RU2725878C1 - Хиральные миртанилсульфонамиды - Google Patents

Хиральные миртанилсульфонамиды Download PDF

Info

Publication number
RU2725878C1
RU2725878C1 RU2019144993A RU2019144993A RU2725878C1 RU 2725878 C1 RU2725878 C1 RU 2725878C1 RU 2019144993 A RU2019144993 A RU 2019144993A RU 2019144993 A RU2019144993 A RU 2019144993A RU 2725878 C1 RU2725878 C1 RU 2725878C1
Authority
RU
Russia
Prior art keywords
ppm
cdcl
nmr spectrum
spectrum
kbr
Prior art date
Application number
RU2019144993A
Other languages
English (en)
Inventor
Ольга Михайловна Лезина
Ольга Николаевна Гребёнкина
Евгений Сергеевич Изместьев
Светлана Николаевна Субботина
Светлана Альбертовна Рубцова
Александр Васильевич Кучин
Original Assignee
Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" filed Critical Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук"
Priority to RU2019144993A priority Critical patent/RU2725878C1/ru
Application granted granted Critical
Publication of RU2725878C1 publication Critical patent/RU2725878C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/03Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/07Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

Изобретение относится к соединениям хиральных цис- и транс-миртанилсульфонамидов общей формулы I, потенциальных биологически активных соединений. В общей формуле (I) R – радикал пинановой структуры
Figure 00000034
R1 = -NH2; -N(Me)2; -NHEt; -NHEtOH; -N(Et)2; -N(Et)2NH2; -NHBn; -NHPh; -NHPhCH3;
Figure 00000035
где звездочкой обозначена связь, к которой присоединяется сульфогруппа (-SO2-).

