RU2711386C1 - Способ нанесения покрытия SnO2 - Google Patents

Способ нанесения покрытия SnO2 Download PDF

Info

Publication number
RU2711386C1
RU2711386C1 RU2019131308A RU2019131308A RU2711386C1 RU 2711386 C1 RU2711386 C1 RU 2711386C1 RU 2019131308 A RU2019131308 A RU 2019131308A RU 2019131308 A RU2019131308 A RU 2019131308A RU 2711386 C1 RU2711386 C1 RU 2711386C1
Authority
RU
Russia
Prior art keywords
sno
substrate
coating
air
furnace
Prior art date
Application number
RU2019131308A
Other languages
English (en)
Inventor
Олег Анатольевич Власов
Яков Викторович Казанцев
Елена Юрьевна Подшибякина
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority to RU2019131308A priority Critical patent/RU2711386C1/ru
Application granted granted Critical
Publication of RU2711386C1 publication Critical patent/RU2711386C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

Изобретение относится к области металлургии, а именно к нанесению покрытия из диоксида олова, и может быть использовано при изготовлении защитных покрытий, а также при создании газовых сенсоров, оптоэлектрических и люминисцентных устройств. Печь с SnO устанавливают в емкость, закрытую подложкой, предварительно упомянутую емкость продувают инертным газом для удаления воздуха, затем печь с SnO нагревают до 1080-1430°С, испаряют SnO, пропускают газообразный SnO через упомянутую емкость и осаждают его на охлаждаемой подложке, после чего при той же температуре емкость продувают воздухом для окисления SnO до SnO, а затем подложку подвергают термообработке при той же температуре в атмосфере воздуха. Обеспечивается получение покрытия из диоксида олова толщиной от 750 нм до 200 мкм, имеющего однородную поверхность, при этом предложенный способ технологичен, прост в аппаратурном оформлении и не требует значительных затрат энергии. 1 ил., 2 пр.

