RU2731275C2 - Способ и устройство для изготовления детали посредством последовательного нанесения слоев - Google Patents

Способ и устройство для изготовления детали посредством последовательного нанесения слоев Download PDF

Info

Publication number
RU2731275C2
RU2731275C2 RU2018130732A RU2018130732A RU2731275C2 RU 2731275 C2 RU2731275 C2 RU 2731275C2 RU 2018130732 A RU2018130732 A RU 2018130732A RU 2018130732 A RU2018130732 A RU 2018130732A RU 2731275 C2 RU2731275 C2 RU 2731275C2
Authority
RU
Russia
Prior art keywords
roller
metal
layer
bead
compression
Prior art date
Application number
RU2018130732A
Other languages
English (en)
Other versions
RU2018130732A3 (ru
RU2018130732A (ru
Inventor
Даниель КОРНЮ
Джавад БАДРЕДДИН
Венсан ДЕССОЛИ
Original Assignee
Сафран
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран filed Critical Сафран
Publication of RU2018130732A publication Critical patent/RU2018130732A/ru
Publication of RU2018130732A3 publication Critical patent/RU2018130732A3/ru
Application granted granted Critical
Publication of RU2731275C2 publication Critical patent/RU2731275C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F2003/166Surface calibration, blasting, burnishing, sizing, coining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Adornments (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)
  • Laser Beam Processing (AREA)

