RU2741613C1 - Способ идентификации наземных целей - Google Patents

Способ идентификации наземных целей Download PDF

Info

Publication number
RU2741613C1
RU2741613C1 RU2020101565A RU2020101565A RU2741613C1 RU 2741613 C1 RU2741613 C1 RU 2741613C1 RU 2020101565 A RU2020101565 A RU 2020101565A RU 2020101565 A RU2020101565 A RU 2020101565A RU 2741613 C1 RU2741613 C1 RU 2741613C1
Authority
RU
Russia
Prior art keywords
rsao
coordinates
ground
interrogator
response
Prior art date
Application number
RU2020101565A
Other languages
English (en)
Inventor
Сергей Сергеевич Ткаченко
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2020101565A priority Critical patent/RU2741613C1/ru
Application granted granted Critical
Publication of RU2741613C1 publication Critical patent/RU2741613C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Техническим результатом изобретения является повышение вероятности правильной идентификации наземных целей в условиях многоцелевой обстановки. В способе идентификации наземных целей итоговые идентификационные признаки обнаруженных наземных целей формируются на основе отождествления их координат с координатами наземных ответчиков радиолокационной системы с активным ответом (РСАО), определяемыми по результатам обработки кодированных ответных сигналов, сформированных и переданных наземными ответчиками РСАО в ответ на два кодированных запросных сигнала, которые в свою очередь были последовательно сформированы и переданы запросчиком РСАО воздушного судна из двух разнесенных в пространстве точек, находящихся по отношению к каждой наземной цели под определенным углом. 1 ил.