Description

Изобретение относится к области металлургии и может быть использовано при изготовлении защитных покрытий. Кроме того пленки диоксида олова широко используются при создании газовых сенсоров, многих оптоэлектрических и люминисцентных устройств.
Известен способ получения покрытия из оксида олова на стекле (патент RU №2194089 опубл. 10.12.2002 Бюл. №34) с получением легированных фтором покрытий из оксида олова на стекле, наносимых приготовлением однородной смеси газообразных реагентов, включающей оловоорганическое соединение, HF, воду и кислород, и подачей смеси реагентов к поверхности горячей ленты стекла, где эти соединения вступают во взаимодействие с образованием легированного фтором покрытия из оксида олова.
К недостаткам данного способа можно отнести приготовление однородной смеси газообразных реагентов из оловоорганического соединения, HF, воды и кислорода, что усложняет процесс получения покрытия.
Наиболее близким по сущности и достигаемым результатам является сспособ получения тонких пленок диоксида олова (патент RU 2446233 Опубликовано: 27.03.2012 Бюл. №9) включающий приготовление раствора исходного компонента, нанесение раствора на подложку, сушку на воздухе при комнатной температуре с последующей термообработкой, при этом в качестве исходного компонента используют тетра(N,N-диалкилкарбамат) олова, термообработку осуществляют при температуре 250-300°С, а в качестве растворителя используют эфирный или спиртовый растворитель с концентрацией тетра(N,N-диалкилкарбамата) олова 0,1-15,0%.
К недостаткам способа можно отнести приготовление исходного компонента для покрытия и сложный состав используемых химикатов применяемых для получения покрытия.
Задачей изобретения является упрощение процесса получения покрытия.
Решение поставленной задачи достигается тем, что в способе нанесения покрытия SnO2, образующегося путем испарения газообразного SnO нагретого до 1080-1430°С в предварительно продутой инертным газом закрытой емкости, пропусканием его через закрытую емкость и осаждением SnO на охлаждаемой подложке, после чего через емкость продувают воздух для окисления SnO до SnO2, затем емкость с подложкой проходит термообработку при тех же температурах в атмосфере воздуха до получения плотного покрытия.
При нанесении покрытия SnO2 по предлагаемому способу монооксид олова (SnO), температура плавления которого 1080, а температура кипения 1425°С, переводят в газообразное состояние. При температурах 1080-1430°С давление паров SnO изменяется от меньших 1 атм до давлений больше 1 атм. Полученные пары SnO вводят в закрытую емкость с охлаждаемой подложкой. SnO конденсируется на поверхности подложки, после чего через емкость пропускается воздух до полного окисления SnO по реакции:
Figure 00000001
После чего тигель проходит термообработку при тех же температурах для закрепления покрытия диоксида олова на подложке.
Нижняя температура 1080°С характеризуется низкими парциальными давлениями SnO и сопровождается с резким возрастанием времени осаждения покрытия.
Верхняя граница температурного интервала 1430°С связана с превышением температуры кипения (1425°С) и резким ростом парциального давления (больше 1 атм) SnO, что практически приводит к невозможности регулировки толщины покрытия.
Время обработки подложки газообразным SnO зависит от требуемой толщины покрытия. Термообработку ведут до получения плотного покрытия.
Для нанесения покрытия SnO2 по заявляемому способу использовали установку (фиг.). Печь 1 с SnO устанавливали в емкость 2 закрытую подложкой 3. Предварительно, емкость продували инертным газом для удаления воздуха через трубки 4. Затем печь нагревали до 1080-1430°С. Газообразный SnO конденсировался на охлаждаемой подложке 3. После чего при тех же температурах емкость продували воздухом, подавая его через трубки 4. SnO по реакции (1) окисляется до SnO2 в результате чего образуется покрытие 5 из диоксида олова. Толщину нанесенного покрытия регулировали температурой SnO и временем пребывания подложки в атмосфере SnO. Подложку с нанесенным покрытием выдерживали при температурах обработки для закрепления покрытия на подложке.
Пример 1. Предварительно очищенную известными способами подложку 3 устанавливали с печью 1 (фиг) в емкость 2, После чего нагревали до 1080°С SnO. По достижению необходимой толщины покрытия, емкость продували воздухом и проводили термообработку при этой температуре до получения плотного покрытия SnO2. Толщину наносимого таким способом покрытия определяли взвешиванием подложки до и после покрытия, которая составляла около 750 нм. Получаемое покрытие имеет однородную поверхность без дефектов.
Пример 2. Аналогичным способом, как в примере 1, осуществлялся процесс нанесения SnO на подложку при его температуре 1430°С. Термообработку проводили, как и в примере 1. Получили пленку диоксида олова на подложке толщиной около 200 мкм.
Приведенные примеры не ограничивают возможность осуществления нового способа при других температурах осаждения, но в заявляемом интервале 1080-1430°С.
Новый способ позволяет получать покрытие диоксида олова толщиной от 750 нм до 200 мкм, имеющую однородную поверхность на подложке. Кроме того, новый способ технологичен, прост в аппаратурном оформлении, не требует значительных затрат энергии.

Claims (1)

  1. Способ нанесения покрытия SnO2, отличающийся тем, что печь с SnO устанавливают в емкость, закрытую подложкой, предварительно упомянутую емкость продувают инертным газом для удаления воздуха, затем печь с SnO нагревают до 1080-1430°С, испаряют SnO, пропускают газообразный SnO через упомянутую емкость и осаждают его на охлаждаемой подложке, после чего при той же температуре емкость продувают воздухом для окисления SnO до SnO2, а затем подложку подвергают термообработке при той же температуре в атмосфере воздуха.
RU2019131308A 2019-10-02 2019-10-02 Способ нанесения покрытия SnO2 RU2711386C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019131308A RU2711386C1 (ru) 2019-10-02 2019-10-02 Способ нанесения покрытия SnO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019131308A RU2711386C1 (ru) 2019-10-02 2019-10-02 Способ нанесения покрытия SnO2

Publications (1)

Publication Number Publication Date
RU2711386C1 true RU2711386C1 (ru) 2020-01-17

Family

ID=69171585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019131308A RU2711386C1 (ru) 2019-10-02 2019-10-02 Способ нанесения покрытия SnO2

