RU2713503C1 - Способ углового сверхразрешения в приемных цифровых антенных решетках - Google Patents

Способ углового сверхразрешения в приемных цифровых антенных решетках Download PDF

Info

Publication number
RU2713503C1
RU2713503C1 RU2019126251A RU2019126251A RU2713503C1 RU 2713503 C1 RU2713503 C1 RU 2713503C1 RU 2019126251 A RU2019126251 A RU 2019126251A RU 2019126251 A RU2019126251 A RU 2019126251A RU 2713503 C1 RU2713503 C1 RU 2713503C1
Authority
RU
Russia
Prior art keywords
signals
aperture
channels
real
outputs
Prior art date
Application number
RU2019126251A
Other languages
English (en)
Inventor
Лариса Владимировна Винник
Владимир Владимирович Задорожный
Алексей Вадимович Литвинов
Сергей Евгеньевич Мищенко
Виталий Валентинович Шацкий
Original Assignee
Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") filed Critical Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority to RU2019126251A priority Critical patent/RU2713503C1/ru
Application granted granted Critical
Publication of RU2713503C1 publication Critical patent/RU2713503C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Abstract

Изобретение относится к антенной технике, в частности к формированию диаграммы направленности цифровой антенной решетки для определения местоположения источников радиоизлучений. Техническим результатом является увеличение углового сектора, в котором выполняется различение угловых положений источников сигналов. Согласно изобретению по сигналам на выходе каналов реальной апертуры оценивают период
Figure 00000043
низкочастотных пространственных колебаний квадратурных составляющих сигналов, доопределяют квадратурные составляющие сигналов на интервале, соответствующем найденному периоду
Figure 00000044
находят коэффициенты разложения в ряд Фурье квадратурных составляющих сигналов на интервале
Figure 00000045
определяют квадратурные составляющие сигналов на выходах каналов виртуальной апертуры путем обратного преобразования Фурье при помощи рассчитанных коэффициентов Фурье, оценивают пеленгационный рельеф виртуальной апертуры по сформированной диаграмме направленности, при необходимости снижения побочных составляющих, при формировании используют весовые коэффициенты спадающего амплитудного распределения или выполняют перемножение диаграммы направленности реальной апертуры в виде весовой суммы сигналов на выходе реальной апертуры и диаграммы виртуальной апертуры, полученной путем весового суммирования сигналов с выходов каналов виртуальной апертуры. 3 ил.

