RU2709715C1 - Способ получения l-метионина - Google Patents

Способ получения l-метионина Download PDF

Info

Publication number
RU2709715C1
RU2709715C1 RU2018115403A RU2018115403A RU2709715C1 RU 2709715 C1 RU2709715 C1 RU 2709715C1 RU 2018115403 A RU2018115403 A RU 2018115403A RU 2018115403 A RU2018115403 A RU 2018115403A RU 2709715 C1 RU2709715 C1 RU 2709715C1
Authority
RU
Russia
Prior art keywords
methionine
stage
methyl mercaptan
hydrogen
precursor
Prior art date
Application number
RU2018115403A
Other languages
English (en)
Inventor
Жорж Фреми
Арно МАССЛЕН
Юго БРАССЕЛЕ
Original Assignee
Аркема Франс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аркема Франс filed Critical Аркема Франс
Application granted granted Critical
Publication of RU2709715C1 publication Critical patent/RU2709715C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/01Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
    • C12Y108/01007Glutathione-disulfide reductase (1.8.1.7), i.e. glutathione reductase (NADPH)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/01Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
    • C12Y108/01009Thioredoxin-disulfide reductase (1.8.1.9), i.e. thioredoxin-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01049O-acetylhomoserine aminocarboxypropyltransferase (2.5.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y112/00Oxidoreductases acting on hydrogen as donor (1.12)
    • C12Y112/01Oxidoreductases acting on hydrogen as donor (1.12) with NAD+ or NADP+ as acceptor (1.12.1)

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области биотехнологии. Предложен способ получения L-метионина. Способ включает получение смеси, содержащей диметилдисульфид, каталитическое количество содержащей тиольную группу аминокислоты или пептида с тиольной группой, каталитическое количество редуктазы, водород, каталитическое количество дегидрогеназы, каталитическое количество кофактора, осуществление ферментативной реакции для получения метилмеркаптана, введение предшественника L-метионина для взаимодействия с метилмеркаптаном и выделения L-метионина. Изобретение обеспечивает получения L-метионина с уменьшенным для этого необходимым парком оборудования и с отказом от манипуляций с метилмеркаптаном. 13 з.п. ф-лы, 2 ил., 3 пр.