Description

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации наземных целей (НЦ).
Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ идентификации НЦ, заключающийся в формировании радиолокационного изображения (РЛИ) участка земной поверхности (УЗП) с использованием бортовой РЛС в режиме синтезирования апертуры антенны (РСА) на расстоянии, обеспечивающем покрытие запросным сигналом данного УЗП при однократном излучении, обнаружении целей на РЛИ УЗП в автоматическом режиме или с помощью оператора, косвенной оценке дальностей до обнаруженных наземных целей, формировании и передаче запросчиком РСАО кодированного запросного сигнала (совокупности импульсов расположенных на определенных в соответствии с действующим кодом временных позициях) в направлении центральной точки УЗП, приеме и обработке запросного сигнала ответчиком (ответчиками) РСАО НЦ, формировании и передаче ответчиком (ответчиками) РСАО НЦ кодированных ответных сигналов (совокупности импульсов расположенных на определенных в соответствии с действующим кодом временных позициях и несущих частотах), приеме импульсов на частотах ответного сигнала запросчиком РСАО, фиксации моментов обнаружения импульсов на несущих частотах ответного сигнала, формировании принятого частотно-временного кода (ЧВК) как совокупности моментов времени обнаружения импульсов на несущих частотах ответного сигнала, формировании совокупности всех возможных векторов идентификационных признаков обнаруженных наземных целей, формировании эталонных моделей ЧВК, сравнении принятого ЧВК с эталонными моделями ЧВК, подсчете числа совпадений принятого ЧВК с каждой эталонной моделью ЧВК, формировании решения о векторе q* оценок идентификационных признаков обнаруженных наземных целей по критерию максимума совпадений эталонной модели ЧВК с принятым ЧВК, где
Figure 00000001
,
N - число обнаруженных наземных целей, q*∈[0,1] - оценка идентификационного признака (ИП) НЦ, q*=1 - НЦ оборудована ответчиком РСАО, правильно отвечающим на запросные сигналы, q*=0 - НЦ не оборудована ответчиком РСАО, правильно отвечающим на запросный сигналы (см., например, патент РФ №2659090 от 28.06.2018 г. «Способ идентификации наземных целей»).
К недостаткам данного способа относится снижение достоверности идентификации НЦ в условиях многоцелевой обстановки. Одной из причин этого является то, что в условиях многоцелевой обстановки в пределах сектора неопределенности местонахождения ответчика РСАО при однократном излучении запросного сигнала могут одновременно находиться несколько наземных целей. В этой ситуации возможна ошибочная привязка идентификационного признака одной наземной цели к другой.
Техническим результатом изобретения является повышение достоверности идентификации НЦ в условиях многоцелевой обстановки.
Указанный результат достигается тем, что после обнаружения наземных целей на РЛИ УЗП определяют их координаты хЦ1n в связанной с носителем запросчика РСАО системе координат O1X1Y1Z1, где
Figure 00000002
, после формирования и передачи запросчиком РСАО из точки О1 первого кодированного запросного сигнала в момент времени tЗ1 с учетом координат хЗ1 и хЦ1n определяют координаты хЦn n-х наземных целей в относительной системе координат OXYZ, где хЗ1 - координаты точки О1 в относительной системе координат OXYZ, с учетом момента времени tЗ1 и заданного интервала времени Δt определяют момент времени tЗ2 излучения второго запросного сигнала, формируют и передают запросчиком РСАО из точки O2 второй кодированный запросный сигнал в направлении центральной точки УЗП РЛИ в момент времени tЗ2, после приема и обработки кодированных ответных сигналов переданных в ответ на второй запросный сигнал с учетом моментов времени tЗ1,
Figure 00000003
, tЗ2,
Figure 00000004
и координат хЗ1, хЗ2 определяют координаты k-х носителей ответчиков РСАО в относительной системе координат OXYZ, где
Figure 00000003
и
Figure 00000004
- моменты времени приема k-х ответных сигналов, переданных в ответ на первый и второй запросный сигналы соответственно,
Figure 00000005
, K - число наземных ответчиков, формирующих и передающих ответные сигналы в ответ на запросный сигнал, хЗ2 - координаты точки O2 в относительной системе координат OXYZ, отождествляют координаты каждой n-й наземной цели с координатами каждого k-го носителя ответчика РСАО, если модули разностей координат n-й наземной цели и k-го носителя ответчика РСАО не превышают допустимых отклонений по осям ОХ и OZ относительной системы координат OXYZ, то формируют решение об отождествлении координат данной наземной цели с координатами данного носителя ответчика, в противном случае формируют решение о неотождествлении координат данной наземной цели с координатами данного носителя ответчика, если в отношении n-й наземной цели сформировано хотя бы одно решение об отождествлении ее координат с координатами носителя ответчика РСАО, то формируют решение о том, что данная n - я наземная цель оборудована ответчиком РСАО правильно отвечающим на запросные сигналы запросчика РСАО, в противном случае формируют решение о том, что n - я наземная цель не оборудована ответчиком РСАО правильно отвечающим на запросные сигналы запросчика РСАО.