Description

Изобретение относится к антенной технике, а именно, к способам формирования диаграммы направленности (ДН) цифровой антенной решетки (ЦАР) и может использоваться для определения местоположения источников радиоизлучений.
Известен способ сверхразрешения сигналов по времени в активной локации [1 - Патент РФ 2658075, «Способ сверхразрешения сигналов по времени в активной локации», МПК G01S 15/00, опубл. 19.06.2018], при котором локатор дополняют блоком модификации опорного сигнала в корреляционном приемнике (технической реализации согласованного с сигналом посылки фильтра). В качестве опорного сигнала используют модифицированную в спектральной области копию посылки, то есть расширение спектра сигнала за счет частичного подавления центральной несущей частоты и управляемого усиления боковых лепестков спектра, что повышает разрешающую способность локатора инструментами сверхразрешения при цифровой обработке сигналов в активной локации, а также повышает эффективность и снижает стоимость информационно-измерительной системы местоопределения объекта.
Недостатком известного способа является возможность использования сверхразрешения только в активной радиолокации при известной форме принимаемого сигнала. Для приема априорно неизвестных сигналов этот способ неприменим.
Известен способ углового сверхразрешения цифровыми антенными решетками [2 - Патент РФ 2642883, «Способ углового сверхразрешения цифровыми антенными решетками», МПК H01Q 3/00, Опубл. 29.01.2018], при котором электромагнитные волны, отраженные объектами, принимают и обрабатывают в каждом из каналов реальной апертуры цифровой антенной решетки, формируют комплексные цифровые сигналы реальной апертуры. Комплексные цифровые сигналы каналов виртуальной апертуры формируют из комплексных цифровых сигналов каналов реальной апертуры путем их задержки во времени, причем задержки во времени в одноименных парциальных диаграммах направленности априорно определяют по разности хода фазового фронта волны между каналами реальной и виртуальной апертур, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры. Формируют парциальные лучи многолучевой диаграммы направленности цифровой антенной решетки путем одновременного суммирования согласованных во времени комплексных цифровых сигналов каналов реальной и виртуальной апертур, которые получают из сигналов каналов реальной и виртуальной апертур путем устранения у них в одноименных парциальных лучах взаимного временного рассогласования, чем обеспечивают угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной.
Недостатком известного способа является формирование сигналов каналов виртуальной апертуры из сигналов каналов реальной апертуры путем их задержки во времени, при этом требуемые задержки во времени в одноименных парциальных диаграммах направленности определяют априорно. В реальных устройствах априорное определение параметров виртуальной апертуры может вносить большую погрешность в измерения, т.к. местоположение источника сигнала может измениться в процессе измерений, или параметры реальной апертуры могут отличаться от идеальных.
Наиболее близким по технической сущности к изобретению является способ углового сверхразрешения цифровыми антенными решетками [3 -Лаговский Б.А. Сверхразрешение на основе синтеза апертуры цифровыми антенными решетками// Антенны. 2013, №6, с. 9-16], принятый за прототип, при котором принимают электромагнитные волны от источников радиоизлучения, формируют комплексные цифровые сигналы на выходах каналов реальной апертуры, формируют сигналы на выходах каналов виртуальной апертуры из комплексных цифровых сигналов каналов реальной апертуры путем их экстраполяции с учетом координат антенных элементов реальной апертуры, формируют диаграмму направленности цифровой антенной решетки путем весового суммирования сигналов с выходов каналов реальной и синтезированной виртуальной апертур.
Недостатком прототипа является ограничение по величине отношения сигнал-шум 12-14 дБ, при котором достигается различение угловых положений источников сигналов. В реальных условиях требуется обнаруживать сигналы с более низким отношением сигнал-шум.
Технической проблемой, на решение которой направлено предлагаемое изобретение, является снижение величины отношения сигнал-шум, при котором достигается различение угловых положений источников сигналов.
Для решения указанной технической проблемы предлагается способ углового сверхразрешения в приемных цифровых антенных решетках, при котором принимают электромагнитные волны от источников радиоизлучения (ИРИ), формируют квадратурные цифровые сигналы на выходах каналов реальной апертуры, формируют сигналы на выходах каналов виртуальной апертуры из квадратурных цифровых сигналов каналов реальной апертуры, формируют диаграмму направленности путем весового суммирования сигналов с выходов каналов синтезированной виртуальной апертуры.
Согласно изобретению, по сигналам на выходе каналов реальной апертуры оценивают период
Figure 00000001
низкочастотных пространственных колебаний квадратурных составляющих сигналов, доопределяют квадратурные составляющие сигналов на интервале, соответствующем найденному периоду
Figure 00000002
находят коэффициенты разложения в ряд Фурье квадратурных составляющих сигналов на интервале
Figure 00000002