Description

[0001] Настоящее изобретение относится к способу получения L-метионина ферментативной реакцией между предшественником L-метионина, диметилдисульфидом (DMDS) и водородом. Изобретение относится также к двухстадийному способу получения L-метионина ферментативной реакцией между предшественником L-метионина и метилмеркаптаном, причем метилмеркаптан получают ферментативным гидрогенолизом DMDS с водородом.
[0002] Метионин представляет собой одну из незаменимых аминокислот в организме человека и широко применяется в качестве добавки для питания животных. Его применяют также в качестве исходного вещества для фармацевтических препаратов. Метионин выступает в качестве предшественника таких соединений, как холин (лецитин) и креатин. Он является также исходным веществом для синтеза цистеина и таурина.
[0003] S-аденозил-L-метионин (SAM) представляет собой производное соединение L-метионина и вовлечен в синтез различных нейротрансмиттеров в головном мозге. L-метионин и/или SAM ингибирует накопление липидов в организме и улучшает кровообращение в головном мозге, в сердце и в почках. L-метионин может быть использован также для облегчения расщепления, детоксикации и экскреции токсичных веществ или тяжелых металлов, таких как свинец. Он обладает противовоспалительным действием в отношении костей и болезней суставов и также представляет собой существенное питательное вещество для волос, противодействующее их преждевременному и нежелательному выпадению.
[0004] Метионин известен давно и его получают в промышленном масштабе химическими способами исходя из сырья, поступающего от нефтехимических предприятий, соответственно, например, описанию FR 2903690, WO 2008006977, US 2009318715, US 5990349, JP 19660043158 и WO 9408957. Без учета того факта, что эти способы получения не вписываются в процесс экологически перспективного развития, эти химические способы обладают недостатком, состоящим в получении смеси двух энантиомеров L и D в равных частях.
[0005] В литературных источниках были предложены полностью биологические синтезы бактериальной ферментацией с указанием преимущества, состоящего в отсутствии продуцирования L-энантиомера метионина, соответственно, например, описанию WO 07077041, WO 09043372, WO 10020290 и WO 10020681. Тем не менее, отсутствие до настоящего времени промышленной реализации в крупном масштабе позволяет предполагать, что эксплуатационные характеристики и/или себестоимость этих способов остаются неудовлетворительными.
[0006] Компанией "CJ Cheil-Jedang" и заявителем совместно были успешно реализованы в промышленном масштабе смешанные химико-биологические способы, в которых предшественник L-метионина получали бактериальной ферментацией и затем приводили в ферментативное взаимодействие с метилмеркаптаном для получения исключительно L-метионина (см. WO 2008013432 и/или WO 2013029690). В этих, хотя и очень высокопроизводительных, способах требуется осуществлять синтез in situ метилмеркаптана, в котором требуется осуществлять синтез водорода конверсией метана с водяным паром, синтез сероводорода гидрированием серы и синтез метилмеркаптана исходя из метанола и сероводорода, то есть требуется очень значительный парк оборудования, мало сопоставимый при реализации в промышленном масштабе с достаточно небольшим повышением годового производства по сравнению с уже существующим.
[0007] Таким образом, существует потребность в получении L-метионина смешанным способом, в котором парк оборудования, требуемый для синтеза метилмеркаптана, будет меньше, чем в случае синтеза исходя из водорода, сероводорода и метанола. В настоящем изобретении описывается именно этот аспект.
[0008] В настоящем изобретении предлагается на практике заменить метилмеркаптан в технологическом процессе, описанном далее (WO 2008013432 и/или WO 2013029690), диметилдисульфидом (DMDS):
Figure 00000001
[0009] В данном случае метилмеркаптан (MeSH) используют непосредственно на второй стадии. В настоящем изобретении предлагается заменить метилмеркаптан продуктом ферментативного гидрогенолиза диметилдисульфида на предварительной стадии или комбинировать совокупность реагентов в реакции по "однореакторной технологии", в случае которой из глюкозы и DMDS продуцируется L-метионин.
[0010] Касательно синтеза метилмеркаптана исходя из диметилдисульфида представленные далее элементы можно найти на предшествующем уровне техники.
[0011] В EP 0649837 предложен способ синтеза метилмеркаптана каталитическим гидрогенолизом с сульфидами переходных металлов исходя из диметилдисульфида с водородом. В этом способе, хотя и являющимся эффективным, требуются относительно высокие температуры около 200°C для достижения производительности, представляющей интерес в промышленном масштабе.
[0012] Специалистам в данной области техники известно также, что метилмеркаптан можно получать подкислением водного раствора метилмеркаптида натрия (CH3SNa). У этого способа имеется большой недостаток, состоящий в образовании большого количества солей, таких как хлорид натрия или сульфат натрия, в зависимости от того, применяют ли соляную или серную кислоту. Образующиеся водные солевые растворы часто очень трудно поддаются переработке, а остаточные количества веществ со зловонным запахом делают этот способ трудно реализуемым в промышленном масштабе.
[0013] К настоящему времени было найдено, что метилмеркаптан можно получать ферментативным восстановлением диметилдисульфида (DMDS) на предварительной стадии синтеза L-метионина, и неожиданным образом было найдено также, что это ферментативное восстановление DMDS можно осуществлять в ходе синтеза L-метионина.
[0014] Таким образом, целью настоящего изобретения является способ получения L-метионина, аналогичный способу, предложенному в международных заявках WO 2008013432 и/или WO 2013029690, и позволяющий отказаться от манипуляций с метилмеркаптаном или по меньшей мере уменьшить их объем, генерируя метилмеркаптан по реакции ферментативного катализа DMDS непосредственно перед использованием этого метилмеркаптана в синтезе метионина или генерируя метилмеркаптан по реакции ферментативного катализа DMDS in situ в реакторе синтеза L-метионина.
[0015] В частности, первой целью настоящего изобретения является способ получения L-метионина, включающий по меньшей мере стадии:
a) получения смеси, содержащей:
1) диметилдисульфид (DMDS);
2) каталитическое количество аминокислоты, содержащей тиольную группу, или пептида с тиольной группой;
3) каталитическое количество фермента, катализирующего реакцию восстановления дисульфидного мостика аминокислоты, содержащей тиольную группу, или пептида с тиольной группой;
4) водород;
5) каталитическое количество фермента, катализирующего реакцию отщепления водорода;
6) каталитическое количество кофактора, являющегося общим для обоих ферментов каталитической системы (дегидрогеназы и редуктазы);