Abstract

Группа изобретений относится к изготовлению металлических деталей последовательным нанесением слоев. Способ содержит этапы, на которых: а) наносят первый слой расплавленного металла на подложку для формирования на подложке первого металлического валика, b) на первый валик наносят второй слой расплавленного металла, для формирования на первом валике второго металлического валика, и с) этапы а) и b) повторяют для каждого нового металлического слоя, наносимого сверху предыдущего валика, вплоть до формирования упомянутой по меньшей мере части детали. После n этапов нанесения, где n больше или равно 1, проводят этап сжатия сформированного валика. Сжатие осуществляют в горячем состоянии перед полным охлаждением упомянутого валика. Этап сжатия осуществляют посредством дробеструйной обработки валика при помощи частиц материала, идентичного с материалом порошка, используемого для изготовления валиков. Предложено устройство для осуществления способа, которое содержит лазерную головку для плавления присадочного металла с целью формирования валика, и сопло для сжатия упомянутого валика. Обеспечивается снижение остаточных напряжений в слоях и анизотропия микроструктуры для получения бездефектных деталей. 2 н. и 4 з.п. ф-лы, 4 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к способу и к устройству для изготовления детали с применением аддитивной технологии посредством последовательного нанесения слоев.
УРОВЕНЬ ТЕХНИКИ
Предшествующий уровень техники представлен документами FR-A1-2 816 836, EP-A1-0 529 816, US-A1-2004/099983, EP-A1-2 135 698, GB-A-2 508 335 и FR-A1-2 998 496.
Существуют по меньшей мере два типа аддитивного изготовления детали: деталь выполняют либо посредством последовательного нанесения расплавленного материала (фиг.1), либо посредством выборочного расплавления слоев порошка.
Устройство, показанное на фиг. 1, позволяет изготавливать деталь посредством последовательного нанесения слоев или расплавленного материала. Деталь выполняют путем наложения друг на друга слоев 10 на подложке 80. Устройство содержит лазерную головку 20, которая излучает пучок 22, позволяющий расплавлять материал, такой как металлический сплав.
Эта аддитивная технология изготовления известна под разными названиями, большинство из которых являются торговыми знаками различных конструкторов устройств или исследовательских учреждений: лазерное осаждение металла [Laser Metal Deposition (LMD)], прямое осаждение металла [Direct Metal Deposition (DMD)], прямое лазерное осаждение [Direct Laser Deposition (DLD)], лазерное формирование [Laser Engineered Net Shaping (LENS)], лазерное нанесение покрытия [laser cladding], сварка посредством лазерного осаждения и сварка посредством расплавления порошка.
Лазерный пучок 22 служит для получения ванны расплава на подложке 80, на которой нанесен порошок 24, например, при помощи лазерной головки 20, как показано на чертеже. Порошок плавится, образуя слой 10 или валик, сцепляющийся с подложкой за счет плавления. Затем на первый валик наносят несколько слоев или валиков для выполнения детали. Как правило, лазерной головкой 20 управляет робот.
Можно использовать широкий ассортимент сплавов титана, никеля, кобальта, WC (карбида вольфрама) и стали, в том числе Ti-Al6-4V, Inconel-718, Rene-142 и Stellite-6.
Типовыми лазерными источниками являются СО2, волокна Yb и диск Nd-YAG.
Эту технологию применяют, например, в области авиации для изготовления деталей авиационного газотурбинного двигателя.
Во время аддитивного изготовления детали с применением вышеупомянутой технологии можно наблюдать деформацию массивных зон, связанную с увеличением остаточных напряжений. Быстрое затвердевание валик за валиком или слой за слоем приводит к ряду недостатков: риск окисления между слоями, который может привести к снижению плотности металла (ухудшение механических характеристик и плохое сцепление между слоями), деформация валика в случае больших напряжений, что приводит к смещению верхних слоев, и т.д. Коме того, направленная передача тепла в конструктивную подложку приводит к росту столбчатых кристаллов, и конечный материал является анизотропным. Действительно, необходимо максимально контролировать возникновение остаточных напряжений и анизотропию микроструктуры для получения бездефектных деталей.
Настоящим изобретением предложено простое, эффективное и экономичное решение этих проблем.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Изобретением предложен способ изготовления по меньшей мере части детали посредством последовательного нанесения слоев, содержащий этапы, на которых:
а) наносят первый слой расплавленного металла на подложку, чтобы сформировать на подложке первый металлический валик,
b) на упомянутый первый валик наносят второй слой расплавленного металла, чтобы на упомянутом первом валике сформировать второй металлический валик, и
с) этапы а) и b) повторяют для каждого нового металлического слоя, наносимого сверху предыдущего валика, вплоть до формирования упомянутой по меньшей мере части детали,
отличающийся тем, что после n этапов нанесения, где n больше или равно 1, содержит этап сжатия сформированного валика, и тем, что сжатие осуществляют в горячем состоянии, то есть до полного охлаждения упомянутого валика.
