RU2606241C1 - Способ определения относительного положения летательных аппаратов при межсамолетной навигации - Google Patents

Способ определения относительного положения летательных аппаратов при межсамолетной навигации Download PDF

Info

Publication number
RU2606241C1
RU2606241C1 RU2015130237A RU2015130237A RU2606241C1 RU 2606241 C1 RU2606241 C1 RU 2606241C1 RU 2015130237 A RU2015130237 A RU 2015130237A RU 2015130237 A RU2015130237 A RU 2015130237A RU 2606241 C1 RU2606241 C1 RU 2606241C1
Authority
RU
Russia
Prior art keywords
aircraft
neighboring
relative position
determining
coordinates
Prior art date
Application number
RU2015130237A
Other languages
English (en)
Inventor
Сергей Владимирович Бабуров
Теодор Борисович Гальперин
Альберт Грейнемович Герчиков
Владимир Константинович Орлов
Олег Иванович Саута
Алексей Иванович Соколов
Юрий Семёнович Юрченко
Original Assignee
ЗАО "ВНИИРА-Навигатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЗАО "ВНИИРА-Навигатор" filed Critical ЗАО "ВНИИРА-Навигатор"
Priority to RU2015130237A priority Critical patent/RU2606241C1/ru
Application granted granted Critical
Publication of RU2606241C1 publication Critical patent/RU2606241C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0215Interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области навигации летательных аппаратов (ЛА) и предназначено для обеспечения безопасности полета группы ЛА. Определение относительного положения соседних ЛА по отношению к данному ЛА может быть определено несколькими способами с последующей комплексной обработкой навигационной информации. Первый способ предусматривает определение навигационной информации каждым ЛА, ее передачу и прием через каналы информационного обмена ЛА, а второй способ - автономное определение относительных координат соседних ЛА радиолокационным способом. При этом дополнительно формируют вектор положения приемоизлучающей антенны для каждого ЛА в локальной системе координат, передают в общем информационном пакете сообщение о координатах упомянутого вектора положения антенны другим ЛА с шифром данного ЛА, выполняют прием и дешифрацию упомянутого сообщения соседних ЛА, вычисляют разности векторов положения приемоизлучающих антенн данного и соседних ЛА, с помощью которых вычисляют уточненные относительные координаты соседних ЛА и используют их в комплексной обработке навигационной информации упомянутых способов. Технический результат - повышение точности и надежности определения относительного положения ЛА. 4 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области навигации летательных аппаратов (ЛА) и предназначено для обеспечения безопасности полета группы ЛА, выполняющих совместные действия в сложных навигационных условиях, в том числе при плохой видимости.
Известные способы определения относительного положения ЛА предполагают определение положения каждого из группы ЛА по крайней мере одним из навигационных способов и передачу данных о положении через каналы информационного обмена между всеми ЛА и, дополнительно, радиолокационным способом путем излучения и приема зондирующих сигналов каждым ЛА с целью определения положения соседнего ЛА [1-5]. Необходимость дополнительного определения положения объясняется недостаточной точностью и надежностью определения относительного положения навигационным способом.
В упомянутых патентах для повышения точности навигационного способа определения относительного положения используется спутниковая навигационная система и передача данных о положении между ЛА и, дополнительно, из-за низкой надежности спутниковых данных, определение относительного положения соседних ЛА с помощью датчика относительного положения, построенного, например, на радиолокационном способе.
В патенте [1] в качестве такого датчика используется радиолокационная станция межсамолетной навигации РЛС-МСН, в [2] выполняется измерение интенсивности высокочастотного сигнала, передаваемого соседним ЛА, в [3] и [4] используется миллиметровый радар, а в [5] - дальномерная система.
Если бы спутниковая навигационная система и передача данных обладали достаточной надежностью, требуемой для управления ЛА, дополнительные датчики относительного положения не потребовались. Существующие навигационные спутниковые системы GPS и ГЛОНАСС имеют вероятность выдачи ошибочных данных 10-4 в час [6], что не удовлетворяет требованиям безопасности полета ЛА. По этой причине в существующих способах относительной навигации и управления полетом группы ЛА используют дополнительные системы определения относительного положения.
Наиболее распространенным предложением в патентах [1-4] является использование радиолокационного способа, позволяющего определить дальность и угловое положение соседних ЛА. При использовании первичного радиолокационного способа для измерения положения используется отраженный сигнал, поэтому измерения дальности и углов выполняются для «блестящей» точки отражения радиосигнала на корпусе ЛА. Так как эта точка беспорядочно перемещается по корпусу ЛА при его маневре, возникают случайные ошибки измерения, влияние которых особенно существенно при малых дальностях между ЛА в группе. Кроме того, точность измерения углового положения соседних ЛА зависит от расстояния. Если, например, ширина диаграммы направленности антенны равна 3 град., а размер корпуса соседнего ЛА равен 20 м, то на расстояниях меньше 400 м угловой размер корпуса превысит ширину диаграммы направленности и угловое положение будет измеряться с большими ошибками. Другим недостатком традиционного способа первичной локации (радио, тепловой, оптической) по отраженному от цели сигналу является отсутствие опознавания цели.