Description

Изобретение относится к синтезу хиральных цис- и транс-миртанилсульфонамидов, потенциальных биологически активных соединений.
Синтез новых биологически активных веществ и создание на их основе лекарственных средств является одной из важнейших задач современной органической и медицинской химии. Перспективным подходом в получении является использование доступных растительных субстратов в качестве исходных соединений, в первую очередь, терпенов. Известно, что они обладают противогрибковым, бактерицидным, противовирусным, обезболивающим и муколитическим действиями; оказывают химиопрофилактическое действие при раке, антигипергликемическое, противовоспалительное и противопаразитарное действие [R. Paduch, M. Kandefer-Szerszen, M. Trytek and J. Fiedurek, Arch. Immun. Ther. Exp., 2007, 55, 315].
Химическая модификация терпенов позволяет получать продукты, в которых биологическая активность, обусловленная терпеновым фрагментом, сочетается со свойствами введенных фармакоформных групп. В работе [L. E. Nikitina, N. P. Artemova, V. A. Startseva, I. V. Fedyunina and V. V. Klochkov, Chem. Nat. Comp., 2017, 53, 811] показано, что введение серы различной степени окисления в молекулу терпена повышает противогрибковую, противовоспалительную, антихеликобактерную, противоопухолевую и другие активности.
Монотерпеновые сульфонамиды на основе камфоры обладают ингибирующей активностью в отношении вирусов Эбола и Марбург [А.С.Соколова, Д.В.Баранова, О.И.Яровая, Д.С.Баев, О.А.Полежаева и др. Изв. АН, Сер. Хим., 2019, 5, 1041]. Энантиомеры транс-миртанилсульфонамида (наиболее близкий аналог), содержащие группы NH2, пиперазиновый и хлорфенильный фрагменты, являются антагонистами белок-белкового взаимодействия Bcl-2 [N. Yusuff, M. Dore, C. Joud, M. Visser, C. Springer, X. Xie, K. Herlihy, D. Porter, B. B. Toure. ACS Med. Chem. Lett., 2012, 3(7), 579. doi: 10.1021/ml300095a].
Иных аналогов получения заявленных миртанилсульфонамидов выявлено не было.
Задачей настоящего изобретения является синтез хиральных цис- и транс- миртанилсульфонамидов, потенциальных биологически активных веществ, полученных эффективным способом.
Технический результат заключается в расширении арсенала монотерпеновых сульфопроизводных заданной структуры, востребованных в органическом синтезе биологически активных соединений.
Технический результат достигается получением хиральных цис- и транс-миртанилсульфонамидов (RSO2R1) структурной формулы (I):
Figure 00000001
где R – радикал пинановой структуры
Figure 00000002
R1 = -NH2; -N(Me)2; -NHEt; -NHEtOH; -N(Et)2; -N(Et)2NH2; -NHBn;
-NHPh; -NHPhCH3;
Figure 00000003
где звездочкой обозначена связь, к которой присоединяется сульфогруппа (-SO2-).
Для получения миртанилсульфонамидов 1-12 из (-)-β-пинена 13 (схема 1) использовали метод, включающий синтез оптически чистого миртантиола 14а,б с последующим окислительным хлорированием диоксидом хлора и добавлении алифатического, ароматического или гетероциклического амина. Способ позволяет получить целевые продукты с сохранением структуры терпенового фрагмента с высоким выходом.
Для получения диастереомерно чистого тиола 14а из (-)-β-пинена реакцией гидроборирования-окисления был получен цис-миртанол 15а [Кучин А.В, Фролова Л.Л. Изв. АН. Сер хим. 2000, 9, 1658], далее по модифицированной методике - йодид 16а [Garegg P.J., Samuelsson B. J. Chem. Soc., Perkin Trans. 1. 1980, 2866], а затем взаимодействием с AcSK - тиоацетат 17а [T.-C. Zheng, M. Burkart, D. E. Richardson, Tetrahedron Lett. 1999, 40, 603], из которого по методике [Banach A., Ścianowski Ja., Ozimek P. Phosphorus, Sulfur, and Silicon and the Related Elements. 2014, 189, 274] - тиол 14а. Смесь диастереомерных тиолов 14а,б (dе 75%) получена присоединением тиоуксусной кислоты по двойной связи (-)-β-пинена в присутствии LaCl3 и последующем восстановлении полученных диастереомерных тиоацетатов 17а,б LiAlH4 до тиолов 14а,б [Banach A., Ścianowski Ja., Ozimek P. Phosphorus, Sulfur, and Silicon and the Related Elements. 2014, 189, 274].
