RU2723893C1 - Способ контроля структурного состояния алмазоподобных тонких пленок - Google Patents

Способ контроля структурного состояния алмазоподобных тонких пленок Download PDF

Info

Publication number
RU2723893C1
RU2723893C1 RU2019135735A RU2019135735A RU2723893C1 RU 2723893 C1 RU2723893 C1 RU 2723893C1 RU 2019135735 A RU2019135735 A RU 2019135735A RU 2019135735 A RU2019135735 A RU 2019135735A RU 2723893 C1 RU2723893 C1 RU 2723893C1
Authority
RU
Russia
Prior art keywords
diamond
bonds
film
films
carbon
Prior art date
Application number
RU2019135735A
Other languages
English (en)
Inventor
Сергей Викторович Макаров
Владимир Александрович Плотников
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет"
Priority to RU2019135735A priority Critical patent/RU2723893C1/ru
Application granted granted Critical
Publication of RU2723893C1 publication Critical patent/RU2723893C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано для оперативного контроля структурного состояния (распределения sp- и sp-связей). Способ контроля структурного состояния алмазоподобных тонких пленок включает сканирование поверхности пленок зондом сканирующего зондового микроскопа в режиме туннельного тока, а геометрические параметры структурных объектов, представляющих собой совокупности токовых каналов, в которых атомы углерода с sp-связями формируют графитовую фазу, и непроводящих алмазных фрагментов, сформированных атомами углерода с sp-связями, определяются Фурье-анализом. 4 ил.