Для опознавания цели в авиационной практике управления воздушным движением находит применение способ вторичной радиолокации, при котором на ЛА устанавливаются ответчики радиолокационных сигналов, передающие, кроме ответного дальномерного сигнала, также информационный сигнал [7]. Использование ответчиков также повышает точность и надежность радиолокационного способа. В указанных аналогах, применяющих радиолокационный способ, задача опознавания радиолокационной цели не рассматривается и формируется лишь сигнал о приближении соседнего ЛА без определения его номера. Таким образом, подобные способы определения относительного положения практически пригодны только для группы из двух ЛА.
Существенным недостатком радиолокационного способа является сложность реализации. Например, в [3] для обзора пространства вокруг ЛА предлагается применить шесть локаторов. Более простым в реализации является дальномерный метод [5] с использованием ответчиков, который решает задачу измерения дальности между ЛА и задачу опознавания. Для реализации этого способа не требуется использовать узконаправленные антенны, но недостатком дальномерного способа является отсутствие информации об угловом положении соседних ЛА.
Способ-прототип [3] состоит в том, что предлагается способ определения относительного положения ЛА при межсамолетной навигации, предусматривающий для каждого ЛА определение относительного положения соседних ЛА по отношению к данному ЛА первым и вторым способами, совместную комплексную обработку информации об относительном положении ЛА, полученной первым и вторым способами, при этом первый способ предусматривает определение навигационной информации каждым ЛА, передачу и прием ее через каналы информационного обмена ЛА, а второй способ предусматривает определение радиолокационной информации путем передачи и приема зондирующих сигналов каждым ЛА через приемоизлучающую антенну для определения относительных координат соседних ЛА.
Блок-схема последовательности действий по способу-прототипу и расшифровка обозначений приведены в Приложениях 1 и 2.
Общим недостатком прототипа и аналогов изобретения является низкая точность и надежность дополнительных способов определения относительного положения. Точность и надежность измерений можно повысить, если использовать метод вторичной локации с ответчиком. Такой способ измерения дальности применяется также в дальномерной системе [5]. Однако при использовании ответчика невозможно создать всенаправленную антенну, и на ЛА устанавливают систему из нескольких антенн. В связи с тем, что измерение дальности осуществляется между антеннами запросчика и ответчика, возникает неопределенность в измерениях дальности в том случае, если используется несколько антенн, установленных в различных частях ЛА. Эта неопределенность несущественна, если погрешность дальномера намного больше размеров ЛА. Например, при использовании стандартного дальномера DME [7] погрешность на малых дальностях превышает 200 м, что существенно больше размеров ЛА. Такая высокая погрешность объясняется малой шириной спектра сигналов DME, но если для измерений использовать широкополосный сигнал, погрешность дальномерных измерений снижается до единиц метров, и при определении дальности до ЛА необходимо учитывать положение антенн на корпусе ЛА. В существующих аналогах положение антенн на корпусе ЛА не учитывается.
Задачей заявляемого способа является повышение точности и надежности определения относительного положения ЛА на малых дальностях. Поставленная задача решается следующим образом.
Предлагается способ определения относительного положения ЛА при межсамолетной навигации, предусматривающий для каждого ЛА определение относительного положения соседних ЛА по отношению к данному ЛА первым и вторым способами, совместную комплексную обработку информации об относительном положении ЛА, полученной первым и вторым способами, при этом первый способ предусматривает определение навигационной информации каждым ЛА, передачу и прием ее через каналы информационного обмена ЛА, а второй способ предусматривает определение радиолокационной информации путем передачи и приема зондирующих сигналов каждым ЛА через приемоизлучающую антенну и определение относительных координат соседних ЛА,
при этом в первом способе определения относительного положения соседних ЛА по отношению к данному ЛА дополнительно определяют углы ориентации данного ЛА, а во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА формируют, исходя из навигационной информации, вектор положения приемоизлучающей антенны для каждого ЛА в локальной системе координат (ЛСК) с учетом упомянутых углов ориентации, передают в общем информационном пакете данного ЛА сообщение о координатах упомянутого вектора положения антенны другим ЛА, выполняют прием упомянутых сообщений соседних ЛА, вычисляют разности векторов положения приемоизлучающих антенн данного и соседних ЛА, с помощью которых вычисляют уточненные относительные координаты соседних ЛА, и используют упомянутые уточненные относительные координаты в комплексной обработке информации об относительном положении ЛА для формирования уточненного относительного положения соседних ЛА по отношению к данному ЛА, при этом погрешность второго способа определения относительного положения ЛА зависит от величин модулей векторов положения антенн данного и соседнего ЛА и должна соответствовать неравенству:
Figure 00000001
где σ2 - погрешность второго способа определения относительного положения ЛА; |V1| и |V2| - модули векторов положения антенн данного и соседнего ЛА.