Полученные тиол 14а или смесь 14а,б окисляли диоксидом хлора (ClO2) в дихлорметане в присутствии катализатора VO(acac)2 [O. N. Grebyonkina, O. M. Lezina, E. S. Izmest’ev, S. A. Rubtsova and A. V. Kutchin, Russ. J. Org. Chem., 2019, 55(10), 1510)], в результате чего количественно образуются соответствующие сульфохлориды 18а,б.
В раствор миртанилсульфохлоридов 18а,б без дополнительной очистки и выделения добавляли амин [Губен-Вейль. Методы органической химии. М.: Химия, 1967, 2, 612], смесь нагревали до 40-60°C в течение 0.5-1 ч. Выходы миртанилсульфонамидов 1-12а,б составляют 38-92%.
Схема 1. Синтез миртанилсульфонамидов.
Figure 00000004
Водный раствор диоксида хлора (ClO2) – промышленный продукт, концентрацию которого определяли титрованием по методике [Петренко Н.Ф., Мокиенко А.В. Диоксид хлора: применение в технологиях водоподготовки. Одесса: Оптимум, 2005, 371].
Амины - коммерческие препараты производства Sigma Aldrich и Alfa Aesar, чистота 99%.
ИК спектры регистрировали на ИК-Фурье-спектрометре Shimadzu IR Prestige 21 в тонком слое. Спектры ЯМР 1H и 13C регистрировали на спектрометре Bruker Avance-300 (300.17 МГц для 1Н и 75.48 МГц для 13С) в растворах CDCl3 (внутренний стандарт – сигнал хлороформа) и ДМСО-d6. Полное отнесение сигналов 1Н и 13С выполняли с помощью двумерных гомо- (1H–1H COSY, 1H–1H NOESY) и гетероядерных экспериментов (1H–13C HSQC, HMBC). Колоночную хроматографию выполняли на силикагеле Alfa Aesar (0.06–0.2 мм).
Ниже представлены характеристики полученных соединений (спектры транс-сульфонамидов (b) ((S)-конфигурации по атому C2) получены вычитанием сигналов из спектров смеси с соединениями 1а-12а с использованием двумерных спектров 1H–13C HSQC).
((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)метансульфонамид 7а.
Figure 00000005
Выход 92%.
Figure 00000006
(с 0.2, CHCl3). ИК спектр (KBr, ν, см–1): 3250, 3339 (NH2), 1321 (SO2), 1153 (SO2), 916 (S-N). Спектр ЯМР 1Н (СDCl3, δ, м.д.): 1.02 c (3H, H8), 0.95–1.08 м (1H, H), 1.22 c (3H, H9), 1.61–1.80 м (1H, H), 1.83–2.03 м (3H, H4, H5), 1.98–2.09 м (1H, H1), 2.06–2.30 м (1H, H), 2.30–2.45 м (1H, H), 2.64–2.80 м (1H, H2), 3.21–3.36 м (2Н, Н10), 5.06 уш. с (2H, NH2). Спектр ЯМР 13С (CDСl3, δ, м.д.): 21.7 (C3), 23.0 (C8), 25.8 (C4), 27.5 (C9), 32.4 (C7), 36.1 (C2), 38.3 (C6), 40.6 (C5), 46.5 (C1), 62.8 (C10). Найдено, %: С 55.49; Н 8.89; N 6.43; S 15.01. C10H19NO2S. Вычислено, %: C 55.27; H 8.81; N 6.45; S 14.75.
1-((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N,N-диметилметансульфонамид 8а.
Figure 00000007
Выход 64%. ИК спектр (KBr, ν, см–1): 1322, 1147 (SO2), 958 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.92–1.03 м (1H, H), 0.99 c (3H, H8), 1.19 c (3H, H9), 1.59–1.72 м (1H, H), 1.86–2.01 м (3H, H4, H5), 1.96–2.07 м (1H, H1), 2.07–2.20 м (1H, H), 2.30–2.41 м (1H, H), 2.63–2.75 м (1H, H2), 2.84 с (6Н, N(CН 3)2), 2.92–3.00 м (2Н, Н10). Спектр ЯМР 13С (CDCl3, δ, м.д.): 21.73 (C3), 23.02 (C8), 25.80 (C4), 27.56 (C9), 32.49 (C7), 35.35 (C2), 37.29 (N(CН3)2), 38.28 (C6), 40.61 (C5), 46.40 (C1), 54.79 (C10). Найдено, %: C 58.98; H 9.41; N 5.65; S 13.67. C12H23NO2S. Вычислено, %: C 58.74; H 9.45; N 5.71; S 13.07.
1-((1S,2S,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N,N-диметилметансульфонамид 8b.