Таким образом, изобретением предложено улучшать свойства валиков, обрабатывая их сразу после их формирования и, следовательно, до нанесения на них нового валика. Обработка посредством сжатия валика за валиком или слоя за слоем обеспечивает изменение/устранение напряжений, действующих на валики, упрочнение их материала и даже травление оксидов, что позволяет решать проблемы, связанные с аспектами деформации, структурной анизотропии и дефектов сцепления. За счет поверхностного упрочнения производят регенерацию структуры, чтобы избежать эпитаксиального роста. Можно также применить дробеструйную обработку, которая служит для удаления слоя оксида перед нанесением следующего слоя, позволяет улучшить сцепление или изменить микроструктуру слоя, подвергаемого дробеструйной обработке.
Для этого изобретением предложено объединить два очень разных процесса, а именно аддитивное изготовление посредством последовательного нанесения слоев и сжатие, например, посредством дробеструйной обработки. В рамках этих двух процессов можно использовать материалы в виде порошка или частиц, которые могут быть одинаковыми, чтобы не загрязнять деталь в ходе формирования.
Заявленный способ может включать в себя один или несколько следующих этапов или отличительных признаков, рассматриваемых отдельно друг от друга или в комбинации друг с другом:
- этап сжатия осуществляют, когда температура упомянутого валика превышает 30°С, предпочтительно превышает 100°С, еще предпочтительнее превышает 200°С, например, составляет около 300°С,
- этап сжатия осуществляют посредством нагнетания потока газа, например, сжатого воздуха или азота, на упомянутый валик,
- этап сжатия осуществляют посредством дробеструйной обработки упомянутого валика,
- дробеструйную обработку осуществляют при помощи частиц материала, идентичного с материалом порошка, используемого для изготовления валиков, при этом упомянутые частицы предпочтительно имеют размер, отличный от размера частиц упомянутого порошка. Это позволяет упростить переработку и контроль за расходованием порошков или избежать загрязнения другими сплавами.
- дробеструйную обработку осуществляют при помощи частиц материала, отличного от материала порошка, используемого для изготовления валиков. Это обеспечивает большую гибкость при работе на создаваемых остаточных напряжениях (глубина и достигаемые уровни) за счет выбора значений относительной твердости между выбранными средами и материалом, используемым для аддитивного изготовления,
- этап сжатия осуществляют таким образом, чтобы обеспечивать:
i) введение остаточных напряжений сжатия для противодействия остаточным напряжениям растяжения, появляющимся при плавлении, чтобы минимизировать деформации, и/или
ii) травление возможного слоя оксида, который может появиться на поверхности валика, и/или
iii) изменение первоначальной микроструктуры валика (анизотропной или столбчатой) посредством дробеструйной обработки с целью получения однородной микроструктуры (многонаправленной или с уменьшением размера зерен), и/или
iv) уплотнение осажденного материала, чтобы уменьшить пористость, появляющуюся во время процесса аддитивного изготовления.
Эта последовательность этапа позволяет улучшить конечные механические свойства детали и избежать явлений трещинообразования (этап i) и позволяет также контролировать генерирование одной или нескольких микроструктур в детали. Эти микроструктуры могут быть однородными в масштабе конечной детали или локальными в зависимости от предусмотренного промышленного применения (этап iii).
Объектом изобретения является также устройство для осуществления описанного выше способа, отличающееся тем, что содержит:
- лазерную головку для плавления присадочного металла с целью формирования валика, и
- сопло для сжатия упомянутого валика.
Предпочтительно лазерная головка и сопло установлены на общем роботе-манипуляторе.
КРАТКОЕ ОПИСАНИЕ ФИГУР
Изобретение и его другие детали, отличительные признаки и преимущества будут более очевидны из нижеследующего описания, представленного в качестве не ограничительного примера со ссылками на прилагаемые чертежи, на которых:
Фиг. 1 - схематичный вид в перспективе устройства для аддитивного изготовления детали в соответствии с известным техническим решением.
Фиг. 2 - схематичный вид, иллюстрирующий общий принцип изобретения.
Фиг. 3 - схематичный вид варианта выполнения заявленного устройства.
Фиг. 4 - схематичный вид версии выполнения заявленного устройства.
ПОДРОБНОЕ ОПИСАНИЕ
Аддитивное изготовление имеет целый ряд преимуществ, в том числе сокращение сроков производства, снижение стоимости и постоянных издержек по сравнению с деталью, выполненной посредством формования, литья под давлением или механической обработки в массе.
Вместе с тем, детали, полученные посредством аддитивного изготовления, имеют также недостатки: при затвердевании появляются остаточные напряжения сжатия в каждом слое, которые могут привести к образованию трещин.
Изобретение позволяет преодолеть эти недостатки при помощи устройства изготовления, показанного на фиг. 2, которое содержит:
- первое сопло 100 для осаждения порошка 102 на подложку 80,
- головку 104, излучающую лазерный пучок 106, и
