RU2717686C1 - Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты) - Google Patents

Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты) Download PDF

Info

Publication number
RU2717686C1
RU2717686C1 RU2019104145A RU2019104145A RU2717686C1 RU 2717686 C1 RU2717686 C1 RU 2717686C1 RU 2019104145 A RU2019104145 A RU 2019104145A RU 2019104145 A RU2019104145 A RU 2019104145A RU 2717686 C1 RU2717686 C1 RU 2717686C1
Authority
RU
Russia
Prior art keywords
methanol
catalyst
dimethyl ether
ethylene glycol
dihydrogen phosphate
Prior art date
Application number
RU2019104145A
Other languages
English (en)
Inventor
Ирина Олеговна Глухова
Елена Анатольевна Асабина
Владимир Ильич Петьков
Елена Юрьевна Миронова
Наталья Анатольевна Жиляева
Андрей Борисович Ярославцев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского", Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority to RU2019104145A priority Critical patent/RU2717686C1/ru
Application granted granted Critical
Publication of RU2717686C1 publication Critical patent/RU2717686C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Предлагаемая группа изобретений относится к области химии, касается способа получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир в инертной атмосфере. Способ получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир формулы M0.5Zr2(PO4)3, где М - Ni, Cu, включает смешивание лимонной кислоты с водными растворами Ni(II) и Zr(IV), или с водными растворами Cu(II) и Zr(IV), добавление этиленгликоля и дигидрофосфата аммония при следующем соотношении компонентов, мол.%: лимонная кислота - 0.075, Ni(II) или Cu(II) - 0.028, Zr(IV) - 0.114, этиленгликоль - 0.020, дигидрофосфат аммония - 0.171, вода - 2-10. Способ получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир общей формулы M0.65Fe0.3Zr1.7(PO4)3, где М - Ni, Cu, включает смешивание лимонной кислоты с водными растворами Ni(II), Zr(IV) и Fe(III), или с водными растворами Cu(II), Zr(IV) и Fe(III), добавление этиленгликоля и дигидрофосфата аммония при следующем соотношении компонентов, мол.%: лимонная кислота - 0.075, Ni(II) или Cu(II) - 0.037, Fe(III) - 0.017, Zr(IV) - 0.096, этиленгликоль - 0.020, дигидрофосфат аммония - 0.170, вода - 2-10. Затем осуществляют удаление воды выпариванием сначала при 80-95°С, затем при 120-140°С, последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании. Технический результат - повышение, как минимум, в 2 раза показателя удельной нагрузки на 1 г катализатора при сохранении значений селективности по диметиловому эфиру и конверсии метанола по сравнению с промышленными аналогами, повышение механической, термической и химической стойкости катализатора, исключение необходимости использования носителей/подложек. 2 н.п. ф-лы, 1 ил., 5 табл., 4 пр.