определяют квадратурные составляющие сигналов на выходах каналов виртуальной апертуры путем обратного преобразования Фурье при помощи рассчитанных коэффициентов Фурье, оценивают пеленгационный рельеф виртуальной апертуры по сформированной диаграмме направленности, при необходимости снижения побочных составляющих, при формировании используют весовые коэффициенты спадающего амплитудного распределения или выполняют перемножение диаграммы направленности реальной апертуры в виде весовой суммы сигналов на выходе реальной апертуры и диаграммы виртуальной апертуры, полученной путем весового суммирования сигналов с выходов каналов виртуальной апертуры.
Техническим результатом предлагаемого способа является увеличение углового сектора, в котором выполняется различение угловых положений источников сигналов.
Проведенный сравнительный анализ заявленного способа и прототипа показывает, что их отличие заключается в следующем:
- в прототипе формирование сигналов на выходах каналов виртуальной апертуры выполняется путем экстраполяции сигналов каналов реальной апертуры, например, с помощью кубической интерполяции или линейного предсказания Берга. В то время как в предлагаемом способе оценивают период
Figure 00000003
низкочастотных пространственных колебаний квадратурных составляющих сигналов, доопределяют квадратурные составляющие сигналов на интервале, соответствующем периоду
Figure 00000003
низкочастотных колебаний квадратурных составляющих сигналов, находят коэффициенты разложения в ряд Фурье квадратурных составляющих сигналов на интервале
Figure 00000002
определяют квадратурные составляющие сигналов на выходах каналов виртуальной апертуры путем обратного преобразования Фурье при помощи рассчитанных коэффициентов Фурье.
Сочетание отличительных признаков и свойства предлагаемого способа из литературы не известно, поэтому он соответствует критериям новизны и изобретательского уровня.
На фиг. 1 приведена структурная схема устройства, реализующего предложенный способ.
На фиг. 2 приведен сформированный предложенным способом пеленгационный рельеф при наличии трех ИРИ с отношением сигнал-шум 5 дБ.
На фиг. 3 приведен сформированный предложенным способом пеленгационный рельеф при наличии трех ИРИ с угловым расстоянием между ними 20°.
При реализации предложенного способа выполняется следующая последовательность действий:
- принимают электромагнитные волны от источников радиоизлучения, формируют квадратурные цифровые сигналы на выходах каналов реальной апертуры - 1;
- по сигналам на выходе каналов реальной апертуры оценивают период
Figure 00000003
низкочастотных пространственных колебаний квадратурных составляющих сигналов - 2;
- доопределяют квадратурные составляющие сигналов на интервале, соответствующем найденному периоду
Figure 00000004
- находят коэффициенты разложения в ряд Фурье квадратурных составляющих сигналов на интервале
Figure 00000005
- определяют квадратурные составляющие сигналов на выходах каналов виртуальной апертуры путем обратного преобразования Фурье при помощи рассчитанных коэффициентов Фурье - 5;
- формируют сигналы на выходах каналов виртуальной апертуры из квадратурных цифровых сигналов каналов реальной апертуры - 6;
- формируют диаграмму направленности путем весового суммирования сигналов с выходов каналов синтезированной виртуальной апертуры - 7;
- оценивают пеленгационный рельеф виртуальной апертуры по сформированной диаграмме направленности - 8;
- при необходимости снижения побочных составляющих, при формировании используют весовые коэффициенты спадающего амплитудного распределения или выполняют перемножение диаграммы направленности реальной апертуры в виде весовой суммы сигналов на выходе реальной апертуры и диаграммы виртуальной апертуры, полученной путем весового суммирования сигналов с выходов каналов виртуальной апертуры - 9.
Вариант приемной цифровой антенной решетки (ЦАР), реализующий предложенный способ, включает в себя (фиг. 1) реальную апертуру, содержащую М приемных каналов 1, каждый из которых включает в себя последовательно соединенные антенный элемент 2, радиоприемник РП 3 и аналого-цифровой преобразователь (АЦП) 4, вход дискретизации которого соединен с одним из выходов генератора сигнала дискретизации Г 5, а выход данных соединен с одним из входов данных устройства цифровой обработки (УЦОС) 6. Выходы УЦОС 6 соединены со входами цифрового сумматора 7, выход которого является выходом устройства.
РП 3 для работы устройства в диапазоне метровых волн может быть выполнен в виде полосового фильтра и усилителя. В более высокочастотном диапазоне в состав РП 3 дополнительно входят смеситель и гетеродин. При этом могут быть использованы узлы, например, из [4 - стр. 142-143. Mini-Circuits. RF & Microwave components guide. 2010].
Г 5 представляет синтезатор частоты, обеспечивающий формирование сигнала дискретизации Fд. При этом может быть использован, например, синтезатор из [4 - стр. 142-143]. Сигнал синтезатора разветвляется на М выходов с помощью делителей мощности [4 - стр. 136-140].
УЦОС 6 представляет собой ЭВМ, обеспечивающую обработку отсчетов сигнала по заданному алгоритму.
Цифровой сумматор 7 может быть выполнен в виде ПЛИС.
Перед тем, как перейти к описанию работы устройства, рассмотрим теоретическое обоснование способа.
В соответствии с теоремой эквивалентных поверхностных токов распределение источников излучения в пространстве можно заменить распределением эквивалентных поверхностных токов вспомогательных диполей. В случае, если все источники излучения расположены в дальней зоне приемной антенны, то распределение поверхностных токов удобно задавать вдоль плоскости, которая параллельна плоскости раскрыва приемной антенны, а координаты вспомогательных диполей - при помощи направляющих косинусов.