Предлагается вариант способа, в котором на каждом ЛА формируют базу данных, содержащую векторы положения приемоизлучающих антенн в связанной с ЛА системе координат (ССК), затем с помощью навигационной информации выполняют преобразование вектора положения используемой в данный момент времени приемоизлучающей антенны в ЛСК и передают координаты упомянутого вектора положения соседним ЛА.
Предлагается также вариант способа, в котором во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют метод вторичной радиолокации, при этом используют направленную антенну для передачи запросных сигналов на данном ЛА и всенаправленную антенную систему для формирования ответных сигналов на соседних ЛА.
Предлагается также вариант способа, в котором во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют дальномерный метод, при этом на данном и соседних ЛА используют всенаправленную антенную систему для передачи и приема запросных и ответных сигналов.
Предлагается также вариант способа, в котором во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют псевдодальномерный метод, при этом ответные сигналы не излучаются, а моменты времени излучения зондирующих сигналов всех ЛА согласованы с общей для них временной шкалой, причем для коррекции временной шкалы каждого ЛА также применяется упомянутый дальномерный метод.
Суть заявляемого способа поясняется с помощью Фиг. 1, 2, 3 и 4.
На Фиг. 1 представлена блок-схема основной последовательности операций предложенного способа определения относительного положения ЛА. Операции, используемые в способе-прототипе, выделены прямоугольниками с тонкими линиями, вновь предложенные операции выделены прямоугольниками с толстыми линиями.
На Фиг. 2 приведен пример расположения антенн на ЛА.
На Фиг. 3 дано векторное представление задачи определения относительного положения центра масс соседнего ЛА методом вторичной радиолокации.
На Фиг. 4 дано векторное представление задачи определения относительного положения центра масс соседнего ЛА дальномерным методом.
В приложении 1 раскрыта блок-схема основной последовательности операций, выполняемых в способе-прототипе.
В приложении 2 приведена расшифровка обозначений, используемых на Фиг. 1 и на блок-схеме основной последовательности операций, выполняемых в способе-прототипе.
Способ согласно Фиг. 1 и Приложению 1 включает характерные для способа-прототипа действия: определение навигационной информации данного ЛА 1, передача навигационной информации соседним ЛА 2, прием навигационной информации соседних ЛА 3, определение радиолокационной информации путем передачи и приема зондирующих сигналов 4, определение относительных координат соседних ЛА 5, комплексная обработка информации об относительном положении ЛА 6. Операции 1-3 составляют 1-й способ определения относительного положения, а операции 4 и 5 составляют 2-й способ.
Предложены новые действия, реализующие заявленный способ. Новизна способа согласно Фиг. 1 состоит в том, что в процессе определения навигационной информации данного ЛА 1 выполняется формирование не только навигационной информации данного ЛА, например координат, как в прототипе, но и формирование углов ориентации данного ЛА, которые, совместно с информацией о координатах приемоизлучающих антенн данного ЛА в ССК, хранящейся в базе данных 8, используются для формирования вектора положения приемоизлучающей антенны в ЛСК для данного ЛА 7. При этом координаты положения приемоизлучающей антенны данного ЛА в ЛСК включаются в навигационную информацию для передачи соседним ЛА 2. Далее, информация о положении приемоизлучающих антенн данного ЛА и соседних ЛА, полученная при приеме навигационной информации соседних ЛА 3, используется для вычисления разности векторов положения приемоизлучающих антенн данного и соседних ЛА 9, после чего вычисляются уточненные относительные координаты соседних ЛА 10, которые, совместно с навигационной информацией (координатами) данного и соседних ЛА, используются в комплексной обработке информации об относительном положении ЛА 6 для формирования уточненного относительного положения соседних ЛА.
Работа заявляемого способа происходит следующим образом. Действия 1, 4, 5 и 6 выполняются полностью аналогично прототипу. Действия 2 и 3 отличаются добавлением в общий пакет навигационной информации данных о векторе положения приемоизлучающей (рабочей) антенны, при этом осуществляется кодирование и декодирование упомянутых данных.