Description

Предлагаемая группа изобретений относится к области химии, касается производства композитного термостабильного катализатора каркасного строения и способа его получения, который может быть использован для дегидратации метанола в диметиловый эфир (ДМЭ).
В настоящее время получение диметилового эфира осуществляют преимущественно путем дегидратации метанола с использованием в качестве катализатора композитной твердой кислоты, каолина, модифицированного кислотой, активированного оксида алюминия и т.п. Для этого, как правило, используют реактор с неподвижным слоем. Указанные способы характеризуются малыми масштабами производства и достаточно высокой стоимостью. В условиях маломасштабных производств актуальной задачей становится создание катализаторов с высокой удельной нагрузкой на 1 грамм для использования в компактных реакторах конверсии метанола, т.к. известные промышленные катализаторы на основе оксидов алюминия и кремния не обладают высокой активностью.
Например, известен катализатор дегидратации метанола молекулярное сито цеолит ZSM-5, содержащее оксиды алюминия и кремния Al2O3/SiO2 (US 3702886 А, кл. B01J 20/18, B01J 29/04, B01J 29/40, C01B 39/40, C10G 11/05, C10G 35/095, C10G 45/64, C10G 47/16, C01B 33/28, опубл. 14.11.1972 г.). Структура цеолитов может быть представлена как жесткий тетраэдрический объемный каркас, состоящий из SiO4 и AlO4, в котором тетраэдры соединены общими атомами кислорода, и соотношение атомов алюминия и кремния к числу атомов кислорода составляет 1:2. Соблюдение электронейтральности обеспечивается включением катионов в структуру, например, катионов щелочных или щелочноземельных металлов. Для получения указанного катализатора стехиометрическое количество оксида кремния растворяют в N-тетрапропилгидроксиде аммония, смешивают с водным раствором NaAlO2, полученную смесь отстаивают в автоклаве в течение 6 дней при 150°С. Полученный продукт фильтруют, промывают 1 л воды, высушивают при 110°С, отжигают при 538°С. Известны также условия процесса дегидратации при использовании данного катализатора: температура реакции находится в пределах 280°С - 340°С при давлении от 0,5 МПа до 0,8 МПа; конверсия метанола за один проход находится в диапазоне 70% - 85%, и селективность по диметиловому эфиру превышает 98% (RU 2459799 С2, кл. С07С 41/09, С07С 43/04, опубл. 27.08.2012 г.). В работе Abasov, S.I., Babayeva, F.A., Guliyev, В.В., Piriyev, N.N., et al. 49 (2013) 1 58-64 приведено значение активности для данного катализатора - 1.41⋅10-3 моль⋅ч-1⋅г-1.
Известны твердокислотные катализаторы Al2O3⋅nSiO2, n=0-0.3 с активностью (удельной нагрузкой катализатора) (0.9-3.0)⋅10-3 моль⋅ч-1⋅г-1 и конверсией метанола на уровне 74-86% при 300°С, а также Al2O3⋅nTiO2, n=0.25-0.75, проявляющему сравнительно меньшую активность 0.2⋅10-3 моль⋅ч-1⋅г-1 и степень конверсии метанола 15-20% при 300°С (F.S. Ramos, А.М. Duarte de Farias, L.E.P. Borges et al. // Catalysts Today, 101 (2005) 39-44).
В промышленности также известны катализаторы Al2O3-C (пористый, производство Petrobras) и Al2O3-D (непористый, производство Degussa). Процесс дегидратации метанола проводят при 200°С, образование диметилового эфира проходит без образования побочных продуктов. Значения активности для Al2O3-C составляет 10.5⋅10-6 моль⋅с-1⋅г-1, для Al2O3-D - 6.8⋅10-6 моль⋅с-1⋅г-1 (F.S. Ramos, А.М. Duarte de Farias, L.E.P. Borges et al. // Catalysis Today, 101 (2005) 39-44).
Известны промышленные катализаторы дегидратации метанола в диметиловый эфир на основе циркония - сульфатированный оксид циркония S-ZrO2 и оксид циркония, допированный вольфрамом W/ZrO2 производства MEL Chemicals. При температуре реакции 200°С активность для S-ZrO2 составляет 19.3⋅10-6 моль⋅с-1⋅г-1; для катализатора W/ZrO2 значение активности ниже и равно 7.3⋅10-6 моль⋅с-1⋅г-1.
Известен катализатор Al2O3⋅nP2O5, n=0.33-1.00 для риформинга метанола в диметиловый эфир. Катализатор характеризуется невысокой удельной нагрузкой (активностью) на 1 грамм катализатора (1,2-2,7)⋅10-3 моль⋅ч-1⋅г-1 и степенью конверсии метанола 75-83% при 300°С (Yaripour F., Baghaei F., Schmidt I., Perregaard J. // Catalysis Communications, 6 (2005) 147-152).
Известен алюмосиликатный катализатор DME-FCAT производства компании Haldor
Figure 00000001
A/S (Дания) со значением активности 3.8⋅10-7 моль⋅с-1⋅г-1 при проведении реакции при 300°С. Степень конверсии метанола при этом составляет 82%.