Рассмотрим в качестве приемной антенны М-элементную линейную эквидистантную ЦАР линейной поляризации. Координаты фазовых центров приемных антенных элементов обозначим хm (m=1, 2, …, М). Будем считать,
что длина ЦАР равна Lx и хm∈[-Lx /2, Lx/2]. В дальней зоне ЦАР расположена плоскость, вдоль которой задано распределение эквивалентных электрических поверхностных токов J(u) (считаем, что составляющие магнитных поверхностных токов равны нулю).
Распределение напряженности электрического поля вдоль оси 0х, создаваемого вспомогательными диполями той же поляризации, что и приемная ЦАР, описывает интеграл
Figure 00000006
где Lν - размеры виртуального раскрыва;
u=sinθ - координата точки наблюдения;
ηm - шум m -го канала;
k=2π/λ - волновое число;
λ -длина волны;
θ - угловая координата.
Пусть в точках с координатами un (n=1, 2, …, N) размещены ИРИ с комплексными амплитудами Jn=|Jn|exp(iψn), а остальным точкам пространства соответствует белый шум, огибающую которого определяет комплексная функция n(u) с дисперсией σ2. В этом случае функцию J (u) можно представить в виде:
Figure 00000007
Подставим выражение (2) в формулу (1), тогда получим распределение комплексных амплитуд сигналов на выходе m-го канала для модели воздействия системы дискретных источников
Figure 00000008
В выражении (3) оба слагаемых представляют собой суммы периодических функций.
Известно, что сумма периодических функций также является периодической функцией. Ее период представляет собой наименьшее общее кратное (НОК) периодов всех составляющих суммы. Очевидно, что во второе слагаемое входит очень большое число слагаемых с различными периодами. Это приводит к тому, что период второго слагаемого в общем случае представляет собой очень большое число. Первое слагаемое в выражении (3) содержит ограниченное число членов ряда. Это позволяет рассматривать его как периодическую функцию
Figure 00000009
где X - период или НОК периодов отдельных колебаний, равных Х'n=λ/un.
Если период X известен, то функцию ƒ=(х, Х) можно представить в виде ряда Фурье
Figure 00000010
с комплексными коэффициентами
Figure 00000011
Для некоторой гармоники с номером s с существенной амплитудой должно выполняться равенство
Figure 00000012
Отсюда следует, что выражение (4) может быть представлено в виде ряда Фурье, в котором номера ненулевых гармоник однозначным образом связаны с координатами ИРИ.
Теоретически возможно такое расположение ИРИ, при котором НОК X совпадает с периодом члена ряда (5) с наибольшим периодом, который обозначим
Figure 00000013
В этом случае коэффициенты ряда (5) и ряда
Figure 00000014
точно совпадут.
Если период
Figure 00000015
то коэффициенты рядов (5) и (8) совпадать не будут.
Приведенные рассуждения показывают, что в ряде случаев для оценки координат ИРИ достаточно оценить наибольший период
Figure 00000016
слагаемых функции (4) и использовать вместо разложения в ряд (5) ряд Фурье вида (8).
Однако для формирования распределения поля в виртуальной апертуре в виде ряда (8) необходимо сначала найти параметр
Figure 00000017
по результатам измерений комплексных амплитуд сигналов в реальной апертуре М-элементной ЦАР.
Комплексные амплитуды сигналов на выходе m-го канала ЦАР с точностью до постоянного множителя соответствуют распределению комплексных амплитуд напряженности электрического поля на участке виртуального раскрыва, т.е.
Figure 00000018
где ηm - внутренний шум m -го канала.
Принимаемые комплексные амплитуды сигналов ЦАР Аm могут быть разделены на две квадратурные составляющие Re(Аm) и Im(Аm). Эти квадратурные составляющие представляют собой периодические функции с одинаковым периодом, который может быть оценен по одной из формул:
Figure 00000019
или
Figure 00000020
Выбор формулы (12) или (13) обусловлен тем, в какой из квадратурных составляющих достигнуто наибольшее значение периода. В ряде случаев может оказаться так, что в пределах раскрыва ЦАР укладывается несколько периодов низкочастотных колебаний.
Для того, чтобы найти спектр функции ƒ(х, Х) в виде ряда (8), необходимо по имеющимся измерениям квадратурных составляющих Re(Am) и Im(Am) доопределить функцию ƒ(x, X) на интервале, соответствующем периоду
Figure 00000021
Если параметр
Figure 00000022
определялся по формуле (12) и
Figure 00000023
то будем считать, что
Figure 00000024
Figure 00000025
Если параметр
Figure 00000026
определялся по формуле (13) и
Figure 00000027
то будем считать, что
Figure 00000028
Figure 00000029
Выражения (14)-(17) выражают принцип доопределения квадратурных составляющих до интервала
Figure 00000002
в соответствии с которым одна из доопределенных квадратурных составляющих на выбранном интервале соответствует четной функции, а вторая - нечетной. Реализация данного принципа позволяет получить распределение, которое на концах интервала имеет одинаковые амплитуды.
В результате применения выражений (14)-(17) формируется набор узловых значений функции ƒ(xn, X) в точках
Figure 00000030
Выражения (14)-(17) показывают ограничения реальной ЦАР при определении периода
Figure 00000031
Максимальное значение периода
Figure 00000032
который может быть обнаружен ЦАР, соответствует удвоенному значению размеров реальной апертуры, т.е.
Figure 00000033
После доопределения узловых точек
Figure 00000034
и распределения комплексных амплитуд сигналов ЦАР по формулам (14)-(17) могут быть получены значения базисных функций
Figure 00000035
и найдены соответствующие коэффициенты разложения В1 и В2 в ряд по базисным функциям.