- второе сопло 108 для сжатия валика 110 после его формирования и до нанесения на него нового валика.
В случае, представленном на фиг. 1, функцию сопла 100 можно придать лазерной головке 104. В этом случае получают лазерную головку 104, выполненную с возможностью осаждения порошка 102 на подложке 80, и сопло 108.
После каждого этапа формирования слоя или валика заявленный способ содержит этап сжатия валика 110.
Предпочтительно сжатие валика 110 осуществляют посредством дробеструйной обработки или путем охлаждения валика газом после прохождения пучка 106 по слою, чтобы производить обработку слой за слоем или валик за валиком и применять напряжения сжатия или чтобы добиться желаемой микроструктуры. Дробеструйная обработка или охлаждение дают разные результаты в зависимости от температуры подложки, от расположения головки 104, излучающей пучок 106, и т.д. Эту температуру можно, например, контролировать путем идентификации поверхностных изотерм каждого валика 110.
В частном случае, в котором сжатие валика осуществляют, когда валик находится при окружающей температуре, рабочее расстояние L между слоем и головкой 104 может составлять около 150 мм. Эта головка 104 может иметь диаметр 6 мм, и частицы диаметром около 100 мкм можно осаждать под давлением 0,2-0,8 МПа для осуществления дробеструйной обработки.
В частном случае, в котором сжатие осуществляют, когда валик находится при высокой температуре (например, порядка 300°С), дробеструйную обработку можно производить под давлением 0,6 МПа при помощи шариков размером 1,0 мм. После этой дробеструйной обработки может следовать обработка типа microshot peening (микродробеструйная обработка), которую осуществляют под давлением 0,6 МПа при помощи шариков размером 0,1 мм.
Применение изобретения на валике из сверхпрочной стали (твердость по Виккерсу 600-1000) позволяет достигать поверхностного напряжения примерно от -350 до -500 МПа, максимального напряжения сжатия примерно от -400 до -2000 МПа, максимальной глубины напряжения примерно от 5 до 20 мкм и глубины сжатия примерно от 50 до 100 мкм.
Для осуществления дробеструйной обработки можно использовать управляемое сопло для микродробеструйной обработки с использованием мелкого порошка размером от 10 до 100 мкм. Площадь воздействия может составлять несколько квадратных миллиметров, а глубина воздействия составляет от 50 до 150 мкм.
Это совместимо с процессами прямого лазерного осаждения. Действительно, расплавленные слои имеют толщину примерно от 200 до 500 мкм при прямом лазерном осаждении. Расплавляемые порошки имеют одинаковый гранулометрический состав; можно предусмотреть применение одинаковых порошков, чтобы не загрязнять детали. Дробеструйную обработку производят при тех же порядках величин, что и вышеупомянутый способ аддитивного изготовления.
Что касается напряжений, то можно модулировать изменения напряжений по глубине. Можно также использовать охлаждающий эффект газа-носителя для изменения напряжений и ограничения окисления.
Как было указано выше, сжатие можно также осуществлять при помощи газа-носителя без использования среды, такой как микродробь, чтобы производить закалку валика материала и вводить в него остаточные напряжения. Нагнетаемый газ может быть нейтральным или реактивным газом. Предпочтительно он имеет расход, позволяющий производить охлаждение валика быстрее, чем за счет теплопроводности через подложку.
Сопло 108 для микродробеструйной обработки или для нагнетания потока газа должно следовать за головкой 104, воздействуя на затвердевающий валик с некоторой определяемой задержкой, зависящей, например, от расстояния d между соплом и головкой. Расстояние d может зависеть от температуры охлаждения валика и от температуры при сжатии валика. Предпочтительно необходимо обеспечивать управление ориентацией сопла дробеструйной обработки, отличающееся от управления нагнетательным соплом.
Излучающая головка 104 и второе сопло 108 и даже первое сопло 100 предпочтительно установлены на общем роботе-манипуляторе.
На фиг. 3 и 4 представлены два варианта выполнения заявленного устройства. На фиг. 3 манипулятор 120 является подвижным и может вращаться, например, вокруг вертикальной оси 122. Головка 104 центрована по оси 122, и выходы сопла микродробеструйной обработки находятся на окружности с центром на оси 122. Манипулятор перемещают в плоскости, содержащей ось 122, такой как плоскость чертежа, и сопло 108, находящееся за пучком 106 относительно направления перемещения манипулятора, используют для сжатия валика.
В случае, представленном на фиг. 4, на манипуляторе 120 установлены сопло 108 дробеструйной обработки и головка 104 излучения пучка, при этом расстояние между ними можно изменять посредством поступательного перемещения сопла относительно манипулятора. Манипулятор может перемещаться поступательным движением, а также вращаться вокруг оси 122 головки 104.
Если частицы для дробеструйной обработки имеют такую же природу, что и частицы порошка, возникает риск большой потери порошка. Решением проблемы является использование порошка с более значительным размером частиц, чтобы собирать его при просеивании, или порошка из другого материала, такого как керамика, собираемого посредством магнитного разделения.