Определение навигационной информации данного ЛА 1 включает в себя, помимо определения пространственных координат ЛА (например, с помощью спутниковой навигационной системы), еще и определение углов ориентации ЛА (например, с помощью инерциальной навигационной системы). Определение относительных координат соседних ЛА 5 с использованием радиолокационной информации, получаемой путем передачи и приема зондирующих сигналов 4, может осуществляться с помощью радиолокационного способа [3, 4], дальномерного способа [5] и других способов. Комплексная обработка информации об относительном положении ЛА 6 обычно строится на базе алгоритма калмановской фильтрации [9]. В простейшем варианте осуществляется весовое суммирование двух оценок относительных координат соседних ЛА: оценки, полученной первым способом в результате вычитания из принятых в навигационном сообщении пространственных координат соседних ЛА 3 пространственных координат данного ЛА 1, и оценки, полученной вторым способом 5.
Определение относительных координат соседних ЛА в случае использования нескольких приемоизлучающих антенн, установленных в различных частях ЛА, выполняется следующим образом. Допустим, приемоизлучающая антенна данного ЛА А0 установлена в носовой части, а на соседнем ЛА (Ai) - на хвостовом стабилизаторе (Фиг. 2). На каждом ЛА по угловой ориентации (действие 1) и информации о координатах приемоизлучающих антенн данного ЛА в ССК, хранящейся в базе данных векторов положения приемоизлучающих антенн в ССК для данного ЛА 7, формируют вектор положения приемоизлучающей (рабочей) антенны в ЛСК 8. Координаты этого вектора кодируют и формируют общий пакет навигационной информации, включающий в себя пространственные координаты ЛА и координаты вектора положения упомянутой антенны в ЛСК. При этом пространственные координаты ЛА определяются в единой для группы ЛА ЛСК с началом в заданной точке, а координаты вектора положения приемоизлучающей антенны - в ЛСК с началом в центре масс ЛА (точки О0 и Oi на Фиг. 2). Сформированный общий пакет навигационной информации далее по каналу информационного обмена передается всем соседним ЛА 2, где выполняется прием и декодирование пакета навигационной информации 3. В результате этих операций на борту каждого ЛА имеется возможность вычисления разности векторов положения антенн данного и соседнего ЛА 9 с последующим вычислением уточненных относительных координат соседних ЛА 10, причем алгоритм такого вычисления зависит от способа определения относительных координат соседних ЛА 5.
Предложенные действия целесообразно использовать в случае достаточно высокой точности второго способа определения относительного положения ЛА. Погрешность второго способа зависит от величин модулей векторов положения антенн данного и соседнего ЛА; при высокой точности она должна соответствовать неравенству (1). Если указанное неравенство не выполняется, учитывать положение приемоизлучающих антенн на ЛА нецелесообразно.
Ниже рассмотрены варианты, развивающие и уточняющие предложенный способ.
Предлагается вариант способа, в котором для формирования вектора положения приемоизлучающей антенны в ЛСК на каждом ЛА формируют базу данных, содержащую векторы положения приемоизлучающих антенн в ССК (начало ССК - в центре масс ЛА), затем с помощью навигационной информации выполняют преобразование вектора положения используемой в данный момент времени приемоизлучающей антенны в локальную систему координат и передают координаты упомянутого вектора положения соседним ЛА. Преобразование упомянутого вектора положения используемой в данный момент времени (рабочей) приемоизлучающей антенны в ЛСК (т.е. поворот системы координат [8]) выполняют с использованием информации об угловой ориентации ЛА, включающей в себя углы крена, тангажа и рысканья ЛА (действие 1 на Фиг. 1). Например, при глубокой интеграции бесплатформенной инерциальной навигационной системы (БИНС) и спутниковой радионавигационной системы (СРНС) для поворота системы координат целесообразно использовать косинусную матрицу или кватернион преобразования, формируемые в БИНС [9].
Предлагается вариант способа, где вычисление уточненных относительных координат соседнего ЛА при использовании радиолокационного способа измерения выполняется следующим образом: во втором (радиолокационном) способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют метод вторичной радиолокации, при этом используют направленную антенну для передачи запросных сигналов на данном ЛА и всенаправленную антенную систему для формирования ответных сигналов на соседних ЛА. Центры масс данного и соседнего ЛА расположены в точках Oo и Oi, соответственно, а антенны для передачи и приема зондирующего и ответного сигналов расположены в точках Ao (данный ЛА) и Ai (соседний ЛА) (см. Фиг. 2 и 3).
Радиолокационный способ позволяет измерить вектор относительного положения Хотн, расположенный на Фиг. 3 между антеннами Ao и Ai. Чтобы определить уточненный вектор положения Хуточн, связывающий центры масс данного и соседнего ЛА, смещаем вектор Хотн так, что его начало оказывается в точке С, а конец - в точке Oi (Фиг. 3).