b) осуществления ферментативной реакции для получения метилмеркаптана (CH3SH);
c) введения предшественника L-метионина и взаимодействия этого предшественника с метилмеркаптаном, образовавшимся на стадии b), и
d) выделения и в случае необходимости очистки образовавшегося L-метионина.
[0016] Компоненты, указанные на стадии a), могут быть введены в любом порядке (порядок введения на стадии a) не является строгим). В варианте осуществления настоящего изобретения аминокислота, содержащая тиольную группу, и/или пептид, содержащий тиольную группу, может находиться в форме дисульфида этой аминокислоты и/или этого пептида соответственно, например глутатион может находиться в форме дисульфида глутатиона.
[0017] В общем случае, фермент, катализирующий восстановление дисульфидного мостика, образованного между двумя остатками аминокислоты, содержащей тиольную группу, или пептида с тиольной группой, представляет собой редуктазу. Термин "редуктаза" в дальнейшем описании употребляют для пояснения настоящего изобретения. Аналогичным образом, фермент, катализирующий реакцию отщепления водорода, в общем случае называют дегидрогеназой и в дальнейшем описании для пояснения настоящего изобретения употребляют термин "дегидрогеназа".
[0018] Среди кофакторов, являющихся общими для обоих ферментов, катализирующих восстановление и дегидрирование, (редуктазы и дегидрогеназы) в качестве неограничительных примеров можно назвать флавиновые кофакторы и никотиновые кофакторы. Предпочтительно применяют никотиновые кофакторы и более предпочтительно никотинамидадениндинуклеотид (NAD) или еще более предпочтительно никотинамидадениндинуклеотидфосфат (NADPH). Перечисленные кофакторы преимущественно применяют в их восстановленных формах (например, NADPH, H+) и/или окисленных формах (например, NADP+), то есть они могут быть прибавлены к реакционной смеси в этих восстановленных и/или окисленных формах.
[0019] Организация и порядок введения компонентов с 1) по 6) на стадии a) могут быть реализованы различным образом. Ферментативную реакцию на стадии b) инициируют прибавлением одного из компонентов каталитической системы к смеси на стадии a): фермента или одного из соединений, вводимых в стехиометрическом количестве (дисульфида или органического соединения-восстановителя), или одного из соединений, вводимых в каталитическом количестве (аминокислоты, содержащей тиольную группу, или пептида с тиольной группой, или дисульфида, соответствующего указанному тиолу или пептиду, или также кофактора).
[0020] Таким образом, согласно одному из вариантов осуществления настоящего изобретения способ получения L-метионина включает по меньшей мере стадии:
a') получения смеси, содержащей:
- диметилдисульфид (DMDS);
- каталитическое количество аминокислоты, содержащей тиольную группу, или пептида с тиольной группой;
- каталитическое количество редуктазы, соответствующей аминокислоте, содержащей тиольную группу, или пептиду с тиольной группой;
- каталитическое количество NADPH;
b') введения водорода с каталитическим количеством дегидрогеназы;
c') осуществления ферментативной реакции для получения метилмеркаптана (CH3SH);
d') взаимодействия предшественника L-метионина с метилмеркаптаном, образовавшимся на стадии c'), и
e') выделения и в случае необходимости очистки образовавшегося L-метионина.
[0021] Согласно способу по настоящему изобретению метилмеркаптан, в общем случае образующийся в газообразном состоянии, непосредственно приводят в контакт с предшественником метионина соответственно дальнейшему описанию.
[0022] Способ синтеза L-метионина по настоящему изобретению прежде всего основан на ферментативном восстановлении диметилдисульфида водородом согласно следующей реакции:
Figure 00000002
[0023] К настоящему времени было найдено, что эта реакция легко катализируется ферментативной системой, в которую входит аминокислота с тиольной группой или пептид с тиольной группой, например глутатион, в форме комплекса "(аминокислота или пептид)/соответствующая редуктаза", регенерируемого водородом, соответственно приведенному далее описанию фиг. 1.
[0024] Таким образом, согласно пояснению фиг. 1 пептид (в примере показан глутатион) восстанавливает диметилдисульфид до метилмеркаптана, превращаясь в пептид с дисульфидным мостиком (показан дисульфид глутатиона). Редуктаза как фермент (показана глутатионредуктаза, EC 1.8.1.7 или EC 1.6.4.2) восстанавливает пептид (глутатион), и этот же фермент регенерируется окислительно-восстановительным ферментативным комплексом, хорошо известным специалистам в данной области техники, например комплексом "NADPH/NADP+" (никотинадениндинуклеотидфосфатом (в восстановленной и окисленной форме)). В свою очередь, NADP+ регенерируют водородом до NADPH при посредстве фермента "дегидрогеназа" (EC 1.12.1.5). Протоны, высвобождаемые водородом, не накапливаются, поскольку они взаимодействуют с глутатионредуктазой, которая образует HS-R-S- после реакции с NADPH, а образовавшаяся меркаптидная функциональная группа становится функциональной меркаптогруппой.
[0025] Согласно более предпочтительному варианту осуществления система "глутатион/дисульфид глутатиона", ассоциированная с глутатионредуктазой, позволяет согласно настоящему изобретению восстанавливать DMDS до метилмеркаптана.
[0026] Глутатион представляет собой трипептид, широко применяемый в биологии. Это соединение в восстановленной (глутатион) или окисленной (дисульфид глутатиона) форме образует окислительно-восстановительную пару, имеющую важное значение в клетках. В частности, глутатион является жизненно важным для обезвреживания тяжелых металлов в организме. Так, например, в WO 05107723 описана композиция, в которой глутатион применяют для получения хелатирующего препарата, в US 4657856 указано, что глутатион позволяет также разрушать пероксиды за счет глутатионпероксидазы, например превращать H2O2 в H2O. Наконец, глутатион позволяет также разрушать дисульфидные мостики, содержащиеся в белках (Rona Chandrawati, "Triggered Cargo Release by Encapsulated Enzymatic Catalysis in Capsosomes", Nano Lett, (2011), vol. 11, 4958-4963).
[0027] Согласно способу по настоящему изобретению каталитическое количество аминокислоты, содержащей тиольную группу, или пептида с тиольной группой, применяют для получения метилмеркаптана исходя из диметилдисульфида.
[0028] Среди аминокислот, содержащих тиольную группу и приемлемых для применения в способе по настоящему изобретению, в качестве неограничительных примеров можно назвать цистеин и гомоцистеин. Используемые ферментативные окислительно-восстановительные системы, которые могут регенерировать каталитический цикл таким образом, в этом случае представляют собой системы "цистеин/цистеинредуктаза" (EC 1.8.1.6) и "гомоцистеин/гомоцистеинредуктаза".