Указанные алюмосиликатные катализаторы для получения диметилового эфира получают методом соосаждения (золь-гель синтез). Катализаторы приготовлены в следующих условиях: медленное добавление раствора осадителя (33% NH3) со скоростью 4 мл/мин, концентрации Al(NO3)3⋅.9H2O и Si(OC2H5)4 в этаноле составляли 2 моль/л, отношение NH4OH/C2H5OH=1/3. Полученную смесь перемешивают магнитной мешалкой при 50°С в течение 24 часов. После осаждения продукт высушивают при 110°С и отжигают при 650°С в течение 6 часов (Yaripour F., Baghaei F., Schmidt I., Perregaard J. Catal. Commun. 6 (2005) 147-152).
Известен катализатор γ-Al2O3 (DME-SCAT2) с активностью А=3.78⋅10-7 моль⋅с-1⋅г-1 при проведении дегидратации метанола при атмосферном давлении и 300°С. Конверсия метанола в указанных условиях достигает 77% при заявленной селективности по диметиловому эфиру 95%. Катализатор γ-Al2O3 (DME-SCAT2) получают термическим разложением прекурсора бемита в течение 6 часов при 550°С со скоростью нагревания 2°С/мин. (Yaripour F., Baghaei F., Schmidt I., Perregaard J. // Catal. Commun. 6 (2005) 542-549).
В указанной работе описаны также титаносилиликатные катализаторы SiO2-TiO2 с различным содержанием оксида кремния: 25% масс. - DME-TS1, 50% масс. - DME-TS2, 75% масс. DME-TS3. Реакцию получения диметилового эфира из метанола проводят при 300°С. Активность указанных катализаторов находится в пределах (0.54-0.61)⋅10-7 моль⋅с-1⋅г-1 при относительно невысоких значениях конверсии исходного сырья (14.8-19.6%) и селективности по диметиловому эфиру (0.6-12.7%).
Также в этой работе описаны катализаторы фосфаты алюминия DME-AlP1, DME-AlP2 и DME-AlP3, отличающиеся мольным соотношением Al/Р. Для первого катализатора DME-AlP1 мольное соотношение Al/Р=1, для DME-AlP2 соотношение равно 2, для DME-AlP3 Al/Р=3. В указанных выше условиях активность данных катализаторов оценена: A(DME-AlP1) = 7.55⋅10-7 моль⋅с-1⋅г-1 при степени конверсии метанола 75% и селективности 87%; A(DME-AlP2) = 3.33⋅10-7 моль⋅с-1⋅г-1 при степени конверсии метанола 83% и селективности 90%; A(DME-AlP3) = 3.26⋅10-7 моль⋅с-1⋅г-1 при степени конверсии метанола 83% и селективности 90%.
Известны цирконийсодержащие фосфаты структурного типа вольфрамата скандия состава MxZr2(PO4)3 (х = 1, М - Na, K, Rb, Cs; х = = 0.5, М - Mg, Са, Ва; х = 0.25, М - Zr) как катализаторы для дегидратации метанола в диметиловый эфир в окислительной атмосфере при 300°С. Значения активности А по диметиловому эфиру для наиболее эффективных в данной работе катализаторов Zr0.25Zr2(PO4)3 и NaZr2(PO4)3 достигали (5,2-5,3)⋅10-7 моль/ч⋅г при степени конверсии метанола 69-70% (M.V. Sukhanov, М.М. Ermilova, N.V. Orekhova, G.F. Tereshchenko, V.I. Petkov, LA. Shchelokov. Bull. Lobachevski Nizegorodski Univ. 1 (2007) 89-94).
Недостатками всех вышеперечисленных катализаторов является невысокая удельная нагрузка на 1 г катализатора (активность), что является существенным минусом при использовании в компактном реакторе дегидратации метанола.
Известен способ получения алюмотитанатных катализаторов (ЕР 0169953 А1, кл. B01J 21/06, С07С 41/09, опубл. 02.05.1986 г.), заключающийся в последовательном перемешивании водных растворов TiCl4 и NaAlO2 с добавлением щелочи NaOH до рН=8 в течение 30 минут, сушку и прокаливание при 450-650°С. Полученный катализатор состоит из 0.5-20% TiO2, 80-99.5% γ-Al2O3. Недостатком данного способа является использование агрессивных реагентов, а также низкая активность полученного катализатора.
Известна методика получения никель-алюминиевых катализаторов методом Печини, которая заключается в смешивании водных растворов нитратов металлов, диэтиленгликоля и лимонной кислоты (S.I. Uskov, D.I. Potemkin, P.V. Snytnikov, V.D. Belyaev, O.A. Bulavchenko, P.A. Simonov, V.A. Sobyanin // Materials Letters, 221 (2018) 18-21) в молярном соотношении 1:1:1. Образовавшийся полимерный прекурсор сушат при 120°С и отжигают при 600°С в течение 6 часов. Недостатком данного метода является большой расход реактивов (диэтиленгликоля), а также низкая активность полученного катализатора.
Также известна методика получения каркасных фосфатов структурного типа NASICON методом Печини, заключающаяся в смешивании стехиометрических количеств солей металлов, лимонной кислоты в соотношении 4:1 и 2 мл этиленгликоля, последующем добавлении дигидрофосфата аммония (А.В. Ilin, М.М. Ermilova, N.V. Orekhova, М. Cretin, А.В. Yaroslavtsev // Journal of Alloys and Compounds, 748 (2018) 583-590). Полученный продукт сушат при 95°С и 150°С в течение 24 часов на каждой стадии, затем при 350°С в течение 4 часов, подвергают отжигу при 750°С в течение 10 часов. Недостатком данного метода является использование высокой температуры отжига.