Figure 00000008
Выход смеси диастереомеров 8а,b (7:1) 60%. ИК спектр (KBr, ν, см–1): 1322, 1147 (SO2), 958 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.86 c (3H, H8), 0.89–0.92 м (1H, H), 1.19 c (3H, H9), 1.28–1.33м (1H, H), 1.41–1.52 м (2H, H4), 1.72-1.90 м (2Н, H5, H1), 2.05–2.15 м (1H, H), 2.30–2.41 м (1H, H), 2.56–2.65 м (1H, H2), 2.69 с (6Н, N(CН 3)2), 2.75–2.80 м (2Н, Н10). Спектр ЯМР 13С (CDCl3, δ, м.д.): 19.94 (C8), 23.10 (C3), 24.07 (C4), 26.49 (C9), 30.71 (C2), 32.49 (C7), 37.29 (N(CН3)2), 38.28 (C6), 40.24 (C5), 45.39 (C1), 53.15 (C10). Найдено, %: C 58.66; H 9.49; N 5.59; S 13.13. C12H23NO2S. Вычислено, %: C 58.74; H 9.45; N 5.71; S 13.07.
1-(((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-метил)-N-этилметансульфонамид 9а.
Figure 00000009
Выход 80%.
Figure 00000010
Figure 00000010
(с 0.18, CHCl3). ИК спектр (KBr, ν, см–1): 3275 (NH), 1315, 1149 (SO2), 948 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.99-1.05 м (4H, H8, Н), 1.18-1.29 м (6H, H9, NСН2CН 3), 1.68 ддд (1H, H, J 15.5, 10.6, 5.0 Гц), 1.87-2.00 м (3Н, H4, H5), 2.00-2.06 м (1H, H1), 2.13-2.24 м (1H, H), 2.22–2.42 м (1H, H), 2.64-2.75 м (1H, H2), 3.09-3.22 м (4Н, Н10, NСН 23), 4.26-4.40 м (1Н, NН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 15.85 (NСН2 CН3), 21.90 (C3), 23.13 (C8), 25.92 (C4), 27.66 (C9), 32.55 (C7), 36.07 (C2), 38.19 (NСН23), 38.41 (C6), 40.77 (C5), 46.62 (C1), 60.20 (C10). Найдено, %: C 59.14; H 9.23; N 5.66; S 12.89. C12H23NO2S Вычислено, %: C 58.74; H 9.45; N 5.71; S 13.07.
1-(((1S,2S,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)метил)-N-этилметансульфонамид 9b.
Figure 00000011
Выход смеси диастереомеров 9а,b (7:1) 80%. ИК спектр (KBr, ν, см–1): 3275 (NH), 1315, 1124 (SO2), 916 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.88 с (3H, H8), 0.99-1.05 м (1Н, Н), 1.10-1.18 м (3Н, NСН2CН 3), 1.25 с (3Н, H9), 1.30-1.36 м (1Н, H), 1.75-1.86 (2Н, H4), 1.86-2.00 м (2Н, H1, H5), 2.10-2.17 м (1H, H), 2.22–2.42 м (1H, H), 2.56-2.64 м (1H, H2), 2.95 д (2Н, Н10, J 6.61), 3.03-3.09 м (2Н, NСН 23), 4.3 уш. с (1Н, NН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 15.78 (NСН2 CН3), 20.01 (C8), 23.24 (C3), 24.16 (C4), 26.56 (C9), 31.37 (C2), 32.49 (C7), 38.12 (NСН23), 38.35 (C6), 40.32 (C5), 45.50 (C1), 58.95 (C10). Найдено, %: C 59.10; H 9.53; N 5.69; S 12.92. C12H23NO2S. Вычислено, %: C 58.74; H 9.45; N 5.71; S 13.07.
1-((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N-(2-гидроксиэтил)метансульфонамид 10а.
Figure 00000012
Выход 82%.
Figure 00000013
Figure 00000013
(с 0.2, CHCl3). ИК спектр (KBr, ν, см–1): 3287 (NH, ОН), 1315 (SO2), 1148 (SO2), 1065 (С-О), 950 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.95-1.06 с (4H, Н, H8), 1.23 с (3Н, H9), 1.61-1.76 м (1Н, H), 1.85-2.00 м (3Н, H4, H5), 2.01-2.08 м (1Н, H1), 2.11–2.28 м (1H, H), 2.33-2.45 м (1H, H), 2.65-2.82 м (1H, H2), 3.10-3.22 м (2Н, Н10), 3.22-3.33 м (2Н, NСН 2), 3.78 т (2Н, СН 2ОН, J 4.62 Гц), 5.07-5.21 м (1Н, NН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 21.83 (C3), 23.12 (C8), 25.90 (C4), 27.65 (C9), 32.54 (C7), 35.98 (C2), 38.40 (C6), 40.74 (C5), 45.30 (NСН2), 46.59 (C1), 60.09 (C10), 61.78 (СН2ОН). Найдено, %: C 55. 48; H 8.69; N 5.46; S 12.68. C12H23NO3S. Вычислено, %: C 55.14; H 8.87; N 5.36; S 12.27.
1-((1S,2S,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N-(2-гидроксиэтил)метансульфонамид 10b.
Figure 00000014