[0029] Предпочтительным может быть вариант использования гомоцистеина, поскольку эта аминокислота может быть получена исходя из OAHS (предшественника L-метионина), сероводорода (H2S) и фермента, катализирующего реакцию, ведущую к образованию метионина. Таким образом, очень малое количество H2S в реакционной смеси создает in situ цикл, эквивалентный циклу с глутатионом.
[0030] Среди пептидов, содержащих тиольную группу и приемлемых для применения в способе по настоящему изобретению, в качестве неограничительных примеров можно назвать глутатион и тиоредоксин. Таким образом, система "глутатион/глутатионредуктаза", описанная ранее, может быть заменена системой "тиоредоксин (CAS № 52500-60-4)/тиоредоксинредуктаза (EC 1.8.1.9 или EC 1.6.4.5)".
[0031] Глутатион и система "глутатион/глутатионредуктаза" являются наиболее предпочтительными по настоящему изобретению по причине легкости обеспечения этими соединениями и их стоимости.
[0032] В способе по настоящему изобретению водород может быть введен в реакционную смесь любым средством, известным специалистам в данной области техники, например барботированием через реакционную смесь, которая преимущественно представляет собой водно-органическую реакционную смесь. Давление водорода в реакторе соответствует давлению реакционной смеси, указанному далее.
[0033] Применяемый фермент представляет собой дегидрогеназу, которая также хорошо известна специалистам в данной области техники.
[0034] Согласно способу по настоящему изобретению в случае, когда ферментативное восстановление DMDS осуществляют в реакторе, отделенном от синтеза L-метионина, в стехиометрическом количестве используют только DMDS и водород, а все другие компоненты (глутатион, кофактор (например, NADPH) и оба фермента) используют в каталитическом количестве. В случае, когда реакцию ферментативного восстановления DMDS осуществляют совместно с синтезом L-метионина в одном реакторе, называемом реактором "однореакторной технологии", предшественник L-метионина также вводят в стехиометрическом количестве, в то время как дополнительные реагенты этого синтеза, такие как пиридоксальфосфат (PLP) и специфический для этой реакции фермент, вводятт в каталитических количествах.
[0035] Значения концентраций пиридоксальфосфата и фермента, являющегося специфическим для предпочтительных предшественников, можно найти в международных заявках WO 2008013432 и/или WO 2013029690.
[0036] Преимущества, обеспечиваемые синтезом с ферментативным катализом метилмеркаптана исходя из диметилдисульфида, превосходят преимущества, обеспечиваемые способом с 2 последовательными стадиями или способом по "однореакторной технологии". Среди этих преимуществ можно назвать возможность работать с водным или водно-органическим раствором в очень мягких условиях по температуре и давлению и при значении pH, близком к нейтральному. Все эти условия типичны для способа, называемого "зеленым" или "экологически перспективным", и полностью совместимы с получением L-метионина соответственно описанию международных заявок WO 2008013432 и/или WO 2013029690.
[0037] Другое преимущество в случае, когда в способе используют диметилдисульфид, состоит в том, что образующийся метилмеркаптан, который в условиях реакции находится в газообразном состоянии, выходит из реакционной смеси по мере своего образования совместно с водородом, не прореагировавшим в силу возможных обстоятельств. Следовательно, он может быть использован непосредственно после выхода из реактора на следующей технологической стадии, если непрореагировавший водород не мешает этому использованию.
[0038] Следовательно, метилмеркаптан может быть непосредственно использован после выхода из реактора в синтезе L-метионина соответственно, например, описанию WO 2008013432 и/или WO 2013029690, то есть исходя, например, из O-ацетил-L-гомосерина или O-сукцинил-L-гомосерина и ферментов, таких как O-ацетил-L-гомосеринсульфгидрилаза или O-сукцинил-L-гомосеринсульфгидрилаза соответственно.
[0039] В ином случае специалисты в данной области техники могут легко отделить непрореагировавший водород от метилмеркаптана. Метилмеркаптан также может быть легко сжижен способами техники низких температур, например, при необходимости выделить его или отделить.
[0040] Уходящие газы, содержащие водород и метилмеркаптан, в случае потребности и в случае необходимости могут быть возвращены в первый реактор (ферментативное восстановление DMDS) после прохождения через второй реактор (синтез L-метионина), если метилмеркаптан не полностью превратился в L-метионин. Следовательно, способ по настоящему изобретению представляет собой способ синтеза L-метионина на 2 последовательных ферментативных стадиях исходя из предшественника L-метионина и DMDS.
[0041] Также можно осуществлять синтез L-метионина в одном и том же реакторе. В этом случае к системе ферментативного восстановления DMDS (см. указанную ранее стадию a)) прибавляют все реагенты, необходимые для синтеза L-метионина, и закрывают реактор для избежания выброса метилмеркаптана, образующегося при ферментативном восстановлении DMDS in situ. При этом метилмеркаптан взаимодействует с предшественником L-метионина с образованием L-метионина. Таким образом, способ по настоящему изобретению представляет собой способ прямого синтеза L-метионина исходя из предшественника L-метионина и DMDS соответственно показанному на приведенной далее фиг. 2, т.е. синтез исходя из OAHS, DMDS и водорода.
[0042] Диметилдисульфид (DMDS) может быть получен в другом месте исходя из метилмеркаптана и окислителя, такого как, например, кислород, сера или пероксид водорода, или также исходя из диметилсульфата и дисульфида натрия. DMDS может поступать также из смеси под названием "DiSulfide Oils" (DSO, дисульфидные масла), очищенной, например, перегонкой с реагентной обработкой соответственно описанию заявки WO 2014033399.
[0043] Восстановление ферментативным катализом DMDS может рассматриваться как способ, позволяющий избегать транспортировки метилмеркаптана от места его получения по существующим промышленным коммуникациям к месту его использования, если места являются разными. На практике, метилмеркаптан при комнатной температуре представляет собой токсичный газ с сильным зловонным запахом, что чрезвычайно усложняет его транспортировку, в настоящее время очень строго регламентированную в отличие от DMDS. Таким образом, DMDS может быть использован для получения метилмеркаптана непосредственно по месту его применения в синтезе L-метионина с уменьшением таким образом недостатков, связанных с токсичностью и запахом этого соединения, а также промышленных рисков, связанных с этим.