Катализаторы SiO2-TiO2 с варьируемым количеством SiO2 (25, 50, 75% масс.) получают золь-гель методом. Для этого стехиометрические количества Ti(OC3H7)4 и Si(OC2H5)4 предварительно растворяют в этаноле в отношении 1:2, затем смешивают с раствором щавелевой кислоты (рН=1) при непрерывном перемешивании. Затем добавляют расчетное количество воды до достижения соотношения H2O/(Ti(OC3H7)4 + Si(OC2H5)) = 1:1. После осаждения полученный продукт сушат при 110°С и отжигают при 500°С в течение 6 часов. Фосфаты алюминия с различным мольным отношением Al/P (1, 2, 3) получают также методом соосаждения. Способ включает в себя добавление водного раствора аммиака к раствору Al(NO3)3⋅.9H2O и 85% Н3РО4 при постоянном перемешивании до достижения значения рН=9. Осадок промывают, сушат при 110°С и отжигают при 650°С в течение 3 часов. Недостатком данного способа является использование дорогостоящих и редких реактивов, а также низкая активность полученных катализаторов.
Способ получения цирконийсодержащих фосфатов структурного типа вольфрамата скандия состава MxZr2(PO4)3 (х = 1, М - Na, K, Rb, Cs; х = 0.5, М - Mg, Са, Ва; х = 0.25, М - Zr) для дегидратации метанола в диметиловый эфир в окислительной атмосфере включает смешивание солей металлов и фосфорной кислоты в стехиометрических количествах, последующую сушку при 90°С, 200°С и термообработку при 600°С, 900°С с промежуточным диспергированием. Недостатком данного способа является использование высоких температур термообработки.
В задачу группы изобретений положено создание катализатора для дегидратации метанола в диметиловый эфир.
Техническим результатом от использования предлагаемой группы изобретений является повышение, как минимум, в 2 раза показателя удельной нагрузки на 1 г катализатора при сохранении значений селективности по диметиловому эфиру и конверсии метанола по сравнению с промышленными аналогами, повышение механической, термической и химической стойкости катализатора, исключение необходимости использования носителей/подложек.
Поставленная задача достигается тем, что способ получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир общей формулы M0.5Zr2(PO4)3, где М - Ni, Cu, включает смешивание лимонной кислоты с водными растворами Ni(II) и Zr(IV), или с водными растворами Cu(II) и Zr(IV), добавление этиленгликоля и дигидрофосфата аммония при следующем соотношении компонентов, моль %: лимонная кислота - 0.075, Ni(II) или Cu(II) - 0.028, Zr(IV) - 0.114, этиленгликоль - 0.020, дигидрофосфат аммония - 0.171, вода - 2-10, удаление воды выпариванием сначала при 80-95°С, затем при 120-140°С, последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании.
Поставленная задача достигается, также, тем, что способ получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир, общей формулы M0.65Fe0.3Zr1.7(PO4)3, где М - Ni, Cu, включает смешивание лимонной кислоты с водными растворами Ni(II), Zr(IV) и Fe(III), или с водными растворами Cu(II), Zr(IV) и Fe(III), добавление этиленгликоля и дигидрофосфата аммония при следующем соотношении компонентов, моль %: лимонная кислота - 0.075, Ni(II) или Cu(II) - 0.037, Fe(III) - 0.017, Zr(IV) - 0.096, этиленгликоль - 0.020, дигидрофосфат аммония - 0.170, вода - 2-10, удаление воды выпариванием сначала при 80-95°С, затем при 120-140°С, последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании.
На фиг. 1 представлена микрофотография катализатора состава Ni0.5Zr2(PO4)3.
На фиг. 2 представлены рентгенограммы для серии Ni0.5(1+x) 2+Fex 3+Zr2-x 4+(РО4)3, х = 0, 0.3, где по оси ординат - интенсивность рентгеновского излучения I, импульс/с; по оси абсцисс - угол дифракции 2θ, градус.
На фиг. 3 представлены рентгенограммы для серии Cu0.5(1+x) 2+Fex 3+Zr2-x 4+(PO4)3, х = 0, 0.3, где по оси ординат - интенсивность рентгеновского излучения I, импульс/с; по оси абсцисс - угол дифракции 2θ, градус.
Катализатор представляет собой композитный порошкообразный материал класса ортофосфатов с размером частиц 1-10 нм, имеющего в составе d-переходные металлы, цирконий и/или железо с общей формулой: M0.5Zr2 4+(PO4)3 - по 1 варианту, или M0.65 2+Fe0.3 3+Zr1.7 4+(PO4)3 по 2 варианту, где М - Ni, Cu.
Предлагаемый катализатор получают следующим образом.