Выход смеси диастереомеров 10а,b (7:1) 76%. ИК спектр (KBr, ν, см–1): 3287 (NH, ОН), 1315 (SO2), 1145 (SO2), 1041 (С-О), 918 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.89 с (3H, H8), 0.95-1.01 м (1H, Н), 1.28 с (3Н, H9), 1.29-1.53 м (1Н, H), 1.79-1.88 м (2H, H4), 1.88-2.01 м (1Н, H1), 2.01-2.10 м (1Н, H5), 2.10-2.16 м (1H, H), 2.28–2.42 м (1H, H), 2.60-2.78 м (1H, H2), 3.00 д (2Н, Н10, J 6.61), 3.42-3.50 м (2Н, NСН 2), 3.67-3.77 (2Н, СН 2ОН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 20.07 (C8), 23.28 (C3), 24.19 (C4), 26.61 (C9), 31.41 (C2), 32.54 (C7), 38.40 (C6), 40.36 (C5), 42.52 (NСН2), 45.53 (C1), 58.98 (C10), 60.84 (СН2ОН). Найдено, %: C 55.60; H 8.81; N 5.51; S 12.38. C12H23NO3S. Вычислено, %: C 55.14; H 8.87; N 5.36; S 12.27.
1-((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N,N-диэтилметансульфонамид 11а.
Figure 00000015
Выход 79%.
Figure 00000016
Figure 00000016
(с 0.17, CHCl3). ИК спектр (KBr, ν, см–1): 1325, 1144 (SO2), 934 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.95-1.11 м (4H, Н, H8), 1.14-1.27 м (9H, N(СН2CН 3)2, H9), 1.63-1.75 м (1H, H), 1.79–1.96 м (3H, H4, H5), 1.96-2.12 м (1Н, H1), 2.08–2.25 м (1H, H), 2.30–2.41 м (1H, H), 2.59–2.76 м (1H, H2), 2.97–3.09 м (2Н, Н10), 3. 30 к (4Н, N(СН 23)2, J 6.8). Спектр ЯМР 13С (CDCl3, δ, м.д.): 14.48 (N(СН2 CН3)2), 21.92 (C3), 23.12 (C8), 25.92 (C4), 27.66 (C9), 32.58 (C7), 35.85 (C2), 38.38 (C6), 40.74 (C5), 41.46 (N(СН23)2), 46.56 (C1), 59.44 (C10). Найдено, %: C 61.90; H 9.85; N 5.31; S 12.32. C14H27NO2S. Вычислено, %: C 61.50; H 9.95; N 5.12; S 11.72.
N-(2-Аминоэтил)-1-((1S,2R,5S)-6,6-диметилбицикло[3.1.1]гептан-2-ил)метансульфонамид 12а.
Figure 00000017
Выход 38%.
Figure 00000018
Figure 00000018
(с 0.1, CHCl3). ИК спектр (KBr, ν, см–1): 3288 (NH), 1317, 1148 (SO2). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.03 с (3H, H8), 1.03-1.07 м (1Н, Н), 1.23 с (3H, H9), 1.27-1.35 м (2Н, NН2СН 2), 1.51-1.75 м (1H, H), 1.79–2.10 м (6H, H1, H4, H5, NН 2), 2.26-2.30 м (1H, H), 2.40-2.49 м (1Н, H), 2.51–2.75 м (1H, H2), 3.09-3.25 м (2Н, Н10), 3.25-3.40 м (2Н, SO2NHСН 2), 5.15-5.25 м (1Н, NНSO2). Спектр ЯМР 13С (CDCl3, δ, м.д.): 21.8 (C3), 23.1 (C8), 25.9 (C4), 27.6 (C9), 29.7 (NН2 CН2), 32.5 (C7), 35.9 (C2), 38.4 (C6), 40.7 (C5), 43.7 (SO2NHСН2), 46.6 (C1), 60.3 (C10). Найдено, %: C 55.60; H 9.25; N 10.31; S 12.32. C12H24N2O2S. Вычислено, %: C 55.35, H 9.29, N 10.76, S 12.31.
Смесь диастереомеров N-Бензил-1-((1S,2(R,S),5S)-6,6-диметилбицикло[3.1.1]гептан-2-ил)метансульфонамид 13а:13b (7:1).
Figure 00000019
Выход смеси 89%. ИК спектр (KBr, ν, см–1): 3302 (NH), 1317, 1145 (SO2). Найдено, %: C 66.49; H 8.32; N 4.55; S 10.64. C17H25NO2S. Вычислено, %: C 66.41; H 8.20; N 4.56; S 10.43.
13а: Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.94 c (3H, H8), 0.99 д (1H, H, J 9.9 Гц), 1.20 c (3H, H9), 1.62 ддд (1H, H, J 15.2, 10.6, 4.6 Гц), 1.87–1.99 м (4H, H4, H5, H1), 2.06-2.20 м (1H, H), 2.31-2.40 м (1H, H), 2.60–2.73 м (1H, H2), 3.00-3.10 м (2Н, Н10), 4.30 д (2Н, NCH 2), 4.86-4.99 м (1Н, NH), 7.30-7.50 м (5Н, НAr). Спектр ЯМР 13С (CDCl3, δ, м.д.): 21.76 (C3), 22.99 (C8), 25.83 (C4), 27.57 (C9), 32.44 (C7), 35.86 (C2), 38.27 (C6), 40.67 (C5), 46.47 (C1), 47.09 (NCH2), 60.86 (C10), 127.91, 127.97, 128.74 (CAr), 137.03 (NCH2 C Ar).
13b: ИК спектр (KBr, ν, см–1): 3302 (NH), 1317, 1145 (SO2). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.87 c (3H, H8), 0.92 д (1H, H, J 9.9 Гц), 1.16-1.27 м (4H, H9, H), 1.74–1.89 м (3H, H4, H1), 2.06-2.20 м (1H, H), 2.31-2.40 м (1H, H), 2.50–2.60 м (1H, H2), 2.87 д (2Н, Н10, J 9.9 Гц), 4.30 д (2Н, NCH 2), 4.86-4.99 м (1Н, NH), 7.55-7.70 м (5Н, НAr). Спектр ЯМР 13С (CDCl3, δ, м.д.): 20.00 (C8), 23.19 (C3), 24.12 (C4), 26.52 (C9), 31.35 (C2), 32.44 (C7), 38.28 (C6), 40.27 (C5), 45.40 (C1), 59.57 (C10), 128.20, 128.92, 129.66 (CAr), 137.03 (NCH2 C Ar).