Сущность изобретения заключается в том, что итоговые идентификационные признаки обнаруженных НЦ формируются на основе отождествления их координат, с координатами наземных ответчиков РСАО, определяемыми по результатам обработки кодированных ответных сигналов, сформированных и переданных наземными ответчиками РСАО в ответ на два кодированных запросных сигнала, которые в свою очередь были последовательно сформированы и переданы запросчиком РСАО воздушного судна с двух разнесенных в пространстве точек, находящихся по отношению к каждой НЦ под определенным углом χn. При увеличении угла χn уменьшается сектор неопределенности местонахождения ответчика РСАО соответствующей НЦ и, как следствие, повышается достоверность ее идентификации в условиях многоцелевой обстановки. Наибольшая достоверность идентификации НЦ достигается при χn=90°. Это объясняется тем, что данное значение (χn=90°) соответствует наименьшему сектору неопределенности местонахождения ответчика РСАО соответствующей НЦ.
Данный способ включает в себя следующие этапы:
1. На борту носителя запросчика РСАО:
1.1. Измерение текущих координат
Figure 00000006
носителя запросчика РСАО на протяжении полета в относительной системе координат OXYZ (где OXYZ - правая прямоугольная система координат с началом в неподвижной точке О, совмещенной с земной поверхностью, ось ОХ направлена на север, ось OY направлена перпендикулярно плоскости касательной к земной поверхности в точке О, ось OZ ориентирована относительно осей ОХ и OY в соответствии с правой прямоугольной системой координат).
1.2. Формирование РЛИ УЗП с использованием РСА (бортовой РЛС в режиме синтезирования апертуры антенны) на расстоянии, обеспечивающем покрытие запросным сигналом данного УЗП при однократном излучении.
1.3. Обнаружение N наземных целей на РЛИ УЗП и определение их координат
Figure 00000007
в связанной с носителем запросчика РСАО системе координат O1X1Y1Z1, где O1X1Y1Z1 - правая прямоугольная система координат с началом в точке О1, О1 - точка местоположения носителя запросчика РСАО в момент tК определения координат ХЦ1 наземных целей, направления осей О1Х1, O1Y1 и O1Z1 совпадают с соответствующими направлениями осей OX, OY и OZ относительной системы координат OXYZ,
Figure 00000008
- координаты n-й наземной цели в системе координат O1X1Y1Z1.
1.4. Формирование и передача запросчиком РСАО из точки О1 первого кодированного запросного сигнала (совокупности импульсов расположенных на определенных в соответствии с действующим кодом временных позициях) в направлении центральной точки УЗП РЛИ в момент времени tЗ1, где tЗ1=tК.
1.5. Определение координат наземных целей в относительной системе координат OXYZ в соответствии с выражением
Figure 00000009
где
Figure 00000010
- координаты носителя запросчика РСАО в момент времени tЗ1 (координаты точки О1) в относительной системе координат OXYZ.
1.6. Определение момента времени tЗ2 излучения второго запросного сигнала, в соответствии с выражением
Figure 00000011
где Δt - заданный интервал времени между моментами излучения первого и второго запросных сигналов.
2. На наземных целях, являющихся носителями ответчиков РСАО:
2.1. Прием и обработка первого запросного сигнала ответчиком РСАО НЦ.
2.2. Формирование и передача через ненаправленную антенну первого кодированного ответного сигнала (совокупность импульсов, излучаемых на несущих частотах и временных позициях, определяемых действующим кодом) ответчиком РСАО НЦ.
3. На борту носителя запросчика РСАО:
3.1. Прием и обработка кодированных ответных сигналов, сформированных и переданных ответчиками РСАО в ответ на первый запросный сигнал, с фиксацией моментов времени
Figure 00000012
их приема, где
Figure 00000013
, K - число наземных ответчиков, формирующих и передающих ответные сигналы в ответ на запросный сигнал.
3.2. Формирование и передача запросчиком РСАО из точки О2 второго кодированного запросного сигнала в направлении центральной точки УЗП РЛИ в момент времени tЗ2.
4. На наземных целях, являющихся носителями ответчиков РСАО:
4.1. Прием и обработка второго запросного сигнала ответчиком РСАО НЦ;
4.2. Формирование и передача через ненаправленную антенну второго кодированного ответного сигнала;
5. На борту носителя запросчика РСАО
5.1. Прием и обработка вторых кодированных ответных сигналов с фиксацией моментов времени
Figure 00000014
их приема.
5.2. Определение координат k-х носителей ответчиков РСАО в относительной системе координат OXYZ:
5.2.1. Определение длин отрезков O1Ok (Ok - точка местоположения k-го наземного ответчика РСАО) в соответствии с выражением
Figure 00000015
где Д1k - длинна отрезка O1Ok.
5.2.2. Определение длин отрезков O2Ok в соответствии с выражением
Figure 00000016
где Д2k - длинна отрезка O2Ok.
5.2.3. Определение длин отрезков
Figure 00000017
и
Figure 00000018
в соответствии с выражениями:
Figure 00000019
где
Figure 00000020
и