Рассмотрим треугольник OoCAo. Сторона OoAo образована вектором положения антенны относительно центра масс данного ЛА, сторона AoC - вектором положения антенны соседнего ЛА с обратным знаком: -Vi, а сторона OoC является разностью векторов Δ, определяемой выражением:
Figure 00000002
Вектор уточненного положения Хуточн определяется из треугольника OoOiC как сумма векторов Хотн (сторона COi) и А (сторона OoC):
Figure 00000003
Для вычисления вектора (2) необходимо представить векторы Vo и Vi в виде:
Figure 00000004
,
Figure 00000005
тогда
Figure 00000006
Это выражение описывает действие 9 (Фиг. 1), причем для реализации этого действия необходимо формировать, передавать и принимать данные вектора Vi соседнего ЛА (действия 8, 2, 3 на Фиг. 1).
При вычислении выражения (3) радиолокационное измерение, содержащее дальность d, азимут α и угол места β преобразуется в вектор Хотн в виде
Figure 00000007
Тогда уточненное значение вектора относительного положения Хуточн определяется выражением
Figure 00000008
Это выражение описывает действие 10 на Фиг. 1 для метода вторичной радиолокации.
Во всех расчетах предполагается, что ось х направлена на Север (угол азимута измеряется от направления на Север), ось y - на Восток, а ось z - вниз. Поэтому знак последнего элемента вектора Хотн в выражении (5) инвертирован.
Предлагается вариант способа для вычисления уточненных относительных координат соседнего ЛА, при котором во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют дальномерный метод, при этом на данном и соседних ЛА используют всенаправленную антенную систему для передачи и приема запросных и ответных сигналов.
Дальномерный способ позволяет измерить только расстояние между антеннами Ao и Ai, т.е. относительную дальность Dотн (Фиг. 4). При этом требуется определить расстояние между центрами масс данного и соседнего ЛА, которые расположены в точках Oo и Oi, т.е. требуется найти Dуточн.
В данном случае угловая информация не определяется, однако для точки Oi определяются относительные координаты [xотн yотн zотн] путем вычитания из координат соседнего ЛА координат данного ЛА, полученных первым (навигационным) способом (действия 1-3 прототипа, Приложение 1). Затем можно определить направляющие косинусы отрезка OoOi (вектора Dуточн):
Figure 00000009
Figure 00000010
Figure 00000011
Далее строится треугольник AoOoC и определяется вектор Δ (отрезок OoC):
Figure 00000012
его модуль:
Figure 00000013
и его направляющие косинусы:
Figure 00000014
Figure 00000015
Figure 00000016
Выражения (6)-(7) описывают действие 9 (Фиг. 1).
Используя направляющие косинусы (6) и (8), вычисляется косинус угла γ между отрезками OoC и OoOi:
Figure 00000017
Уточненное значение дальности между центрами масс данного и соседнего ЛА Dуточн определяется как неизвестная сторона треугольника COoOi, в котором сторона OiC равна Dотн, сторона OoC равна
Figure 00000018
и угол γ определяется выражением (9).
Если
Figure 00000019
(расстояние между ЛА всегда превышает их размеры), решаемая задача имеет единственное решение.
С помощью теоремы синусов [8] определим угол δ:
Figure 00000020
Затем определим угол δ и угол ϕ из выражения ϕ=π-δ-γ. Тогда уточненное значение дальности равно
Figure 00000021
Это выражение описывает действие 10 (Фиг. 1) для дальномерного метода.
Предлагается вариант способа, в котором во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют псевдодальномерный метод. При этом ответные сигналы не излучаются, а моменты времени излучения зондирующих сигналов всех ЛА согласованы с общей для них временной шкалой, причем для коррекции временной шкалы каждого ЛА также применяется упомянутый дальномерный метод.
Псевдодальномерный способ позволяет измерить относительные дальности Dотн (Фиг. 4) с дополнительной погрешностью, обусловленной сдвигом временных шкал ЛА. Эта погрешность на каждом ЛА должна быть скомпенсирована с помощью оценки сдвига временной шкалы, формируемой при определении навигационной информации 1 (например, с помощью спутниковой навигационной системы). Если точность такой оценки сдвига временной шкалы недостаточна, то возможно периодическое применение дальномерного метода, позволяющего снизить дополнительную погрешностью до уровня одного метра. После компенсации сдвига временных шкал, относительные дальности Dотн используются для вычисления уточненных относительных координат соседних ЛА 10 аналогично описанным ранее действиям (в соответствии с выражениями (6)-(10)).
Комплексная обработка информации об относительном положении ЛА (6 на Фиг. 1) для формирования уточненного относительного положения соседних ЛА по отношению к данному ЛА выполняется следующим образом.