1-((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N-фенилметансульфонамид 14а.
Figure 00000020
Выход 85%.
Figure 00000021
Figure 00000021
(с 0.17, CHCl3). ИК спектр (KBr, ν, см–1): 3259 (NH), 1321, 1151 (SO2), 924 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.91 c (3H, H8), 0.99 д (1H, H, J 9.9 Гц), 1.15 c (3H, H9), 1.62 дт (1H, H, J 10.6, 5.3 Гц), 1.83–1.95 м (3H, H4, H5), 1.96–2.03 м (1H, H1), 2.08–2.25 м (1H, H), 2.34 д (1H, H, J 6.6 Гц), 2.20–2.85 м (1H, H2), 3.20-3.28 м (2Н, Н10), 7.10-7.31 м (3Н, НAr), 7.32-7.41 м (2Н, НAr). Спектр ЯМР 13С (CDCl3, δ, м.д.): 21.67 (C3), 22.93 (C8), 25.79 (C4), 27.47 (C9), 32.45 (C7), 35.85 (C2), 38.27 (C6), 40.61 (C5), 46.15 (C1), 58.73 (C10), 119.95, 124.74, 129.56 (CAr), 136.99 (NCAr). Найдено, %: C 65.78; H 7.99; N 4.88; S 11.33. C16H23NO2S. Вычислено, %: C 65.49; H 7.90; N 4.77; S 10.93.
1-((1S,2S,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N-фенилметансульфонамид 14b.
Figure 00000022
Выход 85%. ИК спектр (KBr, ν, см–1): 3259 (NH), 1321, 1151 (SO2), 924 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.85 c (3H, H8), 0.89–0.92 м (1H, H), 1.18 c (3H, H9), 1.21–1.33м (1H, H), 1.72–1.83 м (2H, H4), 1.83–1.93 м (1Н, H1), 1.96–2.03 м (1H, H5), 2.02–2.10 м (1H, H), 2.27-2.39 м (1H, H), 2.60–2.70 м (1H, H2), 3.05 д (2Н, Н10 J 6.6 Гц), 7.10-7.31 м (2Н, НAr), 7.32-7.41 м (3Н, НAr). Спектр ЯМР 13С (CDCl3, δ, м.д.): 19.94 (C8), 23.13 (C3), 24.07 (C4), 26.44 (C9), 31.28 (C2), 32.45 (C7), 38.27 (C6), 40.20 (C5), 45.28 (C1), 57.96 (C10), 120.77, 124.89, 129.56 (CAr), 136.99 (NCAr). Найдено, %: C 65.38; H 7.79; N 4.78; S 11.22. C16H23NO2S. Вычислено, %: C 65.49; H 7.90; N 4.77; S 10.93.
1-(((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)метил)-N-(п-толил)метансульфонамид 15а.
Figure 00000023
Выход 87%.
Figure 00000024
Figure 00000024
(с 0.2, CHCl3). ИК спектр (KBr, ν, см–1): 3259 (NH), 1327, 1149 (SO2), 918 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.93 c (3H, H8), 1.00 д (1H, H, J 9.9 Гц), 1.17 c (3H, H9), 1.56-1.71 м (1H, H), 1.83–1.96 м (3H, H4, H5), 1.96-2.03 м (1Н, H1), 2.11-2.22 м (1H, H), 2.28-2.42 м (1H, H), 2.36 с (3Н, СН 3CAr), 2.69–2.82 м (1H, H2), 3.18-3.23 м (2Н, Н10), 6.83 с (1Н, NH), 7.12-7.20 м (4Н, НAr). Спектр ЯМР 13С (CDCl3, δ, м.д.): 20.76 (СН3CAr), 21.73 (C3), 22.97 (C8), 25.83 (C4), 27.53 (C9), 32.51 (C7), 35.92 (C2), 38.31 (C6), 40.68 (C5), 46.24 (C1), 58.63 (C10), 120.83, 130.10 (CAr), 134.22, 134.87 (NCAr, СН3 C Ar). Найдено, %: C 66.41; H 8.38; N 4.34; S 10.27. C17H26NO2S. Вычислено, %: C 66.20; H 8.50; N 4.54; S 10.39.
1-(((1S,2S,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)метил)-N-(п-толил)метансульфонамид 15b.
Figure 00000025
Выход смеси диастереомеров 15a:15b (7:1) 83%. ИК спектр (KBr, ν, см–1): 3260 (NH), 1330, 1150 (SO2), 916 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.84 c (3H, H8), 1.00-1.09 м (1H, H), 1.17 с (3H, H9), 1.56-1.66 м (1H, H), 1.60-1.77 м (2H, H4), 1.83–1.94 м (3H, H1), 1.94-2.00 м (1Н, H5), 2.07 с (3Н, СН 3CAr), 2.10-2.20 м (1H, H), 2.37-2.46 м (1H, H), 2.58–2.68 м (1H, H2), 2.99-3.03 м (2Н, Н10), 6.9-7.02 м (2Н, НAr), 7.14-7.22 м (2Н, НAr), 7.38 уш. с (1Н, NH). Спектр ЯМР 13С (CDCl3, δ, м.д.): 19.85, 20.92 (СН3CAr, C8), 23.06 (C3), 24.01 (C4), 26.39 (C9), 31.15 (C2), 32.44 (C7), 38.28 (C6), 40.13 (C5), 45.21 (C1), 57.47 (C10), 120.96, 129.64 (CAr), 134.48, 134.65 (NCAr, СН3 C Ar). Найдено, %: C 66.50; H 8.32; N 4.62; S 10.31. C17H26NO2S. Вычислено, %: C 66.20; H 8.50; N 4.54; S 10.39.
1-(((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)-N-(2,4-динитрофенил)метансульфонгидразид 16а.
Figure 00000026