Figure 00000021
- длины отрезков
Figure 00000017
и
Figure 00000018
,
Figure 00000022
и
Figure 00000023
- проекции точек О1 и O2 на плоскость OXZ.
5.2.4. Определение расстояния между точками
Figure 00000022
и
Figure 00000023
в соответствии с выражением
Figure 00000024
5.2.5. Определение углов βk между отрезком
Figure 00000025
и отрезками
Figure 00000017
в соответствии с выражением
Figure 00000026
5.2.6. Определение угла γ между отрезком
Figure 00000025
и осью
Figure 00000027
(ось
Figure 00000027
- проекция оси O1Z1 на плоскость OXZ) в соответствии с выражением
Figure 00000028
5.2.7. Определение углов αk между отрезками
Figure 00000017
и осью
Figure 00000027
в соответствии с выражением
Figure 00000029
5.2.8. Определение координат k-х носителей ответчиков РСАО по осям OZ и ОХ в соответствии с выражениями:
Figure 00000030
5.3. Отождествление координат каждой n-й наземной цели с координатами каждого k-го носителя ответчика РСАО:
5.3.1. Формирование промежуточных попарных признаков отождествления n-х обнаруженных наземных целей и k-х носителей ответчиков РСАО по координатным осям OZ и ОХ в соответствии с выражениями:
Figure 00000031
где Δх и Δz - допустимые отклонения координат наземных целей от координат наземных носителей ответчиков РСАО по соответствующим координатным осям ОХ и OZ.
5.3.2. Формирование попарных признаков отождествления n-х обнаруженных наземных целей и k-х носителей ответчиков РСАО в соответствии с выражением
Figure 00000032
где
Figure 00000033
, qkn=1 - попарный признак отождествления, соответствующий решению об отождествлении координат n-й цели с координатами k-го носителя ответчика, qkn=0 - попарный признак отождествления, соответствующий решению о неотождествлении координат n-й цели с координатами k-го носителя ответчика.
5.4. Формирование итоговых идентификационных признаков обнаруженных наземных целей в соответствии с выражением
Figure 00000034
где
Figure 00000035
, qn=1 - идентификационный признак наземной цели, оборудованной ответчиком РСАО правильно отвечающим на запросные сигналы запросчика РСАО (координаты n-й наземной цели отождествлены с координатами хотя бы одного k-го носителя ответчика РСАО), qn=0 - идентификационный признак наземной цели, не оборудованной ответчиком РСАО правильно отвечающим на запросные сигналы запросчика РСАО (координаты n-й наземной цели не отождествлены с координатами хотя бы одного k-го носителя ответчика РСАО).
Данный способ может быть реализован, например, с помощью комплекса устройств, структурная схема которого приведена на фигуре, где обозначено: 1 - воздушное судно, являющееся носителем запросчика РСАО; 2 - навигационная система (НС); 3 - блок обнаружения наземных целей и оценки их координат (БОНЦОК); 4 - блок обработки информации (БОИ); 5 - блок управления (БУ); 6 - запросчик РСАО; 7 - РЛС с синтезированной апертурой антенны (РСА); 8 - блок управления диаграммой направленности антенны запросчика (БУ ДНАЗ); 9 - наземная цель (НЦ), являющаяся носителем ответчика РСАО; 10 - наземный ответчик РСАО.
НС 2 предназначена для измерения текущих координат хЗ носителя запросчика РСАО на протяжении полета в относительной системе координат OXYZ. БОНЦОК 3 предназначен для обнаружения N наземных целей на РЛИ УЗП и определения их координат
Figure 00000036
в связанной с носителем запросчика РСАО системе координат O1X1Y1Z1. БОИ 4 предназначен для обработки информации и формирования итоговых идентификационных признаках обнаруженных наземных целей qn. БУ 5 предназначен для управления устройствами комплекса на борту носителя запросчика РСАО 1. Запросчик РСАО 6 предназначен для формирования и передачи через БУ ДНАЗ 8 и направленную антенну кодированных запросных сигналов, а также для приема и обработки кодированных ответных сигналов, поступающих на его вход через направленную антенну и БУ ДНАЗ 8. РСА 7 предназначена для формирования РЛИ УЗП на расстоянии, обеспечивающем покрытие запросным сигналом данного УЗП при однократном излучении. БУ ДНАЗ 8 предназначен для управления диаграммой направленности антенны запросчика. Наземный ответчик РСАО 10 предназначен для приема и обработки запросных сигналов, поступающих на его вход через ненаправленную антенну, а также для формирования и передачи через ненаправленную антенну кодированных ответных сигналов.
Комплекс устройств работает следующим образом.
1. На борту носителя запросчика РСАО 1:
БУ 5 управляет устройствами комплекса на борту носителя запросчика РСАО 1. НС 2 измеряет текущие координаты хЗ носителя запросчика РСАО 1 на протяжении полета в относительной системе координат OXYZ. Информация о текущих координатах хЗ носителя запросчика РСАО через БУ 5 поступает в БОИ 4. РСА 7 формирует РЛИ УЗП на расстоянии, обеспечивающем покрытие запросным сигналом данного УЗП при однократном излучении. Информация о РЛИ УЗП через БУ 5 поступает на БОНЦОК 3. БОНЦОК 3 обнаруживает N наземных целей на РЛИ УЗП и определяет их координаты
Figure 00000036
в связанной с носителем запросчика РСАО 1 системе координат O1X1Y1Z1. Информация о координатах