В первом способе определения относительного положения определяются координаты данного ЛА X1Д (действие 1) и соседнего ЛА Х1С (действие 3). При комплексной обработке информации об относительном положении ЛА 6 вычисляется разность
Figure 00000022
которая представляет собой относительные координаты соседнего ЛА. Во втором способе определения относительного положения определяются относительные координаты соседнего ЛА
Figure 00000023
(действие 5). Кроме того, в обоих способах определяются элементы корреляционных матриц ошибок определения координат: Р1С - корреляционная матрица ошибок определения координат соседнего ЛА первым способом,
Figure 00000024
- корреляционная матрица ошибок определения относительных координат соседнего ЛА первым способом,
Figure 00000025
- корреляционная матрица ошибок определения относительных координат соседнего ЛА вторым способом
Объединение навигационной информации, получаемой первым и вторым способами, и определение оптимальной оценки
Figure 00000026
выполняется с помощью комплексного алгоритма [9]:
Figure 00000027
где K - оптимальный коэффициент усиления:
Figure 00000028
Поскольку
Figure 00000029
комплексный алгоритм определения оптимальной оценки
Figure 00000030
можно представить также в следующей форме:
Figure 00000031
Погрешность определения навигационных параметров ЛА по первому способу навигации характеризуют элементы матрицы
Figure 00000032
погрешность определения навигационных параметров ЛА по второму способу навигации характеризуют элементы матрицы
Figure 00000033
. В зависимости от погрешностей определения навигационных параметров ЛА в алгоритме комплексной обработки выполняется вычисление весовых коэффициентов (I-K и K), с которыми учитываются оценки координат по первому и второму способам. Корреляционные матрицы могут вычисляться в реальном времени (действия 1 и 5) либо храниться в базе данных. При этом корреляционная матрица ошибок определения относительных координат ЛА с помощью комплексного алгоритма Р равна:
Figure 00000034
В режиме группового полета ЛА первый способ (спутниковой навигации) обеспечивает лучшие точностные характеристики (элементы матрицы K существенно меньше элементов матрицы I-K). Второй способ является альтернативным дополнением и используется в форс-мажорных обстоятельствах (интенсивный маневр ЛА, наличие эффектов радиоинтерференции и пр.). Именно в этих обстоятельствах второй способ позволяет выявить неработоспособность спутникового способа навигации и повысить надежность предложенного способа определения относительного положения ЛА. Если второй способ также обеспечивает высокие точностные характеристики (элементы матрицы K соизмеримы с элементами матрицы I-K), то использование предложенного способа позволяет повысить и точность определения относительного положения соседних ЛА.
Таким образом, в предложенном способе введены новые операции и новые сочетания их с известными операциями, связанные с учетом положения приемоизлучающих антенн на ЛА:
- формирование в радиолокационном способе вектора положения приемоизлучающей антенны в локальной системе координат с учетом данных по ориентации ЛА, формируемых в навигационном способе;
- вычисление разности векторов положения антенн данного и соседних ЛА;
- вычисление уточненных относительных координат ЛА.
При этом существенно, что:
- при формировании вектора положения приемоизлучающей антенны в локальной системе координат учитывается информация о координатах антенн, хранящаяся в базе данных, а также угловая ориентация ЛА;
- для вычисления разности векторов положения антенн данного и соседних ЛА используется канал информационного обмена ЛА;
- вычисление уточненных относительных координат ЛА зависит от второго способа определения относительного положения соседних ЛА, причем варианты его реализации расширяют функциональные возможности предложенного способа.
Указанные действия определяют существенную новизну предложенного способа. Эффективность предложенного способа подтверждена результатами имитационного цифрового и полунатурного моделирования на комплексных стендах при разработке и отладке программного обеспечения бортовых навигационно-посадочных комплексов перспективных ЛА. При этом во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА применен дальномерный метод с использованием сложного фазоманипулированного зондирующего сигнала (погрешность измерения дальности с вероятностью 0,95 составила 1,2 м).
Проведенные летные проверки на двух самолетах типа Су-27 показали техническую целесообразность и эффективность предложенного способа.
Заявляемое изобретение является перспективным для решения проблем повышения надежности и точности систем межсамолетной навигации нового поколения и, в конечном итоге, для снижения вероятности авиационных катастроф.
Таким образом, из вышеприведенного следует новизна и полезность предложенного способа.
Литература
1. Патент RU 2222781, кл. G01C 21/00, G01C 23/00, дата 27.01.2004, «Информационная система межсамолетной навигации».