Выход 60%. Красный порошок. ИК спектр (KBr, ν, см–1): 3327 (NH), 1516 (NO2), 1337 (NO2, SO2), 1136 (SO2). Спектр ЯМР 1Н (ДМСО-d6, δ, м.д.): 0.77-1.01 м (4H, H, H8), 1.14 с (3H, H9), 1.40-1.66 м (1H, H), 1.69-1.87 м (3H, H4, H5), 1.89–2.01 м (2H, H1, H), 2.16-2.25 м (1H, H), 2.38-2.51 (1Н, H2), 2.53-2.67 м (2Н, Н10), 6.02, 10.11 уш. с (2Н, NH), 7.51, 8.42 д (2Н, HAr, J 7.93 Гц), 8.85 с (1Н, НAr). Спектр ЯМР 13С (ДМСО-d6, δ, м.д.): 21.89 (C3), 22.91 (C8), 25.86 (C4), 27.73 (C9), 32.30 (C7), 36.64 (C2), 38.03 (C6), 40.41 (C5), 46.01 (C1), 59.26 (C10), 115.51, 122.98, 129.84 (CAr), 129.96 (NC Ar), 136.72, 146.47 (NO2 C Ar). Найдено, %: C 48.53; H 5.67; N 14.36; S 8.41. C16H22N4O6S. Вычислено, %: C 48.23; H 5.57; N 14.06; S 8.05.
4-((1S,2R,5S)-6,6-Диметилбицикло[3.1.1]гептан-2-ил)метил)сульфонил)морфолин 17а.
Figure 00000027
Выход 78%.
Figure 00000028
Figure 00000028
(с 0.4, CHCl3). ИК спектр (KBr, ν, см–1): 1336, 1151 (SO2), 1114 (С-О), 945 (S-N). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.01 c (3H, H8), 0.98–1.05 м (1H, H), 1.22 c (3H, H9), 1.69 дд (1H, H, J 10.2, 5.6 Hz), 1.86–1.96 м (3H, H4, H5), 1.98–2.08 м (1H, H1), 2.15–2.27 м (1H, H), 2.32–2.42 м (1H, H), 2.67–2.80 м (1H, H2), 2.92–3.02 м (2Н, Н10), 3.21–3.28 м (4Н, Н11,14), 3.77-3.80 м (4H, Н12,13). Спектр ЯМР 13С (CDCl3, δ, м.д.): 21.80 (C3), 23.03 (C8), 25.77 (C4), 27.53 (C9), 32.38 (C7), 35.28 (C2), 38.28 (C6), 40.59 (C5), 45.62 (C11,14), 46.38 (C1), 55.49 (C10), 66.44 (C12,13). Найдено, %: C 58.64; H 8.79; N 4.77; S 11.65. C14H25NO3S. Вычислено, %: C 58.51; H 8.77; N 4.87; S 11.15.
N-(1,5-диметил-3-оксо-2-фенил-2,3-дигидро-1H-пиразол-4-ил)-1-((1S,2R,5S)-6,6-диметилбицикло[3.1.1]гептан-2-ил)метилсульфонамид 18а.
Figure 00000029
Выход 39%.
Figure 00000030
Figure 00000030
(с 0.2, CHCl3). Желтый порошок. Т. плав. 140°С с разл. ИК спектр (KBr, ν, см–1): 1649, 1591 (С=N), 1302 (SO2), 1151 (SO2). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.86-0.92 (1H, H), 0.93 c (3H, H8), 1.15 c (3H, H9), 1.59–1.77 м (1H, H), 1.77-1.93 м (3Н, H4, H5), 2.01-2.16 м (2Н, H1, H), 2.25-2.35 м (1Н, H), 2.38 с (3Н, СН 3 Ht), 2.68–2.80 м (1Н, H2), 3.18 с (3H, NCH3), 3.25 д (2H, H10, J 6.6 Гц), 7.24 с (1Н, NH), 7.35-7.44 м (3Н, НAr), 7.51 т (2Н, НAr). Спектр ЯМР 13С (CDCl3, δ, м.д.): 10.9 (СН3 Ht), 21.5 (C3), 22.9 (C8), 25.9 (C4), 27.6 (C9), 32.7 (C7), 35.2 (NСН3 Ht), 36.0 (C2), 38.3 (C6), 40.8 (C5), 46.1 (C1), 60.2 (C10), 105.9 (C13), 124.9 (CAr), 127.5 (CAr), 129.4 (CAr), 134.0 (C11), 154.2 (CAr), 162.2 (C=O). Найдено, %: C 62.36; H 7.30; N 10.24; S 7.80. C21H29N3O3S. Вычислено, %: C 62.50, H 7.24, N 10.41, S 7.94.
Полученные соединения - потенциальные биологически активные вещества, что обусловлено терпеновым фрагментом, модифицированным сульфонамидной группой. Синтез библиотек монотерпеновых сульфонамидов позволит в дальнейшем проанализировать зависимость «структура - биологическая активность».
Компьютерное прогнозирование спектров биологической активности полученных соединений программой PASS (http://pharmaexpert.ru/passonline/) показало высокую вероятность проявления ими свойств антагонистов простагландина Е1 (83-88%), сердечно-сосудистых аналептиков (83-87%), ноотропов (60-75%), антиневротического действия (61-65%) и многих других.
Сульфонамиды являются промежуточными продуктами в производстве лекарств, дезинфицирующих средств, дегазирующих веществ, красителей, оптических отбеливателей, пластификаторов. Используются для синтеза других реакционноспособных соединений: сульфониминов, хлораминов и др., которые широко применяют в промышленности, медицине [Общая органическая химия, пер. с англ., т. 5, М., 1983, с. 528-535].