Description

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано для оперативного контроля ее структурного состояния (распределения sp2 и sp3 связей).
Разнообразие структур и свойства тонких углеродных алмазоподобных пленок (diamond-like carbon films) можно объяснить особенностями межатомных связей атомов углерода. Наиболее распространенными химическими связями в аморфных и кристаллических углеродных пленках являются sp3- и sp2-связи, являющиеся результатом гибридизации электронных орбиталей. Такие пленки состоят из тетраэдрического аморфного углерода, так называемый ta-C (tetrahedral amorphous carbon) [1], в котором доминируют алмазные sp3-связи [2].
Согласно кластерной модели углеродных пленок [3] основными структурными составляющими алмазоподобных пленок являются кластеры графита, в которых атомы углерода с sp2-связями организованы в пластины, состоящие из гексагональных колец, связанные π-связями в стопки - кластеры графита. Эти кластеры погружены в матрицу из атомов углерода, связанные sp3-связями. Кластеры sp2 контролируют электрические свойства, матрица sp3 контролирует механические свойства. Из этой модели вытекает неоднородность структуры пленки - чередование областей с sp2 и sp3 связями. Однако остается неясным главное - какие структурные составляющие доминируют в структуре пленки.
Известен способ получения тонкой алмазоподобной пленки путем конденсации углерода на стеклянные подложки из парогазовой фазы, получаемой лазерным испарением в вакууме углеродных мишений, где в качестве мишени используются спрессованные таблетки из высокочистого графита диаметром 5 мм и толщиной 2-3 мм, а в качестве источника лазерного излучения используют расфокусированное излучение лазера на основе алюмо-иттриевого граната с длиной волны 1064 нм с диаметром пятна 3 мм, энергией импульса не ниже 9,0 Дж, длительностью импульса не менее 8 мс (миллисекунд), то есть интенсивностью лазерного излучения 1,6 104 Вт/см2. В результате на подложку из парогазовой фазы конденсируется углерод, в котором доля sp3 связей не ниже 80%, что позволяет сформировать алмазоподобные пленки толщиной до 100 нм и более [4]. Наличие алмазных кластеров контролируется дифракцией электронов при анализе структуры в просвечивающем электронном микроскопе. Данный способ не позволяет оперативно осуществлять контроль структурного состояния алмазоподобных пленок в связи со сложностью подготовки объекта для электронной микроскопии.
Задача изобретения - оперативный контроль структурного состояния (распределения sp2 и sp3 связей) тонкой однородной алмазоподобной пленки, полученной путем конденсации углерода на стеклянные подложки из парогазовой фазы, с помощью сканирования ее поверхности в зондовом микроскопе в режиме туннельного тока.
Сущность изобретения.
Объект в виде алмазоподобной пленки, полученной путем конденсации углерода из парогазовой фазы на стеклянную подложку, на которую предварительно нанесена пленка меди, помещается на предметный столик сканирующего зондового микроскопа. Сканирование проводящего зонда и построение поверхностного рельефа пленки осуществляется в режиме измерения туннельного тока. Проводится последующий Фурье-анализ структуры, строится полная функция радиального распределения плотности и определяется параметр периодичности, отражающий геометрию распределения sp2 и sp3 связей.
Способ реализуется следующим образом.
1. Готовятся подложки из силикатного стекла, на которые наносится медный электропроводящий слой.
2. На подложку со стороны проводящего слоя конденсируется из парогазовой фазы алмазаподобная пленка, где парогазовая фаза формируется путем испарения графитовой мишени расфокусированным до пятна диаметром 3,0 мм лазерным пучком интенсивностью излучения не менее 1,6 104 Вт/см2 мощного лазера NTS-300.
3. Полученная алмазоподобная пленка помещается на предметный столик сканирующего зондового микроскопа Solver Next и проводится сканирование поверхности для получения изображения поверхностной структуры в силовом режиме и в режиме туннельного тока. Полученное изображение представляет собой статистическое распределение областей токовых каналов и непроводящих фрагментов.
4. С помощью программы обработки изображений «Image Analysis 9,0» проводится Фурье-анализ полученного изображения поверхности в режиме туннельного тока, представляющего собой топографию распределенных токовых каналов и непроводящих фрагментов.
5. По полученному Фурье-образу строится функция радиального распределения плотности мощности, представляющей собой функцию с максимумом, приходящимся на некоторую частоту в обратном пространстве, то есть в пространстве обратных длин размерностью, например, нм-1.
6. Максимум функции радиального распределения пересчитывается для определения параметра периодичности структуры, полуширина функции определяет дисперсию распределения параметра периодичности.
7. Полученные данные представляют собой геометрические параметры, характеризующие распределение sp2 и sp3 связей, то есть распределение алмазной и графитовой структурных составляющих алмазоподобной пленки.
Изобретение поясняется чертежами: Фиг. 1. Схема получения алмазоподобной пленки методом лазерного испарения углеродных мишений в вакууме: 1 - лазерный пучок, 2 - фокусирующая линза, 3 - вакуумный объем, 4 - парогазовое облако углерода, 5 - стеклянная подложка, 6 - мишень (графитовая таблетка), выделенная область мишени диаметром 3 мм - размер расфокусированного лазерного пятна. Фиг. 2. Островковая структура алмазоподобной пленки на медном слое подложки. Фиг. 3. Распределение токовых каналов (белые точечные объекты) по поверхности алмазоподобной пленки.