Для получения композитного термостабильного катализатора по 1 варианту смешивают лимонную кислоту с водными растворами Ni(II) и Zr(IV), или с водными растворами Cu(II) и Zr(IV). Затем добавляют этиленгликоль и дигидрофосфат аммония. При этом компоненты используют при следующем соотношении, моль %:
лимонная кислота - 0.075,
Ni(II) или Cu(II) - 0.028,
Zr(IV) - 0.114,
этиленгликоль - 0.020,
дигидрофосфат аммония - 0.171,
вода - 2-10.
После этого осуществляют удаление воды выпариванием сначала при температуре 80-95°С, затем при 120-140°С, и последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании.
Для получения композитного термостабильного катализатора по 2 варианту смешивают лимонную кислоту с водными растворами Ni(II), Zr(IV) и Fe(III), или с водными растворами Cu(II), Zr(IV) и Fe(III). Затем добавляют этиленгликоль и дигидрофосфат аммония. При этом компоненты используют в следующем соотношении, моль %:
лимонная кислота - 0.075,
Ni(II) или Cu(II) - 0.037,
Fe(III) - 0.017,
Zr(IV) - 0.096,
этиленгликоль - 0.020,
дигидрофосфат аммония - 0.170,
вода - 2-10.
После этого осуществляют удаление воды выпариванием сначала при температуре 80-95°С, затем при 120-140°С, и последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании.
Выбор интервала температур 80-95°С обусловлен предотвращением процесса активного кипения при выпаривании прекурсора, что может привести к разбрызгиванию и потере массы промежуточного продукта; интервал температур 340-360°С предназначен для удаления этиленгликоля из получаемого продукта; интервалы в пределах 590-610°С, 640-660°С, 665-675°С необходимы для превращения промежуточного продукта в целевую фазу катализатора, удалении лимонной кислоты и окончания процесса кристаллизации.
Удаление воды при температуре ниже 80°С является нецелесообразным с точки зрения длительности процесса выпаривания большого объема исходного геля, при температуре выше 95°С повышается риск кипения исходного геля и разбрызгивания с потерей массы промежуточного интермедиата. Дальнейшее выпаривание воды при температуре ниже 120°С ведет к увеличению длительности процесса на 2-4 часа, выше 140°С может привести к кипению геля и потерям массы продукта.
Отжиг при температуре ниже 340°С нецелесообразен с точки зрения длительности процесса отжига, выше 360°С скорость удаления газообразного компонента является слишком большой, что приводит к улетучиванию и целевой фазы, следовательно, к потере массы продукта.
Строение, фазовый состав, химический состав и однородность синтезированных образцов контролируют с помощью рентгеновского спектрометра Shimadzu XRD-6000 (CuKa radiation, λ = 1.54178
Figure 00000002
) и сканирующего электронного микроскопа (СЭМ) JEOL JSM-7600F с катодом Шоттки, оснащенного энергодисперсионным рентгеновским микроанализатором Oxford Instruments ХМах 80 (Premium) с полупроводниковым кремниевым детектором. Точность прибора при определении состава образцов составляет 2 ат. %.
Для приготовления катализаторов были использованы следующие реактивы: C6H8O7 (99.0%, Реахим), NiSO4⋅7H2O (99.0%, Реахим), CuO (99.0%, Реахим), Fe(NO3)3 (99.0%, Реахим), ZrOCl2 (99.0%, Реахим), NH4H2PO4 (99.0%, Реахим), этиленгликоль (99.0%, Реахим), H3PO4 (99.0%, Реахим).
Концентрации водных растворов были установлены гравиметрическим методом (Е. Laszlo, R. Belcher and L. Gordon. Gravimetric analysis. Part II in international series of monographs in analytical chemistry. 7 (27), 488-506) и составили: C(NiSO4)=0.5 M, C(Fe(NO3)3)=0.934 M, C(ZrCl4)=0.892 M, C(NH4H2PO4)=1.0 M, C(Mn(CH3COO)2)=0.353 M, C(CuCl2)=0.5 M.
Концентрации водных растворов металлов и дигидрофосфата аммония могут быть любыми при соблюдении мольных указанных соотношений.
В процессе испытаний каталитической активности наблюдалась только дегидратация метанола с образованием диметилового эфира (1):
Figure 00000003
Рассчитывают конверсию метанола X (%), селективность S (%), удельную нагрузку на грамм катализатора или активность (производительность) (А, ммоль⋅ч-1⋅г-1):
Figure 00000004
Figure 00000005
Figure 00000006
где ϕ0 и ϕ1 - исходная и текущая объемные доли спирта, ϕi - доля спирта, пошедшего на целевую реакцию, F - скорость подачи метанола, моль/ч, W - масса катализатора, г.
Полученный катализатор используют для дегидратации метанола в диметиловый спирт следующим образом.