Figure 00000036
обнаруженных наземных целей через БУ 5 поступает на БОИ 4. БУ ДНАЗ 8 ориентирует диаграмму направленности антенны запросчика в направлении центральной точки УЗП РЛИ. Запросчик РСАО 6 формирует и передает из точки «О1» первый кодированный запросный сигнал через БУ ДНАЗ 8 и направленную антенну в направлении центральной точки УЗП РЛИ в момент времени tЗ1. Информация о моменте времени tЗ1 через БУ 5 поступает в БОИ 4. БОИ 4 определяет координаты наземных целей хЦn в относительной системе координат OXYZ в соответствии с выражением (1) и момент времени излучения второго запросного сигнала tЗ2 в соответствии с выражением (2). Информация о моменте времени излучения второго запросного сигнала tЗ2 поступает на БУ 5.
2. На наземных целях, являющихся носителями ответчиков РСАО:
Наземный ответчик РСАО 10 принимает и обрабатывает, поступающий на его вход через ненаправленную антенну первый запросный сигнал, а также формирует и передает через ненаправленную антенну кодированный ответный сигнал.
3. На борту носителя запросчика РСАО 1:
Запросчик РСАО 6 принимает и обрабатывает проходящие от направленной антенны через БУДНАЗ 8 кодированные ответные сигналы, сформированные и переданные ответчиками РСАО в ответ на первый запросный сигнал, с фиксацией моментов времени
Figure 00000037
их приема. Информация о моментах времени приема ответных сигналов
Figure 00000037
поступает через БУ 5 на БОИ 4. Под воздействием управляющего сигнала с БУ 5 запросчик РСАО 6 формирует и передает второй кодированный запросный сигнал в направлении центральной точки УЗП РЛИ в момент времени tЗ2 из точки O2.
4. На наземных целях, являющихся носителями ответчиков РСАО:
Наземный ответчик РСАО 10 принимает и обрабатывает, поступающий на его вход через ненаправленную антенну второй запросный сигнал, а также формирует и передает через ненаправленную антенну кодированный ответный сигнал.
5. На борту носителя запросчика РСАО 1:
Запросчик РСАО 6 принимает и обрабатывает проходящие от направленной антенны через БУ ДНАЗ 8 кодированные ответные сигналы, сформированные и переданные ответчиками РСАО в ответ на второй запросный сигнал, с фиксацией моментов времени
Figure 00000038
их приема. Информация о моментах времени приема ответных сигналов
Figure 00000038
поступает через БУ 5 на БОИ 4. БОИ 4 определяет длины Д1k отрезков O1Ok в соответствии с выражением (3), определяет длины Д2k отрезков O2Ok в соответствии с выражением (4), определяет длины
Figure 00000039
и
Figure 00000040
отрезков
Figure 00000041
и
Figure 00000042
в соответствии с выражениями (5) и (6), определяет расстояние между точками
Figure 00000043
и
Figure 00000044
в соответствии с выражением (7), определяет углы βk между отрезком
Figure 00000025
и отрезками
Figure 00000041
в соответствии с выражением (8), определяет угол γ между отрезком
Figure 00000025
и осью
Figure 00000027
в соответствии с выражением (9), определяет углы αk между отрезками
Figure 00000041
и осью
Figure 00000027
в соответствии с выражением (10), определяет координаты k-х носителей ответчиков РСАО по осям OZ и ОХ в соответствии с выражениями (11) и (12), формирует промежуточные попарные признаки отождествления n-х обнаруженных наземных целей и k-х носителей ответчиков РСАО по координатным осям OZ и ОХ в соответствии с выражениями (13) и (14), формирует попарные признаки отождествления n-х обнаруженных наземных целей и k-х носителей ответчиков РСАО в соответствии с выражением (15), формирует итоговые идентификационные признаки обнаруженных наземных целей в соответствии с выражением (16).
Предлагаемое техническое решение является новым, поскольку из общедоступных сведений не известен способ идентификации наземных целей, в котором итоговые идентификационные признаки обнаруженных НЦ формируются на основе отождествления их координат с координатами наземных ответчиков РСАО, определяемыми по результатам обработки кодированных ответных сигналов, сформированных и переданных наземными ответчиками РСАО в ответ на два кодированных запросных сигнала, которые в свою очередь были последовательно сформированы и переданы запросчиком РСАО воздушного судна с двух разнесенных в пространстве точек, находящихся по отношению к каждой НЦ под определенным углом.
Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что формирование итоговых идентификационных признаков обнаруженных НЦ на основе отождествления их координат с координатами наземных ответчиков РСАО, определяемыми по результатам обработки кодированных ответных сигналов, сформированных и переданных наземными ответчиками РСАО в ответ на два кодированных запросных сигнала, которые в свою очередь были последовательно сформированы и переданы запросчиком РСАО воздушного судна с двух разнесенных в пространстве точек, находящихся по отношению к каждой НЦ под определенным углом, повышает достоверность идентификации НЦ в условиях многоцелевой обстановки.
Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы элементы, широко распространенные в области электронной и электротехники.