Claims (16)

1. Способ изготовления по меньшей мере части детали посредством последовательного нанесения слоев, содержащий этапы, на которых:
а) наносят первый слой (110) расплавленного металла на подложку (80), чтобы сформировать на подложке первый металлический валик,
b) на первый валик наносят второй слой расплавленного металла, чтобы на первом валике сформировать второй металлический валик, и
с) этапы а) и b) повторяют для каждого нового металлического слоя, наносимого сверху предыдущего валика, вплоть до формирования упомянутой по меньшей мере части детали,
отличающийся тем, что после n этапов нанесения, где n больше или равно 1, содержит этап сжатия сформированного валика, и тем, что сжатие осуществляют в горячем состоянии, то есть перед полным охлаждением упомянутого валика, причем этап сжатия осуществляют посредством дробеструйной обработки валика при помощи частиц материала, идентичного с материалом порошка, используемого для изготовления валиков.
2. Способ по предыдущему пункту, в котором этап сжатия осуществляют, когда температура валика превышает 30°С, предпочтительно превышает 100°С, еще предпочтительнее превышает 200°С, например, составляет около 300°С.
3. Способ по п. 1 или 2, в котором частицы имеют размер, отличный от размера частиц упомянутого порошка.
4. Способ по одному из предыдущих пунктов, в котором этап сжатия осуществляют таким образом, чтобы обеспечивать:
i) введение остаточных напряжений сжатия для противодействия остаточным напряжениям растяжения, появляющимся при плавлении, чтобы минимизировать деформации, и/или
ii) травление возможного слоя оксида, который может появиться на поверхности валика, и/или
iii) изменение первоначальной микроструктуры валика посредством дробеструйной обработки с целью получения однородной микроструктуры, и/или
iv) уплотнение осажденного материала, чтобы уменьшить пористость, появляющуюся во время процесса аддитивного изготовления.
5. Устройство для осуществления способа по одному из предыдущих пунктов, отличающееся тем, что содержит:
- лазерную головку (104) для плавления присадочного металла с целью формирования валика, и
- сопло (108) для сжатия упомянутого валика (110).
6. Устройство по предыдущему пункту, в котором лазерная головка (104) и сопло (108) установлены на общем роботе-манипуляторе (120).
RU2018130732A 2016-02-19 2017-02-17 Способ и устройство для изготовления детали посредством последовательного нанесения слоев RU2731275C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1651359A FR3047914B1 (fr) 2016-02-19 2016-02-19 Procede et dispositif de fabrication d'une piece par depots successifs de couches
FRFR1651359 2016-02-19
PCT/FR2017/050363 WO2017140994A1 (fr) 2016-02-19 2017-02-17 Procédé et dispositif de fabrication d'une pièce par dépôts successifs de couches

Publications (3)

Publication Number Publication Date
RU2018130732A RU2018130732A (ru) 2020-03-19
RU2018130732A3 RU2018130732A3 (ru) 2020-04-10
RU2731275C2 true RU2731275C2 (ru) 2020-09-01

Family

ID=56741101

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018130732A RU2731275C2 (ru) 2016-02-19 2017-02-17 Способ и устройство для изготовления детали посредством последовательного нанесения слоев

Country Status (9)

Country Link
US (1) US20210178485A1 (ru)
EP (1) EP3416770B1 (ru)
JP (1) JP6964083B2 (ru)
CN (1) CN108698127B (ru)
BR (1) BR112018016541B1 (ru)
CA (1) CA3014855A1 (ru)
FR (1) FR3047914B1 (ru)
RU (1) RU2731275C2 (ru)
WO (1) WO2017140994A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787815C1 (ru) * 2022-05-18 2023-01-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Способ изготовления изделия с композиционной структурой из порошковой стали с ТРИП-эффектом