Фиг. 4. Фурье-образ (а) и функция радиального распределения (б), свидетельствующие о периодичности в распределении токовых каналов по поверхности алмазоподобной пленки. Пример 1
Пленка меди наносилась на подложку из силикатного стекла в вакууме с остаточным давлением 10-5 мм. рт. столба путем конденсации из парогазовой фазы, полученной испарением медной навески с помощью вольфрамовой лодочки, нагреваемой кратковременным пропусканием электрического тока в вакуумном объеме вакуумной установки. Особенностью такой пленки является кристаллографически одинаково ориентированная структура островков. До 76% всех островков меди ориентированы таким образом, что их кристаллографические направления [111] совпадают. То есть плотноупакованная плоскость (111) параллельна поверхности подложки.
Пример 2
На медную пленку, сформированную на стеклянной подложке, в вакуумном объеме установки нанесли алмазоподобную пленку. Алмазоподобная пленка была получена путем конденсации углерода из парогазовой фазы, полученной прямым испарением графитовой мишени с помощью расфокусированного лазерного пучка мощного лазера NTS 300. Лазерный пучок (1) (фиг. 1) вводился через фокусирующую линзу (2) в вакуумный объем (3), где его расфокусировывали, и расфокусированный лазерный пучок интенсивностью лазерного излучения не ниже 1,6 104 Вт/см2 попадал на графитовую мишень (6), формируя испаряющуюся область диаметром 3,0 мм. В результате воздействия расфокусированного лазерного излучения на мишень происходит испарение углерода и его распределение в вакуумном объеме (3) в виде парогазового облака (4) с высокой кинетической энергией атомов и конденсация атомов углерода на медный слой подложки (5). Остаточное давление в вакуумном объеме достигало 10-5 мм. рт. столба. Полученный поток испаряемого углерода от нагретой до высоких температур мишени конденсировался на стеклянную подложку, формируя углеродную алмазоподобную пленку. В ходе лазерного нагрева расфокусированным лазерным пучком фрагментация мишени отсутствовала. Пример 3
Структура поверхности алмазоподобной пленки, полученная путем сканирования зонда в силовом режиме, приведена на фиг. 2.
Как следует из приведенных данных на фиг. 2 на площадке 30×30 мкм2 расположены объекты (островки), высота которых колеблется в интервале 0,2-1,2 мкм. То есть алмазоподобная пленка представляет собой достаточно плотный островковый конгломерат, в котором распределены атомы углерода с sp3- и sp2-связями. Пример 4
Для идентификации объектов, сформированных sp3- или sp2-связями, провели сканирование поверхности пленки в режиме туннельного тока. На фиг. 3 показано распределение токовых каналов, зафиксированных проводящим зондом.
Из данных фиг. 3 следует, что токовые каналы сконцентрированы в своеобразные ансамбли, внутри которых расположены непроводящее области. Естественно предположить, что токовые каналы представляют собой углеродные структуры, сформированные за счет sp2-связей, а непроводящие области - за счет sp3-связей. Отметим, что токовые каналы фактически представляют собой точечные объекты на поверхности пленки.
Пример 5
Для выяснения особенностей распределения проводящих каналов и непроводящих областей провели Фурье-анализ структуры поверхности пленки. На фиг. 4 представлены Фурье-образ и функция радиального распределения, свидетельствующие о некоторой периодичности поверхностных объектов структуры.
Две точки Фурье-образа, сконцентрированные в обратном пространстве (фиг. 4а), свидетельствует о периодичности в распределении токовых каналов по поверхности пленки. Однако большой разброс точек с меньшей интенсивностью характеризует большую дисперсию параметра периодичности. Максимум функции радиального распределения (фиг. 4б) составляет около 4,954 1/мкм, то есть параметр периодичности соответственно равен примерно 201 нм.
Из совокупности полученных данных следует, что атомы углерода с sp2-связями образуют проводящие области лишь «точечно», где точки - это проводящие каналы в структуре алмазоподобной пленки. Очевидно, что в этих локализованных областях сформирована сильно искаженная графитовая решетка, так как именно графит является проводящей фазой, а алмаз является хорошим диэлектриком. Таким образом, большая часть пленки занята крупными алмазными фрагментами, сформированными атомами углерода с sp3-связями, средним размером около 200 нм, окруженными мелкими сильно искаженными фрагментами графитовой фазы, сформированными атомами углерода с sp2-связями.
Контроль структурного состояния алмазоподобной пленки путем сканирования в режиме туннельного тока, позволяющего оперативно контролировать содержание структурных составляющих, сформированных атомами с sp2, sp3-связями и оперативно контролировать режимы испарения углеродных мишеней и конденсации углерода парогазовой фазы с содержанием sp3-связей.
Литература
1. M.G. Beghi, A.C. Ferrari, K.B.K. Teo, J. Robertson, C.E. Bottani, A. Libassi, B.K. Tanner, Bonding and mechanical properties of ultrathin diamond-like carbon films. Appl. Phys. Lett. 81, №20 (2002) 3804-3806.
2. B.K. Tay, D. Sheeja, S.P. Lau, X. Shi, B.C. Seet, Y.C. Yeo, Time and temperature-dependent changes in the structural properties of tetrahedral amorphous carbon films. Surface and Coatings Technology, 2000, v. 130, p. 248-251.
3. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R, 37 (2002) 129-281.
4. Плотников B.A., Демьянов Б.Ф., Макаров С.В., Ярцев В.И. Способ получения алмазоподобных тонких пленок. Патент РФ №2668246 от 27.09.2018 г.