Для найденных коэффициентов разложения периодической функции несложно сформировать распределение комплексных амплитуд вдоль виртуальной апертуры в виде ряда
Figure 00000036
где х'm'∈[-Lν /2, Lν/2].и m'=1, 2, …, М'; М' - число элементов виртуальной апертуры.
Следует отметить, что число S членов ряда в выражении (19) влияет на высокочастотные составляющие колебания (19). С одной стороны, высокочастотные составляющие могут быть обусловлены воздействием внутренних шумов. С другой стороны, высокочастотные составляющие обусловлены влиянием ИРИ, координаты которых удалены от направления нормали к раскрыву. В связи с этим, ограничение числа членов ряда (19) приводит как к ослаблению шумов, но также может привести к ограничению пространственной области, в которой возможно обнаружение ИРИ.
После формирования функции ƒ(x', X)вдоль виртуального раскрыва в виде ряда (19) может быть построен пеленгационный рельеф виртуальной апертуры по формуле
Figure 00000037
При построении пеленгационного рельефа виртуальной апертуры может потребоваться уменьшение боковых лепестков, обусловленных погрешностями полученных оценок и шумами измерений. Для этого можно ввести
дополнительные весовые коэффициенты С=(Сm'), характеризующие весовые коэффициенты в виртуальном раскрыве. В качестве соответствующих коэффициентов можно использовать известные в теории антенных решеток спадающие амплитудные распределения Чебышева, Ханна и т.д.
В этом случае пеленгационный рельеф можно представить в виде
Figure 00000038
Кроме того, для устранения паразитных лепестков пеленгационного рельефа можно использовать нелинейное преобразование, учитывающее ДН ЦАР. При этом пеленгационный рельеф может быть получен по формуле:
Figure 00000039
Таким образом, для реализации предлагаемого способа углового сверхразрешения в приемных ЦАР выполняют следующие действия, реализуемые в устройстве на фиг. 1.
АЭ 2 каждого приемного канала 1 преобразует энергию электромагнитного поля в энергию токов высокой частоты, поступающих на вход соответствующего РП 3, где осуществляется усиление принятого сигнала, и, при необходимости, преобразование частоты и демодуляция. Выходной сигнал РП 3 каждого канала ЦАР поступает на вход соответствующего АЦП 4, на выходе которого формируется последовательность дискретных отсчетов составляющих сигналов с шагом, задаваемым Г 5.
Полученные отсчеты поступают на вход УЦОС 6, в котором выполняют оценку комплексных амплитуд сигналов всех каналов ЦАР, формируют квадратурные цифровые сигналы на выходах каналов реальной апертуры ЦАР, оценивают период
Figure 00000040
низкочастотных пространственных колебаний квадратурных составляющих сигналов по выражению (12) или (13), доопределяют квадратурные составляющие сигналов на интервале, соответствующем найденному периоду
Figure 00000003
по выражениям (14)-(17). Находят коэффициенты разложения в ряд Фурье квадратурных составляющих сигналов на интервале
Figure 00000003
по выражению (18), определяют квадратурные составляющие сигналов на выходах каналов виртуальной апертуры путем обратного преобразования Фурье при помощи рассчитанных коэффициентов Фурье по выражению (19).
Формируют диаграмму направленности путем весового суммирования сигналов с выходов каналов синтезированной виртуальной апертуры в цифровом сумматоре 7 по выражению (20). После этого оценивают пеленгационный рельеф виртуальной апертуры по сформированной диаграмме направленности.
При необходимости снижения побочных составляющих, при формировании используют весовые коэффициенты спадающего амплитудного распределения по выражению (21) или выполняют перемножение диаграммы направленности реальной апертуры в виде весовой суммы сигналов на выходе реальной апертуры и диаграммы виртуальной апертуры, полученной путем весового суммирования сигналов с выходов каналов виртуальной апертуры по выражению (22).
Проверка работоспособности предложенного способа выполнена путем математического моделирования.
Пример результатов моделирования работы устройства, реализующего способ, при размерах виртуальной апертуры, превышающих размеры реальной апертуры ЦАР в семь раз для трех ИРИ, с координатами 0°, ±2°, приведен на фиг. 2. Величина отношения сигнал-шум составляет 5 дБ. Ошибка измерения азимута не превышает 0,2°
Таким образом, предложенный способ обеспечивает работу при отношении сигнал-шум, значительно более низком, чем в прототипе, для которого требуется отношение сигнал-шум не ниже 12-14 дБ.
На фиг 3 приведен результат моделирования работы устройства по предложенному способу для ИРИ при ориентации одного из ИРИ в направлении 20° относительно нормали раскрыва. В прототипе приведены примеры углового сверхразрешения в пределах углового сектора, не превышающем ±2,5° [3 - рис. 2, 4, 6]
Таким образом, предложенный способ, по сравнению с прототипом, обеспечивает увеличение углового сектора, в котором выполняется различение угловых положений источников сигналов в восемь раз.
Приведенные выше материалы о возможной реализации способа на основе известных блоков и устройств подтверждают соответствие критерию "промышленная применимость" предложенного способа.
Таким образом, предлагаемый способ сверхразрешения в цифровых антенных решетках практически реализуем и обеспечивает снижение величины отношения сигнал-шум, при котором достигается различение угловых положений источников сигналов.
Кроме того, предложенный способ, по сравнению с прототипом, обеспечивает увеличение углового сектора, в котором выполняется различение угловых положений источников сигналов, в восемь раз.