[0044] В случае способа синтеза, осуществляемого на 2 последовательных стадиях, причем DMDS потребляется в реакции, а метилмеркаптан выходит из реакционной смеси по мере своего образования совместно с непревращенным водородом или без него, при условии подачи в непрерывном режиме водорода и DMDS ни одно из соединений не накапливается. Следовательно, не требуется рециркулировать каталитическую систему, принимая во внимание соединения, входящие в реактор и выходящие из него.
[0045] Согласно одному из вариантов осуществления в способ по настоящему изобретению входит получение метилмеркаптана ферментативным восстановлением DMDS и затем осуществление реакции образовавшегося метилмеркаптана с предшественником L-метионина для получения L-метионина. В этом случае в способ по настоящему изобретению входят по меньшей мере следующие стадии:
стадия 1: получение предшественника L-метионина, например, бактериальной ферментацией глюкозы (см. WO 2008013432 и/или WO 2013029690);
стадия 2: ферментативное восстановление DMDS в реакторе R1 с образованием метилмеркаптана, который с водородом, не прореагировавшим в силу возможных обстоятельств, выходит из реактора R1 (см. указанные ранее стадии с a) по c));
стадия 3: ферментативный синтез L-метионина в реакторе R2 исходя из предшественника со стадии 1 и метилмеркаптана со стадии 2 (см. указанную ранее стадию d));
стадия 4 (в случае необходимости): возврат непрореагировавшего водорода на стадию 2 и рециркуляция метилмеркаптана на стадию 2 или стадию 3, и
стадия 5: выделение и в случае необходимости очистка образовавшегося L-метионина (см. указанную ранее стадию e)).
[0046] Описание условий, приемлемых для стадии 1, можно найти в международных заявках WO 2008013432 и/или WO 2013029690.
[0047] Температура осуществления реакции на стадии 2 находится в интервале от 10 до 50°C, предпочтительно от 15 до 45°C и более предпочтительно от 20 до 40°C.
[0048] Значение pH реакционной смеси может находиться в интервале от 5 до 9, предпочтительно от 6 до 8,5, более предпочтительно от 6 до 8 и еще более предпочтительно от 7,0 до 8,0. Наиболее предпочтительно следует выбирать значение pH среды, установленное буферным раствором в интервале значений pH от 7,5 до 8,0. Согласно другому предпочтительному варианту осуществления выбирают значение pH среды, установленное буферным раствором в интервале значений pH от 6,5 до 7,5.
[0049] Давление, устанавливаемое при осуществлении реакции, может находиться в интервале от давления ниже атмосферного до давления в несколько бар (в несколько сотен кПа) в зависимости от используемых реагентов и материалов. Предпочтительно может быть установлено давление в интервале от атмосферного до давления 20 бар (2 МПа) и наиболее предпочтительно следует работать при давлении в интервале от атмосферного до давления 3 бар (300 кПа).
[0050] Касательно идеальных условий для стадии 3 можно сослаться на международную заявку WO 2013029690.
[0051] Согласно другой модели (другому варианту) реализации способ по настоящему изобретению осуществляют в одном и том же реакторе (по "однореакторной технологии") и в этом случае он включает по меньшей мере следующие стадии:
стадия 1': получение предшественника L-метионина, например, бактериальной ферментацией и предпочтительно, но не ограничительным образом ферментацией глюкозы (аналогично указанной ранее стадии 1);
стадия 2': ферментативное восстановление DMDS в реакторе R1 с образованием in situ метилмеркаптана и совместный ферментативный синтез L-метионина в том же самом реакторе исходя из предшественника, полученного на стадии 1';
стадия 3' (в случае необходимости): возврат водорода и метилмеркаптана в реактор R1 на уровне стадии 2, и
стадия 4': выделение и в случае необходимости очистка образовавшегося L-метионина (см. указанную ранее стадию e)).
[0052] Описание условий, приемлемых для стадии 1', можно найти в международных заявках WO 2008013432 и/или WO 2013029690.
[0053] Для стадии 2' рабочие условия приведены далее.
[0054] Температура осуществления реакции находится в интервале от 10 до 50°C, предпочтительно от 15 до 45°C и более предпочтительно от 20 до 40°C.
[0055] Значение pH реакционной смеси преимущественно находится в интервале от 6 до 8 и предпочтительно от 6,2 до 7,5.
[0056] Давление, устанавливаемое при осуществлении реакции по "однореакторной технологии", предпочтительно может находиться в интервале от давления ниже атмосферного до давления в несколько бар (в несколько сотен кПа) в зависимости от используемых реагентов и материалов. Предпочтительно может быть установлено давление в интервале от атмосферного до давления 20 бар (2 МПа) и наиболее предпочтительно следует работать при давлении в интервале от атмосферного до давления 3 бар (300 кПа).
[0057] Молярное соотношение "DMDS/предшественник L-метионина" находится в интервале от 0,1 до 10 и в общем случае от 0,5 до 5, при этом молярное соотношение предпочтительно соответствует стехиометрическому соотношению (молярное соотношение=0,5), но может иметь большее значение, если это оказывает положительное влияние на кинетику реакции.
[0058] Согласно тому или иному варианту по настоящему изобретению способ может быть осуществлен в периодическом или непрерывном режиме в стеклянном или металлическом реакторе при заданных рабочих условиях и применяемых реагентах. Согласно одному из вариантов осуществления способ по настоящему изобретению представляет собой полунепрерывный способ, в котором водород вводят по мере его потребления в реакции.
[0059] Согласно тому или иному варианту способа по настоящему изобретению идеальное молярное соотношение "водород/DMDS" соответствует стехиометрическому соотношению (молярное соотношение=1), но может изменяться от 0,01 до 100, если специалистами в данной области техники будет замечена какая-либо необходимость, например, в том, чтобы водород вводить в непрерывном режиме, а DMDS вводить в реактор при пуске. Это молярное соотношение предпочтительно выбирают в интервале от 1 до 20 относительно совокупности реакционной смеси в целом.
[0060] Непревращенный водород может рециркулироваться от выхода из реактора к его входу до полного исчерпания. Также можно рассматривать рециркуляцию водорода и метилмеркаптана до тех пор, пока водород полностью не прореагирует с DMDS. В этой конфигурации газы на выходе из реактора R2 (или из единственного реактора, когда реакцию осуществляют по "однореакторной технологии") содержат почти исключительно метилмеркаптан.
[0061] Компоненты, содержащиеся в каталитическом количестве в смеси, полученной на указанной ранее стадии a), (аминокислота, содержащая тиольную группу, или пептид с тиольной группой, или также дисульфид, соответствующий указанным аминокислоте или пептиду, редуктаза, дегидрогеназа, кофактор (например, NADPH)) могут быть без затруднений приобретены в коммерческой сети или получены способами, хорошо известными специалистам в данной области техники. Эти компоненты могут находиться в твердом или жидком виде и в порядке особого преимущества могут быть растворены в воде для использования в способе по настоящему изобретению. Применяемые ферменты также могут быть привиты к подложке (в случае ферментов, нанесенных на подложку).