Claims (1)

  1. Способ идентификации наземных целей, основанный на формировании радиолокационного изображения (РЛИ) участка земной поверхности (УЗП), с использованием бортовой РЛС в режиме синтезирования апертуры антенны, на расстоянии, обеспечивающем покрытие запросным сигналом данного УЗП при однократном излучении, обнаружении N наземных целей на РЛИ УЗП, формировании и передаче запросчиком радиолокационной системы с активным ответом (РСАО) кодированного запросного сигнала в направлении центральной точки УЗП, приеме и обработке запросного сигнала ответчиками РСАО наземных целей, формировании и передаче кодированных ответных сигналов ответчиками РСАО наземных целей, приеме и обработке кодированных ответных сигналов запросчиком РСАО, отличающийся тем, что после обнаружения наземных целей на РЛИ УЗП определяют их координаты
    Figure 00000045
    в связанной с носителем запросчика РСАО системе координат O1X1Y1Z1, где
    Figure 00000046
    , после формирования и передачи запросчиком РСАО из точки О1 первого кодированного запросного сигнала в момент времени tЗ1 с учетом координат хЗ1 и
    Figure 00000045
    определяют координаты
    Figure 00000047
    n-х наземных целей в относительной системе координат OXYZ, где хЗ1 - координаты точки О1 в относительной системе координат OXYZ, с учетом момента времени tЗ1 и заданного интервала времени Δt определяют момент времени tЗ2 излучения второго запросного сигнала, формируют и передают запросчиком РСАО из точки О2 второй кодированный запросный сигнал в направлении центральной точки УЗП РЛИ в момент времени tЗ2, после приема и обработки кодированных ответных сигналов, переданных в ответ на второй запросный сигнал, с учетом моментов времени tЗ1,
    Figure 00000048
    , tЗ2,
    Figure 00000049
    и координат xЗ1, xЗ2 определяют координаты k-x носителей ответчиков РСАО в относительной системе координат OXYZ, где
    Figure 00000048
    и
    Figure 00000049
    - моменты времени приема k-х ответных сигналов, переданных в ответ на первый и второй запросный сигналы соответственно,
    Figure 00000050
    , K - число наземных ответчиков, формирующих и передающих ответные сигналы в ответ на запросный сигнал, xЗ2 - координаты точки О2 в относительной системе координат OXYZ, отождествляют координаты каждой n-й наземной цели с координатами каждого k-го носителя ответчика РСАО, если модули разностей координат n-й наземной цели и k-го носителя ответчика РСАО не превышают допустимых отклонений по осям ОХ и OZ относительной системы координат OXYZ, то формируют решение об отождествлении координат данной наземной цели с координатами данного носителя ответчика, в противном случае формируют решение о неотождествлении координат данной наземной цели с координатами данного носителя ответчика, если в отношении n-й наземной цели сформировано хотя бы одно решение об отождествлении ее координат с координатами носителя ответчика РСАО, то формируют решение о том, что данная n-я наземная цель оборудована ответчиком РСАО, правильно отвечающим на запросные сигналы запросчика РСАО, в противном случае формируют решение о том, что n-я наземная цель не оборудована ответчиком РСАО, правильно отвечающим на запросные сигналы запросчика РСАО.
RU2020101565A 2020-01-14 2020-01-14 Способ идентификации наземных целей RU2741613C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020101565A RU2741613C1 (ru) 2020-01-14 2020-01-14 Способ идентификации наземных целей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020101565A RU2741613C1 (ru) 2020-01-14 2020-01-14 Способ идентификации наземных целей