Claims (7)

  1. Хиральные цис- и транс-миртанилсульфонамиды (RSO2R1) структурной формулы (I)
  2. Figure 00000031
  3. где R – радикал пинановой структуры
  4. Figure 00000032
  5. R1 = -NH2 (цис-форма); -N(Me)2; -NHEt; -NHС2Н4OH; -N(Et)2; -NHС2Н4NH2; -NHBn; -NHPh; -NHPhCH3;
  6. Figure 00000033
  7. где звездочкой обозначена связь, к которой присоединяется сульфогруппа (-SO2-).
RU2019144993A 2019-12-30 2019-12-30 Хиральные миртанилсульфонамиды RU2725878C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019144993A RU2725878C1 (ru) 2019-12-30 2019-12-30 Хиральные миртанилсульфонамиды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019144993A RU2725878C1 (ru) 2019-12-30 2019-12-30 Хиральные миртанилсульфонамиды

Publications (1)

Publication Number Publication Date
RU2725878C1 true RU2725878C1 (ru) 2020-07-07

Family

ID=71510443

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019144993A RU2725878C1 (ru) 2019-12-30 2019-12-30 Хиральные миртанилсульфонамиды

Country Status (1)

Country Link
RU (1) RU2725878C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2765749C1 (ru) * 2021-06-18 2022-02-02 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Хиральные цис-миртанилсульфонамиды на основе (-)-β-пинена

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU604479A3 (ru) * 1974-01-30 1978-04-25 Басф Аг, (Фирма) Способ получени производных пинана в виде оптически активных изомеров
RU2410377C2 (ru) * 2005-02-16 2011-01-27 Солвей Фармасьютикалс Б.В. Производные 1н-имидазола как модуляторы рецептора каннабиноидов св2

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU604479A3 (ru) * 1974-01-30 1978-04-25 Басф Аг, (Фирма) Способ получени производных пинана в виде оптически активных изомеров
RU2410377C2 (ru) * 2005-02-16 2011-01-27 Солвей Фармасьютикалс Б.В. Производные 1н-имидазола как модуляторы рецептора каннабиноидов св2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yusuff, Naeem; Dore, Michael et al "Lipophilic Isosteres of a π-π Stacking Interaction: New Inhibitors of the Bcl-2-Bak Protein-Protein Interaction", ACS Medicinal Chemistry Letters, vol. 3(7), 2012, pp. 579-583. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2765749C1 (ru) * 2021-06-18 2022-02-02 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Хиральные цис-миртанилсульфонамиды на основе (-)-β-пинена

Similar Documents

Publication Publication Date Title
US7807858B2 (en) Process for production of fluoro derivative
DE69304051T2 (de) Verfahren zur herstellung von intermediaten in der synthese von retroviralen protease inhibitoren
US8058412B2 (en) Dehydroxyfluorination agent
Nonn et al. Recent advances in the transformations of cycloalkane-fused oxiranes and aziridines
RU2725878C1 (ru) Хиральные миртанилсульфонамиды
RU2746995C2 (ru) Способ получения тетрафторида серы
CN113735751A (zh) 一种制备芳基异硫脲的方法
Anitha et al. Highly functionalised (γ-azido/γ-fluoro-β-iodo/) vinyl derivatives from phosphorus based allenes or allenoates: I⋯ O halogen bonding interactions
Raschmanová et al. Synthesis of the cytotoxic phytosphingosines and their isomeric analogues
Yamada et al. Stereocontrolled synthesis of the oxathiabicyclo [3.3. 1] nonane core structure of tagetitoxin
RU2708617C1 (ru) Сульфопроизводные на основе бета-пинена и способ их получения
Younai et al. Influence of chiral thiols on the diastereoselective synthesis of γ-lactams from cyclic anhydrides
WO2023216317A1 (zh) 一种奈玛特韦中间体的合成方法
Fioravanti et al. Reagent-controlled diastereoselective aminations with a new chiral nosyloxycarbamate
Zhao et al. A practical synthesis of N-aryl-substituted oxazolidinone-containing ketone catalysts for asymmetric epoxidation
JP5094397B2 (ja) 光学活性エステルの製造法
RU2765749C1 (ru) Хиральные цис-миртанилсульфонамиды на основе (-)-β-пинена
JP5212945B2 (ja) イソシアニド化合物の製造方法
RU2783164C1 (ru) Хиральные γ-кетосульфанильные производные пинановой структуры и способ их получения
JP4675065B2 (ja) 4−フルオロプロリン誘導体の製造方法
US6872840B1 (en) Synthesis of 8-membered carbocyclic compound having diexomethylene groups
RU2780452C1 (ru) Хиральные γ-кетосульфонильные производные пинановой структуры и способ их получения
CN108997233B (zh) 一种(z)-构型烯酯三唑化合物的合成方法
RU2694905C1 (ru) Способ получения тиофосгена
MXPA02007077A (es) Metodo para la preparacion enantioselectiva de acido 3,3-difenil-2,3-epoxipropionico.