Country Status (1)

Country Link
RU (1) RU2711386C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527308A (ja) * 2003-06-13 2006-11-30 サン−ゴバン グラス フランス 障壁支持体上に配置されたパネルの吹付け処理
EA015085B1 (ru) * 2006-04-19 2011-06-30 Бенек Ой Способ и устройство для нанесения на стекло теплоотражающего покрытия
RU2446233C1 (ru) * 2010-07-16 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ГОУ ВПО КубГУ) Способ получения тонких пленок диоксида олова
RU2671361C1 (ru) * 2018-03-30 2018-10-30 Федеральное государственное бюджетное учреждение науки Омский научный центр Сибирского отделения Российской академии наук (ОНЦ СО РАН) Способ получения пленок пористого кристаллического диоксида олова
JP6468195B2 (ja) * 2013-11-19 2019-02-13 Agc株式会社 薄膜形成方法およびコーティングガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527308A (ja) * 2003-06-13 2006-11-30 サン−ゴバン グラス フランス 障壁支持体上に配置されたパネルの吹付け処理
EA015085B1 (ru) * 2006-04-19 2011-06-30 Бенек Ой Способ и устройство для нанесения на стекло теплоотражающего покрытия
RU2446233C1 (ru) * 2010-07-16 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ГОУ ВПО КубГУ) Способ получения тонких пленок диоксида олова
JP6468195B2 (ja) * 2013-11-19 2019-02-13 Agc株式会社 薄膜形成方法およびコーティングガラス
RU2671361C1 (ru) * 2018-03-30 2018-10-30 Федеральное государственное бюджетное учреждение науки Омский научный центр Сибирского отделения Российской академии наук (ОНЦ СО РАН) Способ получения пленок пористого кристаллического диоксида олова

Similar Documents

Publication Publication Date Title
Hackley et al. Properties of atomic layer deposited HfO2 thin films
Özer et al. Optical properties of sol–gel deposited Al2O3 films
Fujihara et al. Controlling factors for the conversion of trifluoroacetate sols into thin metal fluoride coatings
US10807871B2 (en) Process for producing graphene, a graphene and a substrate thereof
Hu et al. A new sol-gel route to prepare dense Al2O3 thin films
US20110003078A1 (en) Apparatus for treating surface and method of treating surface
RU2711386C1 (ru) Способ нанесения покрытия SnO2
Nyutu et al. Formation of MoSi2–SiO2 coatings on molybdenum substrates by CVD/MOCVD
FI79829B (fi) Kemiskt aongskiktningsfoerfarande foer framstaellning av tennoxidbelaeggningar innehaollande fluor och produkt enligt detta foerfarande.
Klerer On the mechanism of the deposition of Silica by Pyrolytic decomposition of Silanes
WO2004022248A1 (en) A method for depositing a film on a substrate
RU2601049C1 (ru) Способ нанесения газоплотного покрытия из карбида кремния
Wan et al. Photocarrier dynamic measurement of rutile TiO2 films prepared by RF magnetron reactive sputtering
Vasiljev et al. Sol-gel derived barium-strontium titanate films
US5141773A (en) Method of forming a carbide on a carbon substrate
JPH07223839A (ja) 表面プラスモン共鳴分析用担体の製造方法
Patel et al. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique
JPH07188925A (ja) 表面プラスモン共鳴分析用担体の製造方法
Syla et al. Thermal treatment in air of direct current (DC) magnetron sputtered TiN coatings
KR100995252B1 (ko) MoO₃ 분말을 이용한 MoO₃의 박막 형성 방법
CN105130498A (zh) 应用反应扩散法在碳材料表面制备碳化硅涂层的方法
Khaskov et al. Production of an Interphase Coating of Polycarbosilane and Rolivsan Ceramic-Forming Compounds on Carbon Fiber
RU2807491C1 (ru) Способ получения тонких прозрачных газочувствительных плёнок ZnO-TiO2
CN112225467B (zh) 一种超光滑氧化铝薄膜的制备方法
US20050175852A1 (en) Thin silica film and silica-titania composite film, and method for preparing them