technology.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.According to the proposed method, semiconductor devices were manufactured and investigated. The processing results are presented in the table.

Figure 00000001
Figure 00000001

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 17,2%.Experimental studies have shown that the yield of suitable structures for batches of plates formed in the optimal mode increased by 17.2%.

Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.EFFECT: lowering leakage currents, ensuring manufacturability, improving the parameters of devices, improving the quality and increasing the percentage of yield.

Claims (1)

Способ изготовления тонкопленочного транзистора, включающий процессы формирования областей стока, истока, затвора, подзатворного оксида, пленки аморфного кремния на стеклянной подложке, отличающийся тем, что пленку аморфного кремния a-Si:H формируют осаждением в ВЧ разряде с разложением в тлеющем разряде дисилана, растворенного в гелии при соотношении He/Si2H6=9/1, на стеклянную подложку при давлении газа 130 Па, ВЧ мощности 8 Вт, на частоте 13,56 МГц и температуре подложки 280°С, со скоростью потока газа 200 см3/мин и скоростью осаждения пленки 1,2 нм/с.A method for manufacturing a thin-film transistor, including the processes of formation of areas of drain, source, gate, gate oxide, amorphous silicon film on a glass substrate, characterized in that the amorphous silicon film a-Si: H is formed by deposition in an RF discharge with decomposition in a glow discharge of disilane dissolved in helium at a ratio He / Si 2 H 6 = 9/1, on a glass substrate at a gas pressure of 130 Pa, RF power of 8 W, at a frequency of 13.56 MHz and a substrate temperature of 280 ° C, with a gas flow rate of 200 cm 3 / min and a film deposition rate of 1.2 nm / s.
RU2020132664A 2020-10-01 2020-10-01 Method for manufacturing a thin-film transistor RU2749493C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020132664A RU2749493C1 (en) 2020-10-01 2020-10-01 Method for manufacturing a thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020132664A RU2749493C1 (en) 2020-10-01 2020-10-01 Method for manufacturing a thin-film transistor

Publications (1)

Publication Number Publication Date
RU2749493C1 true RU2749493C1 (en) 2021-06-11

Family

ID=76377507

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020132664A RU2749493C1 (en) 2020-10-01 2020-10-01 Method for manufacturing a thin-film transistor

Country Status (1)

Country Link
RU (1) RU2749493C1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224364A (en) * 1985-03-28 1986-10-06 Fuji Xerox Co Ltd Manufacture of thin film transistor and manufacturing equipment
JPH03194937A (en) * 1989-12-22 1991-08-26 Sony Corp Manufacture of thin film transistor
US5382537A (en) * 1992-07-10 1995-01-17 Sony Corporation Method of making thin film transistors
RU2035800C1 (en) * 1992-04-13 1995-05-20 Малое научно-производственное предприятие "ЭЛО" Process of manufacture of thin-film transistors
RU2069417C1 (en) * 1994-06-08 1996-11-20 Акционерное общество открытого типа "Научно-исследовательский институт молекулярной электроники и завод "Микрон" Method for producing thin-film transistor arrays of liquid-crystal screens
JPH11121762A (en) * 1997-06-30 1999-04-30 Hyundai Electron Ind Co Ltd Thin-film transistor for liquid crystal display element and manufacture thereof
JP3194937B2 (en) * 1989-08-09 2001-08-06 株式会社日立製作所 Variable capacity swash plate type compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224364A (en) * 1985-03-28 1986-10-06 Fuji Xerox Co Ltd Manufacture of thin film transistor and manufacturing equipment
JP3194937B2 (en) * 1989-08-09 2001-08-06 株式会社日立製作所 Variable capacity swash plate type compressor
JPH03194937A (en) * 1989-12-22 1991-08-26 Sony Corp Manufacture of thin film transistor
RU2035800C1 (en) * 1992-04-13 1995-05-20 Малое научно-производственное предприятие "ЭЛО" Process of manufacture of thin-film transistors
US5382537A (en) * 1992-07-10 1995-01-17 Sony Corporation Method of making thin film transistors
RU2069417C1 (en) * 1994-06-08 1996-11-20 Акционерное общество открытого типа "Научно-исследовательский институт молекулярной электроники и завод "Микрон" Method for producing thin-film transistor arrays of liquid-crystal screens
JPH11121762A (en) * 1997-06-30 1999-04-30 Hyundai Electron Ind Co Ltd Thin-film transistor for liquid crystal display element and manufacture thereof

Similar Documents

Publication Publication Date Title
KR101774520B1 (en) Treatment of gate dielectric for making high performance metal oxide and metal oxynitride thin film transistors
KR101912888B1 (en) Methods for depositing a silicon containing layer with argon gas dilution
JP5948031B2 (en) Semiconductor device
CN101061587A (en) Strained fully depleted silicon on insulator semiconductor device and manufacturing method therefor
KR101498136B1 (en) Thin Film Transistor having polysilicon active layer, method of manufacturing thereof and array substrate
US20090184321A1 (en) Microcrystalline silicon thin film transistor and method for manufacturing the same
RU2466476C1 (en) Method of making semiconductor device
RU2749493C1 (en) Method for manufacturing a thin-film transistor
RU2522930C2 (en) Method of thin film transistor manufacturing
JP6092528B2 (en) Semiconductor device and manufacturing method thereof
RU2515334C1 (en) Method of making thin-film transistor
JP2002185005A (en) Hybrid tft array substrate and its manufacturing method
JP2012054546A (en) Manufacturing method of microcrystalline silicon film and manufacturing method of thin film transistor
RU2754995C1 (en) Method for manufacturing a thin-film transistor
JPH04152640A (en) Manufacture of insulated-gate type semiconductor device
RU2819702C1 (en) Method of making a thin-film transistor
RU2723982C1 (en) Semiconductor device manufacturing method
RU2696356C1 (en) Method for manufacturing of thin-film transistor
JP2925007B2 (en) Method for manufacturing thin film transistor
JP3173757B2 (en) Method for manufacturing semiconductor device
RU2813176C1 (en) Method for manufacturing of semiconductor device
Lai et al. Electrical performance and thermal stability of MIC poly-Si TFTs improved using drive-in nickel induced crystallization
RU2748455C1 (en) Method for manufacturing semiconductor device
JP5199954B2 (en) Manufacturing method of semiconductor device
JP3837937B2 (en) Method for manufacturing thin film semiconductor device