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10682725B2 (en) * 2017-11-30 2020-06-16 The Boeing Company Microstructure refinement methods by mechanical work for additive manufactured materials
US10850366B2 (en) * 2017-12-15 2020-12-01 Raytheon Technologies Corporation Plasma assisted surface finishing apparatus and method
US10807214B2 (en) * 2017-12-15 2020-10-20 Raytheon Technologies Corporation Laser assisted surface finishing apparatus and method
DE102018204593A1 (de) * 2018-03-27 2019-10-02 Airbus Defence and Space GmbH Al-& Mg- verträgliches Strahlgut zum Reinigungsstrahlen derselben auf Basis von AlSc-Pulver
US11110548B2 (en) 2018-08-10 2021-09-07 The Boeing Company Methods and apparatus for laser deposition
EP3845333B1 (en) * 2018-08-31 2023-05-31 Osaka University Metal additive manufacturing method
CN109676099B (zh) * 2018-12-12 2020-10-16 上海大学 一种制备具有定向组织板材的方法
CN113302021B (zh) * 2018-12-31 2022-05-17 艾沛克斯品牌公司 用于提供具有增加的杯突的卷尺的方法和设备
CN110904404B (zh) * 2019-12-25 2023-07-11 浙江工业大学 基于钛合金表面激光氮化和喷丸同步复合技术的工艺方法与装置
CN111185599A (zh) * 2020-02-24 2020-05-22 西安航空职业技术学院 一种基于高速喷丸的金属增材制造装置及方法
CN111842896A (zh) * 2020-09-14 2020-10-30 哈尔滨理工大学 一种用于加工高复杂外型工件的同轴送粉喷压装置
FR3126429B1 (fr) * 2021-08-30 2024-06-14 Psa Automobiles Sa Traitement de pièces métalliques par dépôts successifs de matières différentes
CN113976925A (zh) * 2021-10-14 2022-01-28 华中科技大学 激光选区熔化和激光冲击强化复合的增材制造设备和方法
CN114558995A (zh) * 2022-03-03 2022-05-31 南京航空航天大学 一种冷冻砂型打印低温喷头气体随动扫描装置
CN115446318B (zh) * 2022-08-25 2024-03-12 哈尔滨工业大学(威海) 一种金属废屑的塑化回收装置及方法
JP7315804B1 (ja) * 2023-04-05 2023-07-26 株式会社神戸製鋼所 積層造形物及び積層造形物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529816A1 (en) * 1991-07-29 1993-03-03 Fritz B. Prinz Method and apparatus for fabrication of three-dimensional articles by weld deposition
RU2423203C2 (ru) * 2009-08-04 2011-07-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания при лазерном послойном порошковом синтезе объемных деталей
GB2528335A (en) * 2014-10-07 2016-01-20 Mainline Flatpacks Ltd Container

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2816836B1 (fr) 2000-11-21 2003-09-26 Oreal Compositions autobronzantes colorees comportant du carmin de cochenille
DE10058748C1 (de) * 2000-11-27 2002-07-25 Markus Dirscherl Verfahren zur Herstellung eines Bauteils sowie Vorrichtung zur Durchführung des Verfahrens
JP2002346847A (ja) * 2001-05-24 2002-12-04 Babcock Hitachi Kk ウォータージェット・レーザ併用ピーニング方法及び装置
JP4099642B2 (ja) * 2002-04-03 2008-06-11 トヨタ自動車株式会社 表面処理鋼板のレーザ溶接方法
JPWO2009098904A1 (ja) * 2008-02-08 2011-05-26 株式会社Lttバイオファーマ 錠剤を打錠する杵又は臼の打錠表面の処理方法とこの方法で表面処理された杵又は臼とこの杵又は臼で打錠された錠剤
US8471168B2 (en) * 2008-06-19 2013-06-25 General Electric Company Methods of treating metal articles and articles made therefrom
JP5061062B2 (ja) * 2008-08-08 2012-10-31 パナソニック株式会社 三次元形状造形物の製造方法
CN101392382B (zh) * 2008-10-15 2010-08-11 江苏大学 一种激光熔覆结合激光喷丸强化表面改性的方法和装置
US8893538B2 (en) * 2010-12-08 2014-11-25 Fuji Kihan Co., Ltd. Instantaneous heat treatment method for metal product
GB2519190B (en) * 2012-02-24 2016-07-27 Malcolm Ward-Close Charles Processing of metal or alloy objects
JP5912916B2 (ja) * 2012-06-27 2016-04-27 日立Geニュークリア・エナジー株式会社 ショットピーニング方法
GB2508335B (en) * 2012-11-09 2016-04-06 Bae Systems Plc Additive layer manufacturing
US9555475B2 (en) * 2012-11-09 2017-01-31 Bae Systems Plc Additive layer manufacturing
FR2998496B1 (fr) 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
EP3909752A1 (en) * 2013-07-31 2021-11-17 Limacorporate S.p.A. Method for the recovery and regeneration of metal powder in ebm applications
US10259159B2 (en) * 2013-10-18 2019-04-16 Kabushiki Kaisha Toshiba Stack forming apparatus and manufacturing method of stack formation
CN103862050B (zh) * 2014-03-31 2016-08-17 中国科学院西安光学精密机械研究所 基于层间冲击强化工艺的金属3d打印机及打印方法
CN203992399U (zh) * 2014-03-31 2014-12-10 中国科学院西安光学精密机械研究所 用于层间冲击强化的金属3d打印机一体式喷嘴结构
CN104384936B (zh) * 2014-09-18 2017-04-12 大连理工大学 一种增减材复合制造机床
CN104775011B (zh) * 2015-04-28 2016-08-24 辽宁工业大学 一种轴类零件快速淬火装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529816A1 (en) * 1991-07-29 1993-03-03 Fritz B. Prinz Method and apparatus for fabrication of three-dimensional articles by weld deposition
RU2423203C2 (ru) * 2009-08-04 2011-07-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания при лазерном послойном порошковом синтезе объемных деталей
GB2528335A (en) * 2014-10-07 2016-01-20 Mainline Flatpacks Ltd Container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787815C1 (ru) * 2022-05-18 2023-01-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Способ изготовления изделия с композиционной структурой из порошковой стали с ТРИП-эффектом