Процесс превращения метанола проводят в проточном реакторе. Образец, полученный по примерам 1-4, массой 0.3 г смешивают с кварцем (средний размер частиц 0.8-1.0 мм) и помещают в середину реактора. В реактор подаются пары метанола из термостатированного при 2°С барботера со скоростью 20 мл/мин. Продукты реакции анализируют на хроматографе с детектором по теплопроводности и колонкой с порапаком-Т.
Каталитическая активность полученных катализаторов по сравнению с известными катализаторами дегидратации метанола для получения диметилового эфира представлена в таблице 1.
Figure 00000007
Figure 00000008
Охарактеризованные варианты катализатора обладают большей производительностью, т.к. при их использовании степень превращения спирта близка к равновесной при большей в 2 раза нагрузке катализатора (известные катализаторы ZSM-5 (Abasov, S.I., Babayeva, F.A., Guliyev, В.В., Piriyev, N.N., et al. 49 (2013) 1 58-64), Al2O3⋅nSiO2, Al2O3⋅nTiO2, Al2O3⋅nP2O5 - 1.41 ммоль⋅ч-1⋅г-1; 0.9-3.0 ммоль⋅ч-1⋅г-1, 0.2 ммоль⋅ч-1⋅г-1, 1.2-2.7 ммоль⋅ч-1⋅г-1, соответственно).
Таким образом, предлагаемый катализатор с каркасной структурой класса ортофосфатов с d-переходными металлами в составе обладает высоким значением удельной нагрузки на 1 г катализатора (5.25-5.75 ммоль⋅ч-1⋅г-1) по сравнению с промышленными катализаторами при сходных значениях селективности по ДМЭ и степени конверсии спирта.
Ниже представлены примеры конкретного осуществления предлагаемой группы изобретений.
Пример 1.
Для получения 1 г катализатора состава Ni0.5Zr2(PO4)3 смешивают 14.5049 г лимонной кислоты с 2.01 мл раствора никеля(II) и 4.49 мл раствора циркония(IV), затем приливают одновременно 1.12 мл этиленгликоля и 6.04 мл дигидрофосфата аммония. Полученный гель выпаривают при 90°С, затем при 130°С, проводят последовательный отжиг при 360°С, 610°С, 660°С, 670°С с промежуточным диспергированием.
Полученный катализатор изучен в проточном режиме в реакции дегидратации метанола в диапазоне температур 573-693 K. Степень конверсии метанола, селективность по диметиловому эфиру, выход диметилового эфира приведены в Таблице 1. Удельная нагрузка катализатора (активность) А превышает показатель активности промышленного катализатора Al2O3⋅nSiO2 минимум в 2 раза.
Figure 00000009
Пример 2.
Для получения 1 г катализатора состава Ni0.65Fe0.3Zr1.7(PO4)3 смешивают 15.4314 г лимонной кислоты с 2.63 мл раствора никеля(II), 3.85 мл раствора циркония(IV), 0.65 мл раствора железа(III), затем приливают одновременно 1.19 мл этиленгликоля и 6.09 мл дигидрофосфата аммония. Полученный гель выпаривают при 80°С, затем при 120°С, проводят последовательный отжиг при 340°С, 600°С, 650°С, 670°С с промежуточным диспергированием.
Полученный катализатор изучен в проточном режиме в реакции дегидратации метанола в диапазоне температур 553-693 K. Степень конверсии метанола, селективность по диметиловому эфиру, выход диметилового эфира приведены в Таблице 2. Удельная нагрузка катализатора (активность) А превышает показатель активности промышленного катализатора ZSM-5 минимум в 2 раза.
Figure 00000010
Пример 3.
Для получения 1 г катализатора состава Cu0.5Zr2(PO4)3 смешивают 14.4345 г лимонной кислоты с 2.00 мл раствора меди(II), 4.49 мл раствора циркония(IV), затем приливают одновременно 1.12 мл этиленгликоля и 1.88 мл фосфорной кислоты. Полученный гель выпаривают при 85°С, затем при 140°С, проводят последовательный отжиг при 350°С, 590°С, 640°С, 665°С с промежуточным диспергированием.
Полученный катализатор изучен в проточном режиме в реакции дегидратации метанола в диапазоне температур 573-693 К. Степень конверсии метанола, селективность по диметиловому эфиру, выход диметилового эфира приведены в Таблице 3. Удельная нагрузка катализатора (активность) А превышает показатель активности промышленного катализатора ZSM-5 минимум в 2 раза.
Figure 00000011
Пример 4.
Для получения 1 г катализатора состава Cu0.65Fe0..3Zr1.7(PO4)3 смешивают 15.3338 г лимонной кислоты с 2.61 мл раствора меди(II), 3.83 мл раствора циркония(IV), 0.64 мл раствора железа(III), затем приливают одновременно 1.19 мл этиленгликоля и 6.09 мл дигидрофосфата аммония. Полученный гель выпаривают при 90°С, затем при 125°С, проводят последовательный отжиг при 350°С, 600°С, 660°С, 675°С с промежуточным диспергированием.
Полученный катализатор изучен в проточном режиме в реакции дегидратации метанола в диапазоне температур 553-693 K. Степень конверсии метанола, селективность по диметиловому эфиру, выход диметилового эфира приведены в Таблице 4.
Figure 00000012