Claims (1)

  1. Способ углового сверхразрешения в приемных цифровых антенных решетках, при котором принимают электромагнитные волны от источников радиоизлучения, формируют квадратурные цифровые сигналы на выходах каналов реальной апертуры, формируют сигналы на выходах каналов виртуальной апертуры из квадратурных цифровых сигналов каналов реальной апертуры, формируют диаграмму направленности путем весового суммирования сигналов с выходов каналов синтезированной виртуальной апертуры, отличающийся тем, что по сигналам на выходе каналов реальной апертуры оценивают период
    Figure 00000041
    низкочастотных пространственных колебаний квадратурных составляющих сигналов, доопределяют квадратурные составляющие сигналов на интервале, соответствующем найденному периоду
    Figure 00000042
    находят коэффициенты разложения в ряд Фурье квадратурных составляющих сигналов на интервале
    Figure 00000042
    определяют квадратурные составляющие сигналов на выходах каналов виртуальной апертуры путем обратного преобразования Фурье при помощи рассчитанных коэффициентов Фурье, оценивают пеленгационный рельеф виртуальной апертуры по сформированной диаграмме направленности, при необходимости снижения побочных составляющих, при формировании используют весовые коэффициенты спадающего амплитудного распределения или выполняют перемножение диаграммы направленности реальной апертуры в виде весовой суммы сигналов на выходе реальной апертуры и диаграммы виртуальной апертуры, полученной путем весового суммирования сигналов с выходов каналов виртуальной апертуры.
RU2019126251A 2019-08-19 2019-08-19 Способ углового сверхразрешения в приемных цифровых антенных решетках RU2713503C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019126251A RU2713503C1 (ru) 2019-08-19 2019-08-19 Способ углового сверхразрешения в приемных цифровых антенных решетках