[0062] Водный раствор ферментативного комплекса, содержащего аминокислоту или пептид, также может быть реализован способами, известными специалистам в данной области техники, например, пропиткой клеток, которые могут содержать эти компоненты. Этот водный раствор, состав которого представлен в приведенном далее примере 1, может быть использован с содержанием по массе в интервале от 0,01 до 20% по отношению к общей массе реакционной смеси. Предпочтительно может быть принято содержание в интервале от 0,5 до 10%.
[0063] Значения концентраций пиридоксальфосфата и фермента, являющегося специфическим для предпочтительных предшественников L-метионина, можно найти в международных заявках WO 2008013432 и/или WO 2013029690.
[0064] Настоящее изобретение можно лучше понять при чтении приведенных далее примеров, которые не ограничивают объем патентной охраны настоящего изобретения. Все представленные далее испытания были осуществлены в анаэробных условиях.
ПРИМЕР 1. Способ с 2 последовательными стадиями
[0065] В реактор R1, содержавший 150 мл водного раствора со значением pH, доведенным буферным раствором до 7,8, вносили 10 мл ферментативного комплекса с глутатионом (Aldrich). Раствор ферментативного комплекса содержал 185 мг (0,6 ммоль) глутатиона, 200 ед. глутатионредуктазы, 50 мг (0,06 ммоль) NADPH и 200 ед. дегидрогеназы. Реакционную смесь доводили до 35°C при механическом перемешивании. Первый отбор проб осуществляли в момент времени t=0. Далее диметилдисульфид (9,4 г, 0,1 моль) вносили в бюретку и вводили по каплям в реактор.
[0066] В то же самое время в реактор вводили барботированием поток водорода с расходом 4 л·ч-1 (при измерении в нормальных условиях по температуре и давлению). Реакцию осуществляли при атмосферном давлении.
[0067] Анализ способом газовой хроматографии газов, выходящих из реактора, показал по существу только присутствие водорода и метилмеркаптана (и следовое количество воды). DMDS и водород (с молярным соотношением "водород/DMDS" относительно совокупности реакционной смеси=10,7) вводили в течение 6 часов, при этом конечный анализ реакционной смеси способом газовой хроматографии подтвердил отсутствие метилмеркаптана, который был вытеснен из реактора избытком водорода. Эти газы, уходящие из реактора R1, направляли непосредственно в реактор R2.
[0068] Параллельно во второй реактор R2, содержавший 75 мл фосфатного буферного раствора с концентрацией 0,1 моль·л-1 и pH=6,60, вводили 5 г O-ацетил-L-гомосерина (OAHS) (O-ацетил-L-гомосерин был синтезирован исходя из L-гомосерина и уксусного ангидрида согласно публикации Sadamu Nagai "Synthesis of O-acetyl-L-homoserine, Academie Press, (1971), vol. 17, p. 423-424". Раствор доводили до 35°C при механическом перемешивании.
[0069] Перед началом реакции осуществляли отбор (t=0) 1 мл реакционной смеси. Раствор пиридоксальфосфата (1,6 ммоль, 0,4 г) и O-ацетил-L-гомосеринсульфгидрилазы (0,6 г) растворяли в 10 мл воды и затем вносили в реактор.
[0070] Метилмеркаптан вводили в реактор R1 по ходу реакции и преимущественно подавали с избытком водорода или также тогда, когда водород вводили в стехиометрическом соотношении или в соотношении меньше стехиометрического по отношению к DMDS. Метилмеркаптан предпочтительно подавали с потоком инертного газа, например с потоком азота. Реакция начиналась сразу. Образование L-метионина и исчезновение OAHS контролировали способом ВЭЖХ. Газы, уходящие из реактора R2, улавливали 20%-м водным раствором едкого натра (гидроксида натрия). Анализы показали, что 42% OAHS было превращено в L-метионин, а избыток DMDS был превращен в метилмеркаптан, обнаруженный в ловушке с гидроксидом натрия.
ПРИМЕР 2. Способ по "однореакторной технологии"
[0071] В реактор, содержавший 150 мл фосфатного буферного раствора с концентрацией 0,2 моль·л-1 и pH=7, вносили 10 мл ферментативного комплекса, 5 г (31 ммоль) O-ацетил-L-гомосерина (OAHS, O-ацетил-L-гомосерин был синтезирован исходя из L-гомосерина и уксусного ангидрида согласно публикации Sadamu Nagai "Synthesis of O-acetyl-L-homoserine, Academie Press, (1971), vol. 17, p. 423-424"). Раствор ферментативного комплекса содержал 185 мг (0,6 ммоль) глутатиона, 200 ед. глутатионредуктазы, 50 мг (0,06 ммоль) NADPH, 200 ед. дегидрогеназы, 0,4 г (1,6 ммоль) пиридоксальфосфата и 0,6 г O-ацетил-L-гомосеринсульфгидрилазы.
[0072] Реакционную смесь доводили до 35°C при механическом перемешивании. Первый отбор проб осуществляли в момент времени t=0. Далее диметилдисульфид (3 г, 32 ммоль) вносили в бюретку и вводили по каплям, водород вводили с расходом 4 л/ч; реакция начиналась сразу. Ход реакции контролировали способом ВЭЖХ для отслеживаниия исчезновения OAHS и образования L-метионина. Через 6 часов 12% OAHS было превращено в L-метионин, что демонстрирует возможность получения L-метионина способом по "однореакторной технологии" исходя из предшественника L-метионина, DMDS и водорода.
ПРИМЕР 3. Способ по "однореакторной технологии"
[0073] В реактор, содержавший 70 мл фосфатного буферного раствора с концентрацией 0,1 моль·л-1 и pH=6,8, вводили 10 мл ферментативного комплекса, 5 г (31 ммоль) O-ацетил-L-гомосерина (OAHS, O-ацетил-L-гомосерин был синтезирован исходя из L-гомосерина и уксусного ангидрида согласно публикации Sadamu Nagai "Synthesis of O-acetyl-L-homoserine, Academie Press, (1971), vol. 17, p. 423-424").
[0074] Раствор ферментативного комплекса содержал 200 мг глутатиона (0,65 моль), 500 ед. глутатионредуктазы, 100 мг NADPH (0,13 моль), 50 ед. дегидрогеназы, 400 мг (1,6 ммоль) пиридоксальфосфата, 2 г O-ацетил-L-гомосерина, а также 0,6 г O-ацетил-L-гомосеринсульфгидрилазы.
[0075] Дегидрогеназу получали исходя из культуры микроорганизмов (согласно статье Biller и соавт. "Fermentation Hyperthermophiler Mikroorganismen am Beispiel von Pyrococcus Furiosus, Shaker Verlag, Maastricht/Herzogenrath, 2002") способами, хорошо известными специалистам в данной области техники.
[0076] Реакционную смесь доводили до 35°C при механическом перемешивании и продувке азотом. Первый отбор проб осуществляли в момент времени t=0. Далее шприцем вводили 20 г (0,22 моль) диметилдисульфида. В то же самое время в реакционную смесь вводили барботированием поток водорода с расходом 4 л·ч-1 (при измерении в нормальных условиях по температуре и давлению). Начавшуюся реакцию осуществляли при атмосферном давлении в течение 18 часов. Ход реакции контролировали способом ВЭЖХ для отслеживаниия исчезновения OAHS и образования L-метионина. К концу реакции 27% OAHS было превращено в L-метионин, что демонстрирует возможность получения L-метионина способом по "однореакторной технологии" исходя из предшественника L-метионина, DMDS и водорода.