Also Published As

Publication number Publication date
JP6964083B2 (ja) 2021-11-10
RU2018130732A3 (ru) 2020-04-10
JP2019507250A (ja) 2019-03-14
WO2017140994A1 (fr) 2017-08-24
CN108698127A (zh) 2018-10-23
RU2018130732A (ru) 2020-03-19
FR3047914B1 (fr) 2021-05-21
BR112018016541B1 (pt) 2022-09-27
CN108698127B (zh) 2021-11-16
EP3416770B1 (fr) 2021-08-18
EP3416770A1 (fr) 2018-12-26
CA3014855A1 (en) 2017-08-24
FR3047914A1 (fr) 2017-08-25
BR112018016541A2 (pt) 2018-12-26
US20210178485A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
RU2731275C2 (ru) Способ и устройство для изготовления детали посредством последовательного нанесения слоев
JP2019507250A5 (ru)
Fessler et al. Laser deposition of metals for shape deposition manufacturing
Mumtaz et al. High density selective laser melting of Waspaloy®
EP3213854B1 (en) Method, system and computer readable storage medium for energy deposition for processing gas turbine engine components
US20150030494A1 (en) Object production
TWI630963B (zh) 加工合金錠之系統及方法
CA2830998C (en) Method for repairing an aluminium alloy component
US20150224743A1 (en) Additively manufactured article
EP3357605B1 (en) Manufacturing method and post-processing treatment
Lesyk et al. Nickel superalloy turbine blade parts printed by laser powder bed fusion: thermo-mechanical post-processing for enhanced surface integrity and precipitation strengthening
Zhirnov et al. Optical monitoring and diagnostics of SLM processing for single track formation from Co-Cr alloy
JP5272245B2 (ja) 絞りプレス型のビード加工方法
EP3427869A1 (en) Additive manufacturing methods and related components
Badi Effect of Process Parameters on the Quality of 17-4 PH Samples Produced by Directed Energy Deposition
Wang et al. Microstructure and mechanical property of 12CrNi2 high strength steel fabricated by laser additive manufacturing technology
Masaylo et al. Investigation of Aluminum Composite Produced by Laser-Assisted Cold Spray Additive Manufacturing
Balamurugan et al. Cold Spray Additive Manufacturing: A New Trend in Metal Additive Manufacturing
El Hassanin et al. Laser-Powder Bed Fusion of Inconel 718 Alloy: Effect of the Contour Strategy on Surface Quality and Sub-Surface Density
Kassem Characterization of steel components obtained by means of new print heads for Direct Energy Deposition (DED)
AU2021407395A1 (en) Process for producing a metallic structure by additive manufacturing
KR20210077444A (ko) 3d 프린팅 기술을 이용한 프린팅 방법 및 프린팅 장치
JP2018173079A5 (ru)
Sergeevich et al. Synthesis of nanostructured WC-Co hardmetal by selective laser melting