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019126251A RU2713503C1 (ru) 2019-08-19 2019-08-19 Способ углового сверхразрешения в приемных цифровых антенных решетках

Publications (1)

Publication Number Publication Date
RU2713503C1 true RU2713503C1 (ru) 2020-02-05

Family

ID=69624886

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019126251A RU2713503C1 (ru) 2019-08-19 2019-08-19 Способ углового сверхразрешения в приемных цифровых антенных решетках

Country Status (1)

Country Link
RU (1) RU2713503C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746063C1 (ru) * 2020-07-21 2021-04-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ углового сверхразрешения в приемной цифровой антенной решётке
CN114384516A (zh) * 2022-01-12 2022-04-22 电子科技大学 一种基于重建前检测的实孔径雷达实时角超分辨方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090880A (ja) * 2001-09-19 2003-03-28 Mitsubishi Electric Corp 合成開口レーダ装置および合成開口レーダ装置における像再生方法
RU2265866C1 (ru) * 2004-01-28 2005-12-10 Закрытое акционерное общество "Новые технологии" Способ повышения радиолокационного разрешения, система для его осуществления и способ дистанционного выявления системой малоразмерных объектов
CN107064904A (zh) * 2017-06-08 2017-08-18 哈尔滨工业大学 一种基于虚拟孔径的舰载高频地波雷达方位高分辨方法
RU2642883C1 (ru) * 2017-01-31 2018-01-29 Акционерное общество "Всероссийский научно-исследовательский институт радиотехники" Способ углового сверхразрешения цифровыми антенными решетками