Claims (42)

1. Способ получения L-метионина, включающий по меньшей мере стадии:
a) получения смеси, содержащей:
1) диметилдисульфид;
2) каталитическое количество аминокислоты, содержащей тиольную группу, или пептида с тиольной группой;
3) каталитическое количество фермента, катализирующего реакцию восстановления дисульфидного мостика аминокислоты, содержащей тиольную группу, или пептида с тиольной группой, причем указанный фермент представляет собой редуктазу;
4) водород;
5) каталитическое количество фермента, катализирующего реакцию отщепления водорода, причем указанный фермент представляет собой дегидрогеназу;
6) каталитическое количество кофактора, являющегося общим для обоих ферментов каталитической системы;
b) осуществления ферментативной реакции для получения метилмеркаптана;
c) введения предшественника L-метионина и взаимодействия этого предшественника с метилмеркаптаном, образовавшимся на стадии b), и
d) выделения образовавшегося L-метионина.
2. Способ по п.1, включающий по меньшей мере стадии:
a') получения смеси, содержащей:
- диметилдисульфид;
- каталитическое количество аминокислоты, содержащей тиольную группу, или пептида с тиольной группой;
- каталитическое количество редуктазы, соответствующей аминокислоте, содержащей тиольную группу, или пептиду с тиольной группой;
- каталитическое количество NADPH;
b') введения водорода с каталитическим количеством дегидрогеназы;
c') осуществления ферментативной реакции для получения метилмеркаптана;
d') взаимодействия предшественника L-метионина с метилмеркаптаном, образовавшимся на стадии c'), и
e') выделения и в случае необходимости очистки образовавшегося L-метионина.
3. Способ по п.1 или 2, в котором метилмеркаптан приводят непосредственно в контакт с предшественником метионина.
4. Способ по любому из пп. 1-3, в котором аминокислоту, содержащую тиольную группу, или пептид, содержащий тиольную группу, выбирают из цистеина, гомоцистеина, глутатиона и тиоредоксина.
5. Способ по любому из пп. 1-4, в котором предшественник L-метионина выбирают из O-ацетил-L-гомосерина и O-сукцинил-L-гомосерина.
6. Способ по любому из пп. 1-5, в котором водород вводят барботированием через реакционную смесь.
7. Способ по любому из пп. 1-6, включающий получение метилмеркаптана ферментативным восстановлением DMDS и затем осуществление реакции образовавшегося метилмеркаптана с предшественником L-метионина для получения L-метионина.
8. Способ по п.7, включающий по меньшей мере следующие стадии:
стадия 1: получение предшественника L-метионина;
стадия 2: ферментативное восстановление DMDS в реакторе R1 с образованием метилмеркаптана, который с водородом, не прореагировавшим в силу возможных обстоятельств, выходит из реактора R1;
стадия 3: ферментативный синтез L-метионина в реакторе R2 исходя из предшественника со стадии 1 и метилмеркаптана со стадии 2;
стадия 4 (в случае необходимости): возврат непрореагировавшего водорода на стадию 2 и рециркуляция метилмеркаптана на стадию 2 или стадию 3 и
стадия 5: выделение и в случае необходимости очистка образовавшегося L-метионина.
9. Способ по любому из пп. 1-6, в котором синтез метилмеркаптана исходя из DMDS и синтез L-метионина исходя из этого метилмеркаптана осуществляют в одном и том же реакторе.
10. Способ по п.9, включающий по меньшей мере следующие стадии:
стадия 1': получение предшественника L-метионина;
стадия 2': ферментативное восстановление DMDS в реакторе R1 с образованием in situ метилмеркаптана и совместный ферментативный синтез L-метионина в том же самом реакторе исходя из предшественника, полученного на стадии 1';
стадия 3' (в случае необходимости): возврат водорода и метилмеркаптана в реактор R1 на уровне стадии 2,и
стадия 4': выделение и в случае необходимости очистка образовавшегося L-метионина.
11. Способ по любому из пп. 1-10, осуществляемый в периодическом или непрерывном режиме.
12. Способ по любому из пп. 1-11, в котором идеальное молярное соотношение "водород/DMDS" изменяется от 0,01 до 100 и предпочтительно от 1 до 20 относительно совокупности реакционной смеси.
13. Способ по любому из пп. 1-12, в котором молярное соотношение "DMDS/предшественник L-метионина" находится в интервале от 0,1 до 10 и в общем случае от 0,5 до 5, при этом молярное соотношение предпочтительно соответствует стехиометрическому соотношению (молярное соотношение=0,5).
14. Способ по любому из пп. 1-13, в котором температура ферментативной реакции находится в интервале от 10 до 50°C, предпочтительно от 15 до 45°C и более предпочтительно от 20 до 40°C.
RU2018115403A 2015-09-30 2016-09-29 Способ получения l-метионина RU2709715C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1559278A FR3041659B1 (fr) 2015-09-30 2015-09-30 Procede de production de l-methionine
FR1559278 2015-09-30
PCT/FR2016/052482 WO2017055755A1 (fr) 2015-09-30 2016-09-29 Procédé de production de l-méthionine