Claims (6)

1. Способ получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир общей формулы M0.5Zr2(PO4)3, где М - Ni, Cu, включает смешивание лимонной кислоты с водными растворами Ni(II) и Zr(IV), или с водными растворами Cu(II) и Zr(IV), добавление этиленгликоля и дигидрофосфата аммония при следующем соотношении компонентов, мол.%:
лимонная кислота 0.075 Ni(II) или Cu(II) 0.028 Zr(IV) 0.114 этиленгликоль 0.020 дигидрофосфат аммония 0.171 вода 2-10,
удаление воды выпариванием сначала при 80-95°С, затем при 120-140°С, последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании.
2. Способ получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир общей формулы M0.65Fe0..3Zr1.7(PO4)3, где М - Ni, Cu, включает смешивание лимонной кислоты с водными растворами Ni(II), Zr(IV) и Fe(III), или с водными растворами Cu(II), Zr(IV) и Fe(III), добавление этиленгликоля и дигидрофосфата аммония при следующем соотношении компонентов, мол.%:
лимонная кислота 0.075 Ni(II) или Cu(II) 0.037 Fe(III) 0.017 Zr(IV) 0.096 этиленгликоль 0.020 дигидрофосфат аммония 0.170 вода 2-10,
удаление воды выпариванием сначала при 80-95°С, затем при 120-140°С, последующий отжиг при 340-360°С, 590-610°С, 640-660°С, 665-675°С при промежуточном диспергировании.
RU2019104145A 2019-02-14 2019-02-14 Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты) RU2717686C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019104145A RU2717686C1 (ru) 2019-02-14 2019-02-14 Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019104145A RU2717686C1 (ru) 2019-02-14 2019-02-14 Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2019123106A Division RU2019123106A (ru) 2019-07-22 2019-07-22 Композитный термостабильный катализатор каркасного строения для дегидрации метанола в диметиловый эфир и способ его получения