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090880A (ja) * 2001-09-19 2003-03-28 Mitsubishi Electric Corp 合成開口レーダ装置および合成開口レーダ装置における像再生方法
RU2265866C1 (ru) * 2004-01-28 2005-12-10 Закрытое акционерное общество "Новые технологии" Способ повышения радиолокационного разрешения, система для его осуществления и способ дистанционного выявления системой малоразмерных объектов
RU2642883C1 (ru) * 2017-01-31 2018-01-29 Акционерное общество "Всероссийский научно-исследовательский институт радиотехники" Способ углового сверхразрешения цифровыми антенными решетками
CN107064904A (zh) * 2017-06-08 2017-08-18 哈尔滨工业大学 一种基于虚拟孔径的舰载高频地波雷达方位高分辨方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Wen Jiang et al, Radar angular superresolution algorithm based on Fourier-Wavelet regularized deconvolution, 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 21-26 July 2013. *
Пархоменко Н.Г., Повышение вычислительной эффективности поляризационно-независимых методов углового сверхразрешения, Электротехнические и информационные комплексы и системы N4, 2010 *
Пархоменко Н.Г., Повышение вычислительной эффективности поляризационно-независимых методов углового сверхразрешения, Электротехнические и информационные комплексы и системы N4, 2010. Ратынский М.В., Адаптация и сверхразрешение в антенных решетках, Радио и связь, Москва, 2003. Wen Jiang et al, Radar angular superresolution algorithm based on Fourier-Wavelet regularized deconvolution, 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 21-26 July 2013. RU 2642883 C1 - 2018-01-29. RU 2265866 C1 - 2005-12-10. JP 2003090880 A - 2003-03-28. CN 107064904 A - 2017-08-18. *
Ратынский М.В., Адаптация и сверхразрешение в антенных решетках, Радио и связь, Москва, 2003. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746063C1 (ru) * 2020-07-21 2021-04-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ углового сверхразрешения в приемной цифровой антенной решётке
CN114384516A (zh) * 2022-01-12 2022-04-22 电子科技大学 一种基于重建前检测的实孔径雷达实时角超分辨方法

Similar Documents

Publication Publication Date Title
CN107037396B (zh) 到达角估计
Talisa et al. Benefits of digital phased array radars
CN106546983B (zh) 雷达装置
JP6377000B2 (ja) レーダ装置
EP2662699A1 (en) Detection and ranging apparatus and ranging method
CN110221293B (zh) 一种基于涡旋电磁波的俯仰角成像方法
RU2495447C2 (ru) Способ формирования диаграммы направленности
RU2713503C1 (ru) Способ углового сверхразрешения в приемных цифровых антенных решетках
Gupta et al. Comparison of conventional and subspace based algorithms to estimate Direction of Arrival (DOA)
RU2515179C1 (ru) Способ определения направления на гидроакустический маяк-ответчик в условиях многолучевого распространения навигационного сигнала
RU2491569C2 (ru) Способ пеленгования с повышенной разрешающей способностью
JP2010078420A (ja) 電波方向探知装置およびビーム形成装置
RU2407026C1 (ru) Способ пеленгации узкополосных радиосигналов кв диапазона
RU2614035C1 (ru) Одноэтапный метод пеленгования источников излучения в дкмв диапазоне с применением фазированной антенной решетки, состоящей из взаимно ортогональных симметричных горизонтальных вибраторов
RU2471200C1 (ru) Способ пассивного обнаружения и пространственной локализации подвижных объектов
RU2521959C1 (ru) Амплитудный способ радиопеленгования и радиопеленгатор для его осуществления
Pulipati et al. A 16-element 2.4-GHz digital array receiver using 2-D IIR spatially-bandpass plane-wave filter
RU2746063C1 (ru) Способ углового сверхразрешения в приемной цифровой антенной решётке
Kirschner et al. MIMO radar setups by nesting braced minimum redundancy arrays
JP4867190B2 (ja) レーダ装置及び測角方法
Al-Azzo et al. Comparison between classical and modern methods of direction of arrival (DOA) estimation
RU2557251C1 (ru) Способ поляризационно-чувствительного поиска малоразмерных подвижных объектов
Chowdary Performance comparison of various DOA estimation techniques based on antenna parameter
Artyushenko et al. Distortion of the Radiation Pattern of the «Array-Receiver» System Exposed to Fast and Slow Multiplicative Noise
Wang et al. A novel two-level nested STAP strategy for clutter suppression in airborne radar