Publications (1)

Publication Number Publication Date
RU2741613C1 true RU2741613C1 (ru) 2021-01-27

Family

ID=74213079

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020101565A RU2741613C1 (ru) 2020-01-14 2020-01-14 Способ идентификации наземных целей

Country Status (1)

Country Link
RU (1) RU2741613C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791599C1 (ru) * 2022-04-27 2023-03-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Способ идентификации наземных целей

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017168C1 (ru) * 1991-08-26 1994-07-30 Андрей Иванович Карих Способ определения местоположения объектов на поверхности земли с использованием радиолокатора с синтезированной апертурой аэрокосмического базирования
JPH09189762A (ja) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp レーダ装置を用いた地表変動観測方法並びにこの方法に用いる合成開口レーダ装置及びトランスポンダ
US5767802A (en) * 1997-01-10 1998-06-16 Northrop Grumman Corporation IFF system including a low radar cross-section synthetic aperture radar (SAR)
RU2205423C2 (ru) * 1998-07-07 2003-05-27 Тамбовское высшее военное авиационное инженерное училище Способ и устройство селекции движущихся наземных целей в трехканальной цифровой рса
KR20110083397A (ko) * 2010-01-14 2011-07-20 영남대학교 산학협력단 합성 개구면 레이더 영상에서 표적의 기종을 식별하는 방법 및 그 장치
KR20180066669A (ko) * 2016-12-09 2018-06-19 포항공과대학교 산학협력단 트레이스 변환을 이용한 역합성 개구면 레이더 영상의 표적 분류 장치 및 그 방법
RU2659090C1 (ru) * 2016-12-06 2018-06-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ идентификации наземных целей
RU2692470C2 (ru) * 2016-11-21 2019-06-25 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ комплексной идентификации объектов, обнаруживаемых радиолокационной станцией
RU2703996C2 (ru) * 2019-03-26 2019-10-23 Акционерное общество "Концерн "Гранит-Электрон" Способ локации целей в передних зонах обзора бортовых радиолокационных станций двухпозиционной радиолокационной системы