Publications (1)

Publication Number Publication Date
RU2717686C1 true RU2717686C1 (ru) 2020-03-25

Family

ID=69943092

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019104145A RU2717686C1 (ru) 2019-02-14 2019-02-14 Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)

Country Status (1)

Country Link
RU (1) RU2717686C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020097B1 (ru) * 2007-09-10 2014-08-29 Каталитик Дистиллейшн Текнолоджиз Способ получения диметилового эфира
US20170203281A1 (en) * 2016-01-19 2017-07-20 Bharat Petroleum Corporation Ltd. Method of preparation of mixed metal oxide using glucose oxidation assisted precipitation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020097B1 (ru) * 2007-09-10 2014-08-29 Каталитик Дистиллейшн Текнолоджиз Способ получения диметилового эфира
US20170203281A1 (en) * 2016-01-19 2017-07-20 Bharat Petroleum Corporation Ltd. Method of preparation of mixed metal oxide using glucose oxidation assisted precipitation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
V.I. Pet’kov, M.V. Sukhanov, M.M. Ermilova, N.V. Orekhova, G.F. Tereshchenko. Development and Synthesis of Bulk and Membrane Catalysts. Zhurnal Prikladnoi Khimii, Vol. 83, No. 10, pp. 1591−1601, 2010. *
И.И. Михаленко, Е.И. Поварова, А.И. Пылинина. СИНТЕЗ, ХАРАКТЕРИСТИКИ И КИСЛОТНЫЕ СВОЙСТВА ПОВЕРХНОСТИ ЦИРКОНИЙ-ФОСФАТНЫХ КАТАЛИЗАТОРОВ С МЕДЬЮ, КОБАЛЬТОМ И НИКЕЛЕМ. НАУЧНЫЕ ВЕДОМОСТИ. Серия: Математика. Физика. 2012. Номер 11(130). Вып. 27 177. *
М.В. Суханов, М.М. Ермилова, Н.В. Орехова, Г.Ф. Терещенко, В.И. Петьков, И.А. Щелоков. КАТАЛИТИЧЕСКИЕ СВОЙСТВА ЦИРКОНИЙСОДЕРЖАЩИХ ФОСФАТОВ КАРКАСНОГО СТРОЕНИЯ В ДЕГИДРАТАЦИИ МЕТАНОЛА. Вестник Нижегородского университета им. Н.И. Лобачевского. Номер 1, с. 89-94, 2007. *
Петьков В.И., Суханов М.В., Ермилова М.М., Орехова Н.В., Терещенко Г.Ф. РАЗРАБОТКА И СОЗДАНИЕ КОМПОЗИТНЫХ МЕМБРАННЫХ КАТАЛИЗАТОРОВ НА ОСНОВЕ ФОСФАТОВ И МОЛИБДАТОВ КАРКАСНОГО СТРОЕНИЯ. VI РОССИЙСКАЯ КОНФЕРЕНЦИЯ "НАУЧНЫЕ ОСНОВЫ ПРИГОТОВЛЕНИЯ И ТЕХНОЛОГИИ КАТАЛИЗАТОРОВ". ТЕЗИСЫ ДОКЛАДОВ, ТОМ I. 4 - 9 сентября 2008 г. V.I. Pet’kov, M.V. Sukhanov, M.M. Ermilova, N.V. Orekhova, G.F. Tereshchenko. Development and Synthesis of Bulk and Membrane Catalysts. Zhurnal Prikladnoi Khimii, Vol. 83, No. 10, pp. 1591−1601, 2010. И.И. Михаленко, Е.И. Поварова, А.И. Пылинина. СИНТЕЗ, ХАРАКТЕРИСТИКИ И КИСЛОТНЫЕ СВОЙСТВА ПОВЕРХНОСТИ ЦИРКОНИЙ-ФОСФАТНЫХ КАТАЛИЗАТОРОВ С МЕДЬЮ, КОБАЛЬТОМ И НИКЕЛЕМ. НАУЧНЫЕ ВЕДОМОСТИ. Серия: Математика. Физика. 2012. Номер 11(130). Вып. 27 177. М.В. Суханов, М.М. Ермилова, Н.В. Орехова, Г.Ф. Терещенко, В.И. Петьков, И.А. Щелоков. КАТАЛИТИЧЕСКИЕ СВОЙСТВА ЦИРКОНИЙСОДЕРЖАЩИХ ФОСФАТОВ КАРКАСНОГО СТРОЕНИЯ В ДЕГИДРАТАЦИИ МЕТАНОЛА. Вестник Нижегородского университета им. Н.И. Лобачевск *

Similar Documents

Publication Publication Date Title
US6323383B1 (en) Synthesis method of chemical industrial raw material and high-octane fuel, and high-octane fuel composition
DE60005969T2 (de) Verfahren zur herstellung von phenol und aceton
Zhao et al. Fe-Doped SnO 2 catalysts with both BA and LA sites: facile preparation and biomass carbohydrates conversion to methyl lactate MLA
CN101347739A (zh) 一种固体酸催化剂及其用于尿囊素合成的反应工艺
CN101632938B (zh) 一种中间馏分油型加氢裂化催化剂
WO2013125389A1 (ja) 1,3-ブタジエンの製造方法
CN101229510A (zh) 一种含铋的硅酸盐的合成和应用
CN110237859B (zh) 催化剂及其制备方法和应用以及1,3-丁二烯的制备方法
WO2018182450A1 (ru) Одностадийный способ получения бутадиена
US4191709A (en) Manufacture of amines from alcohols with zeolite FU-1 catalysts
EP1278738B1 (en) The oxidation of ketones to esters using a tin substituted zeolite beta
US4711869A (en) Silica-titania hydrocarbon conversion catalyst
CN108285151B (zh) 一种Ce同晶取代LTL分子筛及其制备方法
RU2717686C1 (ru) Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)
Yu et al. Tuning the acidity of montmorillonite by H3PO4-activation and supporting WO3 for catalytic dehydration of glycerol to acrolein
WO2023214236A1 (en) Making catalysts for oxidative dehydrogenation
WO2023214235A1 (en) Catalysts for oxidative dehydrogenation
JP3322308B2 (ja) ゼオライトの合成方法
EP3527535B1 (en) Mordenite zeolite and production method therefor
Zhang et al. Hierarchical β zeolite by post-synthesis and direct synthesis: enhanced catalytic performance on the conversion of ethanol to 1, 3-butadiene
RU2422361C1 (ru) Способ получения мезопористых элементосиликатов
Singh et al. Synthesis, characterization, and catalytic activity of gallosilicate analogs of zeolite ZSM-22
CN104549425A (zh) 一种二丙酮醇加氢催化剂及其制备方法和应用
KR102281324B1 (ko) 제올라이트 pst-32 및 그 제조방법
US6075145A (en) Catalysts containing zirconium oxide