Claims (1)

  1. Способ контроля структурного состояния алмазоподобных тонких пленок, состоящий в сканировании их поверхности зондом сканирующего зондового микроскопа, отличающийся тем, что сканирование поверхности осуществляется в режиме туннельного тока, а геометрические параметры структурных объектов, представляющих собой совокупности токовых каналов, в которых атомы углерода с sр2-связями формируют графитовую фазу, и непроводящих алмазных фрагментов, сформированных атомами углерода с sp3-связями, определяются Фурье-анализом.
RU2019135735A 2019-11-06 2019-11-06 Способ контроля структурного состояния алмазоподобных тонких пленок RU2723893C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019135735A RU2723893C1 (ru) 2019-11-06 2019-11-06 Способ контроля структурного состояния алмазоподобных тонких пленок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019135735A RU2723893C1 (ru) 2019-11-06 2019-11-06 Способ контроля структурного состояния алмазоподобных тонких пленок

Publications (1)

Publication Number Publication Date
RU2723893C1 true RU2723893C1 (ru) 2020-06-18

Family

ID=71096227

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019135735A RU2723893C1 (ru) 2019-11-06 2019-11-06 Способ контроля структурного состояния алмазоподобных тонких пленок

Country Status (1)

Country Link
RU (1) RU2723893C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063325A (ja) * 2007-09-04 2009-03-26 Hiroshima Univ ダイヤモンド様薄膜の評価方法
RU2525641C1 (ru) * 2013-03-07 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" Способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений
RU2525636C1 (ru) * 2013-03-05 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" Способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений
RU2668246C2 (ru) * 2016-12-19 2018-09-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ получения алмазоподобных тонких пленок
RU2685665C1 (ru) * 2017-11-17 2019-04-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ получения тонких алмазных пленок

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063325A (ja) * 2007-09-04 2009-03-26 Hiroshima Univ ダイヤモンド様薄膜の評価方法
RU2525636C1 (ru) * 2013-03-05 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" Способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений
RU2525641C1 (ru) * 2013-03-07 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" Способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений
RU2668246C2 (ru) * 2016-12-19 2018-09-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ получения алмазоподобных тонких пленок
RU2685665C1 (ru) * 2017-11-17 2019-04-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ получения тонких алмазных пленок

Similar Documents

Publication Publication Date Title
US6616495B1 (en) Filming method of carbon nanotube and the field emission source using the film
CN103510048B (zh) 一种多孔结构铜纳米线阵列的制备方法及其薄膜电导率的测试方法
US8741419B2 (en) Nanocarbon material-composite substrate and manufacturing method thereof
US20090258255A1 (en) Method for Producing Diamond Having Acicular Projection Array Structure on Surface thereof, Diamond Material, Electrode and Electronic Device
JP6353127B2 (ja) 透過型低エネルギー電子顕微鏡
JP4697732B2 (ja) 酸化チタン薄膜の製造方法
JPH06330295A (ja) プラズマ製膜装置
RU2723893C1 (ru) Способ контроля структурного состояния алмазоподобных тонких пленок
CN102320566B (zh) 一种采用自对准成型制备三维纳米空间电极的方法
JP6408072B2 (ja) 二次元ナノ材料を特徴付ける方法
CN101892522B (zh) 利用氧等离子体辅助脉冲激光沉积法制备钛铌镁酸铅薄膜
US4447374A (en) Preparing replica film of specimen for electron microscopy
Akram et al. Investigation of field emission properties of laser irradiated tungsten
US4334844A (en) Replica film of specimen for electron microscopy apparatus
JP4751841B2 (ja) 電界放出型電極及び電子機器
RU2668246C2 (ru) Способ получения алмазоподобных тонких пленок
Escobar-Alarcón et al. Growth of rutile TiO2 thin films by laser ablation
JP4376914B2 (ja) 電界放出型電極の製造方法
Gromov et al. Specific features of the structure and properties of carbon nanocolumns formed by low-temperature chemical vapor deposition
RU2791963C1 (ru) Способ переключения типа носителя в углеродных алмазоподобных пленках
KR100222581B1 (ko) 대면적 다이아몬드 박막의 제조 장치 및 방법
CN108793067A (zh) 一种平行纳米线的非热融合及其系列结构成形加工方法
JP4729191B2 (ja) 多結晶シリコン薄膜の作製方法
Kaleeva et al. Production of silicon coatings by plasma-arc method
JP2010131558A (ja) ターゲット物質含有液体の製造方法、ターゲット物質を含有する薄膜の形成方法、ターゲット物質含有液体