2. Patent GB 2476149, «Process and automatic control system of the formation of flight of aircraft without pilot».
3. Patent US 7,024,309 B2 кл. G01S 13/93 Apr. 4, 2006 «Autonomous station keeping system for formation flight».
4. Patent US 6,926,233 кл. B64C 13/20, G05D 1/104 Aug. 9, 2005 «Automatic formation flight control system (AFFCS) - a system for automatic formation flight control of vehicles not limited to aircraft, helicopters, or space platforms».
5. Патент RU 2478979 C1, кл. G01S 5/14, дата 11.11.2011, «Дальномерная радиотехническая система ближней навигации летательных аппаратов».
6. Navstar GPS Space Segment/Navigation User interfaces, ICD-GPS-200C // ARINC Research Corporation, 10 October 1993. Режим доступа http://www.arinc.com/gps
7. Сосновский А.А. и др. Авиационная радионавигация, справочник. - М.: Транспорт, 1990.
8. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М., Наука, 1965.
9. Roger R.M. Applied mathematics in integrated navigation systems. AIAA, 2007.

Claims (7)

1. Способ определения относительного положения летательных аппаратов (ЛА) при межсамолетной навигации, предусматривающий для каждого ЛА определение относительного положения соседних ЛА по отношению к данному ЛА первым и вторым способами, совместную комплексную обработку информации об относительном положении ЛА, полученной первым и вторым способами, при этом первый способ предусматривает определение навигационной информации каждым ЛА, передачу и прием ее через каналы информационного обмена ЛА, а второй способ предусматривает определение радиолокационной информации путем передачи и приема зондирующих сигналов каждым ЛА через приемоизлучающую антенну для определения относительных координат соседних ЛА, отличающийся тем, что в первом способе определения относительного положения соседних ЛА по отношению к данному ЛА дополнительно определяют углы ориентации данного ЛА, а во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА формируют, исходя из навигационной информации, вектор положения приемоизлучающей антенны для каждого ЛА в локальной системе координат с учетом упомянутых углов ориентации, передают в общем информационном пакете данного ЛА сообщение о координатах упомянутого вектора положения антенны другим ЛА, выполняют прием упомянутых сообщений соседних ЛА, вычисляют разности векторов положения приемоизлучающих антенн данного и соседних ЛА, с помощью которых вычисляют уточненные относительные координаты соседних ЛА, и используют упомянутые уточненные относительные координаты в комплексной обработке информации об относительном положении ЛА для формирования уточненного относительного положения соседних ЛА по отношению к данному ЛА, при этом погрешность второго способа определения относительного положения ЛА зависит от величин модулей векторов положения антенн данного и соседнего ЛА и должна соответствовать неравенству:
σ2<<|V1|+|V2|,
где σ2 - погрешность второго способа определения относительного положения ЛА; |V1| и |V2| - модули векторов положения антенн данного и соседнего ЛА.
2. Способ по п. 1, отличающийся тем, что на каждом ЛА формируют базу данных, содержащую векторы положения приемоизлучающих антенн в связанной с ЛА системе координат, затем с помощью навигационной информации выполняют преобразование вектора положения используемой в данный момент времени приемоизлучающей антенны в локальную систему координат и передают координаты упомянутого вектора положения соседним ЛА.
3. Способ по п. 1, отличающийся тем, что во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют метод вторичной радиолокации, при этом используют направленную антенну для передачи запросных сигналов на данном ЛА и всенаправленную антенную систему для формирования ответных сигналов на соседних ЛА.
4. Способ по п. 1, отличающийся тем, что во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют дальномерный метод, при этом на данном и соседних ЛА используют всенаправленную антенную систему для передачи и приема запросных и ответных сигналов.
5. Способ по п. 1, отличающийся тем, что во втором способе определения относительного положения соседних ЛА по отношению к данному ЛА для передачи и приема упомянутых зондирующих сигналов применяют псевдодальномерный метод, при этом ответные сигналы не излучаются, а моменты времени излучения зондирующих сигналов всех ЛА согласованы с общей для них временной шкалой, причем для коррекции временной шкалы каждого ЛА периодически также применяется упомянутый дальномерный метод.