Publications (1)

Publication Number Publication Date
RU2709715C1 true RU2709715C1 (ru) 2019-12-19

Family

ID=54545347

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018115403A RU2709715C1 (ru) 2015-09-30 2016-09-29 Способ получения l-метионина

Country Status (17)

Country Link
US (1) US10563236B2 (ru)
EP (1) EP3356541B1 (ru)
JP (1) JP6742404B2 (ru)
KR (1) KR102078489B1 (ru)
CN (1) CN108026551B (ru)
DK (1) DK3356541T3 (ru)
ES (1) ES2805310T3 (ru)
FR (1) FR3041659B1 (ru)
HU (1) HUE049908T2 (ru)
LT (1) LT3356541T (ru)
MY (1) MY183683A (ru)
PL (1) PL3356541T3 (ru)
RU (1) RU2709715C1 (ru)
SA (1) SA518391213B1 (ru)
SG (1) SG11201802495UA (ru)
SI (1) SI3356541T1 (ru)
WO (1) WO2017055755A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041635B1 (fr) * 2015-09-30 2019-01-25 Arkema France Procede de production de mercaptans par hydrogenolyse enzymatique de disulfures
FR3041658B1 (fr) * 2015-09-30 2017-10-20 Arkema France Procede de production de l-methionine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493058A (en) * 1993-10-20 1996-02-20 Elf Aquitaine Production Synthesis of methyl mercaptan from dimethyl disulphide
RU2176240C2 (ru) * 1995-12-18 2001-11-27 Дегусса-Хюльс Акциенгезельшафт Способ получения d,l-метионина или его соли (варианты)
WO2008013432A1 (en) * 2006-07-28 2008-01-31 Cj Cheiljedang Corporation Microorganism producing l-methionine precursor and method of producing l-methionine and organic acid from the l-methionine precursor
WO2013029690A1 (en) * 2011-09-02 2013-03-07 Arkema France Preparation process of l-methionine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636098A (en) 1966-07-02 1972-01-18 Sumitomo Chemical Co Process for producing methionine
JPS6013668B2 (ja) 1980-09-25 1985-04-09 協和醗酵工業株式会社 グルタチオン・パ−オキシダ−ゼの製造法
EP0630406A1 (en) * 1992-02-20 1994-12-28 Genencor International, Inc. Biosynthesis of methionine using a reduced source of sulfur
DE4235295A1 (de) 1992-10-20 1994-04-21 Degussa Kontinuierlich durchführbares Verfahren zur Herstellung von Methionin oder Methioninderivaten
US20080260653A1 (en) 2004-05-06 2008-10-23 Buttar Rashid A Transdermal Delivery Systems and Transdermal Chelation Preparations
US8217084B2 (en) * 2004-05-24 2012-07-10 Allium Vitalis Incorporated Medicinal products incorporating bound organosulfur groups
DE602006018468D1 (de) * 2005-07-18 2011-01-05 Evonik Degussa Gmbh Verwendung von dimethyldisulfid für die methioninproduktion in mikroorganismen
WO2007077041A1 (en) 2006-01-04 2007-07-12 Metabolic Explorer Process for the preparation of methionine and its precursors homoserine or succinylhomoserine employing a microorganism with enhanced sulfate permease expression
FR2903690B1 (fr) 2006-07-11 2008-11-14 Adisseo Ireland Ltd Procede de preparation de la methionine a partir d'acroleine sans isoler de produits intermediaires
WO2008006977A1 (fr) 2006-07-11 2008-01-17 Adisseo France S.A.S. Procédé de préparation du 2-hydroxy-4-(méthylthio)butyronitrile et de la méthionine
BRPI0717005A2 (pt) 2006-08-24 2013-10-08 Evonik Degussa Gmbh Processo para preparar ácidos d,l-2-hidróxi-4-alquiltiobutíricos
WO2009043372A1 (en) 2007-10-02 2009-04-09 Metabolic Explorer Increasing methionine yield
DE102008038501A1 (de) 2008-08-20 2010-02-25 Endress + Hauser Gmbh + Co. Kg Verfahren zum Bestimmen einer statischen Datenstruktur eines Feldgerätes
WO2010020290A1 (en) 2008-08-22 2010-02-25 Metabolic Explorer Producing methionine without n-acetyl methionine
FR2994974B1 (fr) 2012-08-30 2015-05-01 Arkema France Distillation reactive des dso
FR3041658B1 (fr) * 2015-09-30 2017-10-20 Arkema France Procede de production de l-methionine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493058A (en) * 1993-10-20 1996-02-20 Elf Aquitaine Production Synthesis of methyl mercaptan from dimethyl disulphide
RU2176240C2 (ru) * 1995-12-18 2001-11-27 Дегусса-Хюльс Акциенгезельшафт Способ получения d,l-метионина или его соли (варианты)
WO2008013432A1 (en) * 2006-07-28 2008-01-31 Cj Cheiljedang Corporation Microorganism producing l-methionine precursor and method of producing l-methionine and organic acid from the l-methionine precursor
WO2013029690A1 (en) * 2011-09-02 2013-03-07 Arkema France Preparation process of l-methionine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MILLIS K.K. et al., Oxidation/Reduction Potential of Glutathione // J. Org. Chem., 1993, 58, с.4144-4146. *

Also Published As

Publication number Publication date
US10563236B2 (en) 2020-02-18
KR20180050751A (ko) 2018-05-15
EP3356541B1 (fr) 2020-06-03
WO2017055755A1 (fr) 2017-04-06
FR3041659B1 (fr) 2017-10-20
PL3356541T3 (pl) 2020-08-24
MY183683A (en) 2021-03-08
FR3041659A1 (fr) 2017-03-31
KR102078489B1 (ko) 2020-02-17
JP2018529357A (ja) 2018-10-11
US20180282772A1 (en) 2018-10-04
CN108026551A (zh) 2018-05-11
ES2805310T3 (es) 2021-02-11
JP6742404B2 (ja) 2020-08-19
DK3356541T3 (da) 2020-07-27
HUE049908T2 (hu) 2020-11-30
SG11201802495UA (en) 2018-04-27
CN108026551B (zh) 2021-12-28
SA518391213B1 (ar) 2021-06-08
SI3356541T1 (sl) 2020-08-31
EP3356541A1 (fr) 2018-08-08
LT3356541T (lt) 2020-08-10

Similar Documents

Publication Publication Date Title
US20220372530A1 (en) Method for producing mercaptans by disulfide enzyme hydrogenolysis
RU2709715C1 (ru) Способ получения l-метионина
RU2711353C1 (ru) Способ получения l-метионина
RU2720091C1 (ru) Способ получения меркаптанов путем ферментативного гидрогенолиза дисульфидов с помощью водорода
BR112018005656B1 (pt) Método de produção de l-metionina