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017168C1 (ru) * 1991-08-26 1994-07-30 Андрей Иванович Карих Способ определения местоположения объектов на поверхности земли с использованием радиолокатора с синтезированной апертурой аэрокосмического базирования
JPH09189762A (ja) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp レーダ装置を用いた地表変動観測方法並びにこの方法に用いる合成開口レーダ装置及びトランスポンダ
US5767802A (en) * 1997-01-10 1998-06-16 Northrop Grumman Corporation IFF system including a low radar cross-section synthetic aperture radar (SAR)
RU2205423C2 (ru) * 1998-07-07 2003-05-27 Тамбовское высшее военное авиационное инженерное училище Способ и устройство селекции движущихся наземных целей в трехканальной цифровой рса
KR20110083397A (ko) * 2010-01-14 2011-07-20 영남대학교 산학협력단 합성 개구면 레이더 영상에서 표적의 기종을 식별하는 방법 및 그 장치
RU2692470C2 (ru) * 2016-11-21 2019-06-25 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ комплексной идентификации объектов, обнаруживаемых радиолокационной станцией
RU2659090C1 (ru) * 2016-12-06 2018-06-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ идентификации наземных целей
KR20180066669A (ko) * 2016-12-09 2018-06-19 포항공과대학교 산학협력단 트레이스 변환을 이용한 역합성 개구면 레이더 영상의 표적 분류 장치 및 그 방법
RU2703996C2 (ru) * 2019-03-26 2019-10-23 Акционерное общество "Концерн "Гранит-Электрон" Способ локации целей в передних зонах обзора бортовых радиолокационных станций двухпозиционной радиолокационной системы

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791599C1 (ru) * 2022-04-27 2023-03-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Способ идентификации наземных целей
RU2797996C1 (ru) * 2022-05-04 2023-06-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ двухпозиционной идентификации наземной цели

Similar Documents

Publication Publication Date Title
US9632170B2 (en) Evaluating the position of an aerial vehicle
CN107076832B (zh) 用于解耦地确定对象的俯仰角和方位角的mimo雷达设备和用于运行mimo雷达设备的方法
US8253622B2 (en) Device and method for the improved directional estimation and decoding by means of secondary radar signals
EP2799895A1 (en) Device, system and methods using angle of arrival measurements for ads-b authentication and navigation
US20040075605A1 (en) System and method for Doppler track correlation for debris tracking
CN107015249B (zh) 基于空间相关一致性的ads-b欺骗式干扰检测方法
JP5958528B2 (ja) 移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法
US20050052315A1 (en) Method and system for emitter localisation
US20170299694A1 (en) Antenna specification estimation device and radar device
JP2008538818A (ja) 無線方向探知機の較正方法および較正システム
CN113030946A (zh) 二次雷达探测方法、装置、设备、系统、介质及程序产品
EP3834007B1 (en) Over the horizon radar (oth) system and method
RU2659090C1 (ru) Способ идентификации наземных целей
JPS63121772A (ja) スリーウエイ−dme方式における飛行機位置検出方法
RU2741613C1 (ru) Способ идентификации наземных целей
RU2703718C1 (ru) Способ отождествления сигналов, рассеянных воздушными целями, многопозиционной пространственно распределенной радионавигационной системой с использованием измерений направлений на воздушные цели
RU2746175C1 (ru) Способ повышения надежности опознавания в радиолокационной системе активного запроса-ответа
RU2797996C1 (ru) Способ двухпозиционной идентификации наземной цели
RU2606241C1 (ru) Способ определения относительного положения летательных аппаратов при межсамолетной навигации
CN110058223B (zh) 一种基于航管应答信号的单站无源定位方法
RU2791600C1 (ru) Способ прямой идентификации воздушных целей
RU2601872C2 (ru) Способ идентификации воздушных объектов
RU2791599C1 (ru) Способ идентификации наземных целей
CN116774253B (zh) 一种基于信号到达方向角度差的导航欺骗式干扰检测方法
RU2708078C1 (ru) Способ прямой идентификации воздушной цели