RU2015130237A 2015-07-21 2015-07-21 Способ определения относительного положения летательных аппаратов при межсамолетной навигации RU2606241C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130237A RU2606241C1 (ru) 2015-07-21 2015-07-21 Способ определения относительного положения летательных аппаратов при межсамолетной навигации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130237A RU2606241C1 (ru) 2015-07-21 2015-07-21 Способ определения относительного положения летательных аппаратов при межсамолетной навигации

Publications (1)

Publication Number Publication Date
RU2606241C1 true RU2606241C1 (ru) 2017-01-10

Family

ID=58452470

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130237A RU2606241C1 (ru) 2015-07-21 2015-07-21 Способ определения относительного положения летательных аппаратов при межсамолетной навигации

Country Status (1)

Country Link
RU (1) RU2606241C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738039C1 (ru) * 2020-03-13 2020-12-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Способ определения координат группы летательных аппаратов при межсамолетной навигации
RU2783257C1 (ru) * 2021-05-21 2022-11-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Способ и система определения относительного положения летательных аппаратов
US11536797B2 (en) * 2016-11-04 2022-12-27 Trustees Of Tufts College Mobile network localization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2152625C1 (ru) * 1998-05-18 2000-07-10 Научно-производственное объединение прикладной механики Способ определения ориентации объектов в пространстве, дальности, пеленга, координат местоположения и составляющих вектора скорости по навигационным радиосигналам космических аппаратов спутниковых радионавигационных систем
RU2392635C2 (ru) * 2008-06-04 2010-06-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" Способ обнаружения и определения координат искомого объекта
RU2504733C1 (ru) * 2012-07-27 2014-01-20 Открытое акционерное общество "Научно-производственная фирма "Меридиан" Способ определения относительных уходов навигационных систем подвижных носителей и система для его осуществления
RU2536320C1 (ru) * 2013-07-26 2014-12-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ навигации летательных аппаратов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2152625C1 (ru) * 1998-05-18 2000-07-10 Научно-производственное объединение прикладной механики Способ определения ориентации объектов в пространстве, дальности, пеленга, координат местоположения и составляющих вектора скорости по навигационным радиосигналам космических аппаратов спутниковых радионавигационных систем
RU2392635C2 (ru) * 2008-06-04 2010-06-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" Способ обнаружения и определения координат искомого объекта
RU2504733C1 (ru) * 2012-07-27 2014-01-20 Открытое акционерное общество "Научно-производственная фирма "Меридиан" Способ определения относительных уходов навигационных систем подвижных носителей и система для его осуществления
RU2536320C1 (ru) * 2013-07-26 2014-12-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ навигации летательных аппаратов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536797B2 (en) * 2016-11-04 2022-12-27 Trustees Of Tufts College Mobile network localization
RU2738039C1 (ru) * 2020-03-13 2020-12-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Способ определения координат группы летательных аппаратов при межсамолетной навигации
RU2783257C1 (ru) * 2021-05-21 2022-11-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Способ и система определения относительного положения летательных аппаратов

Similar Documents

Publication Publication Date Title
JP4853490B2 (ja) 移動体間干渉測位システム、装置及び方法
RU2606240C2 (ru) Навигация относительно площадки с использованием измерений расстояния
US9719788B2 (en) Determining spatial orientation information of a body from multiple electromagnetic signals
US11821997B2 (en) Techniques for determining geolocations
JP2010500578A5 (ru)
JP5642919B2 (ja) 搬送波位相式移動体測位装置
RU2558699C1 (ru) Комплексный способ навигации летательных аппаратов
CN114879197A (zh) 一种星上ddm实时定标的方法
RU2584689C1 (ru) Многопозиционная система определения местоположения воздушных судов
JP5077054B2 (ja) 移動体用測位システム
RU2606241C1 (ru) Способ определения относительного положения летательных аппаратов при межсамолетной навигации
RU2152625C1 (ru) Способ определения ориентации объектов в пространстве, дальности, пеленга, координат местоположения и составляющих вектора скорости по навигационным радиосигналам космических аппаратов спутниковых радионавигационных систем
JP2020112494A (ja) 衛星選択装置、及びプログラム
US12103572B2 (en) Systems and methods for estimating vehicle locations
RU120077U1 (ru) Бортовой радиотехнический комплекс навигации и посадки летательных аппаратов морского базирования
RU137394U1 (ru) Устройство обработки информации сети разнесенных в пространстве постов пеленгации
RU2483324C1 (ru) Способ навигации летательного аппарата по радиолокационным изображениям земной поверхности
CN105115494B (zh) 一种基于“准短基线”的惯性导航/水声组合导航方法
US20200183019A1 (en) Information processing apparatus, information processing system, method for outputting result of positioning, and non-transitory computer-readable medium storing program
US20050143872A1 (en) Aircraft gps instrumentation system and relative method
JP2003232843A (ja) 電波測距装置
JP2019109064A (ja) アクティブセンサーの信号処理システム、信号処理方法及び信号処理プログラム
Baine et al. Algorithm for geodetic positioning based on angle-of-arrival of automatic dependent surveillance-broadcasts
RU2703806C1 (ru) Бортовая система беспилотного летательного аппарата (БЛА) с автономной коррекцией координат
Kharin et al. Developing and Assessing the Airborne Integrated Data Processing Characteristics from Inertial and Radio-Technical Systems in Flight and Navigation System