RU2709341C1 - Определение циркулирующего тромбина в тесте активации системы комплемента - Google Patents

Определение циркулирующего тромбина в тесте активации системы комплемента Download PDF

Info

Publication number
RU2709341C1
RU2709341C1 RU2019112043A RU2019112043A RU2709341C1 RU 2709341 C1 RU2709341 C1 RU 2709341C1 RU 2019112043 A RU2019112043 A RU 2019112043A RU 2019112043 A RU2019112043 A RU 2019112043A RU 2709341 C1 RU2709341 C1 RU 2709341C1
Authority
RU
Russia
Prior art keywords
thrombin
lysis
activity
fibrin
circulating
Prior art date
Application number
RU2019112043A
Other languages
English (en)
Inventor
Оксана Михайловна Драпкина
Батожаб Батожаргалович Шойбонов
Татьяна Павловна Баронец
Диана Викторовна Григорьева
Ольга Алексеевна Лебедева
Ольга Анатольевна Литинская
Наталья Юрьевна Серебрякова
Original Assignee
федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр профилактической медицины" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ПМ" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр профилактической медицины" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ПМ" Минздрава России) filed Critical федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр профилактической медицины" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ПМ" Минздрава России)
Priority to RU2019112043A priority Critical patent/RU2709341C1/ru
Application granted granted Critical
Publication of RU2709341C1 publication Critical patent/RU2709341C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к клинической иммунологии и гемостазиологии и может быть использовано для оценки степени внутрисосудистого свертывания крови по функциональной активности тромбина, связанного с циркулирующими фибрин-мономерными комплексами, в тесте активации комплемента. Способ определения активности тромбина, связанного с циркулирующими фибрин-мономерными комплексами в тесте активации комплемента, включает использование цитратной плазмы крови человека, добавление к ней суспензии эритроцитов барана, инкубацию при 37°С в течение 10 минут, измерение оптической плотности пробы на фотометре для иммуноферментного анализа при 620 нм, определение активности тромбина по степени лизиса эритроцитов барана с использованием калибровочного графика, где 100% лизис представляет собой полный лизис эритроцитов барана при добавлении воды, а контроль на спонтанный лизис - 0% лизиса, при лизисе более 10% констатируют повышенную тромбиновую активность плазмы крови. 1 ил., 7 табл., 6 пр.

Description

Изобретение относится к клинической иммунологии и гемостазиологии и касается определения степени внутрисосудистого свертывания крови по уровню циркулирующего тромбина, связанного с фибрин-мономерными комплексами, в тесте активации системы комплемента.
Тромбин (3.4.21.5.) - сериновая протеиназа трипсиноподобного действия - является ключевым ферментом сложного каскада реакций, вызывающих свертывание крови. Участие тромбина в гемостазе не ограничено только расщеплением фибриногена. Тромбин взаимодействует различными звеньями многоступенчатого процесса свертывания крови: с тромбоцитами, факторами свертывания плазмы и компонентами стенок сосудов [Струков А.И., Струкова С.Н. Структурно-функциональные основы гемостаза и его патология // Арх. патологии, 1980, 42, №9: 26-45], ускоряя или замедляя тромбогенез. Более того, установлено участие тромбина в биохимических процессах, непосредственно не связанных со свертыванием крови: в активации системы комплемента [Huber-Lang М., Sarma J.V., Zetoune F.S., Rittirsch D et al. Generation of C5a in the absence of C3: a new complement activation pathway // Nature Medicine, 2006, V. 12, №6: 682-687; doi: 10.1038/nm1419]; стимуляции роста клеток [Gandossi E., Lunven C., Berry C.N. Role of clot-assosiated (-derived) thrombin in cell proliferation induced by fibrin clots in vitro // British Journal of Pharmacology (2000) 129, 1021-7]. Bee это свидетельствует о том, что тромбин следует рассматривать как важнейшую биорегуляторную протеиназу.
Традиционно системы комплемента и коагуляции рассматривают как отдельные каскадные системы в организме человека и животных. Оба протеолитических каскада состоят из сериновых протеаз с общими структурными характеристиками как высоко консервативные каталитические участки, содержащие аминокислотные остатки серина, гистидина и аспартата [Krem М.М., Di Cera Е.(2002) Nrends Biochem. Sci. 27: 67-74; Esmon C.T. (2004) Tromb. Res. 114: 321-327]. Кроме того, обе системы принадлежат к общей воспалительной сети [Rittirch D., Flier M.F., Ward P.A. (2008) Nat. Rev. Immunol. 8: 776-787] и проявляют некоторые подобные характеристики, соответствующие специализированным функциям их активаторов и ингибиторов. В частности, фактор свертывания XII может активировать C1r и, таким образом, инициирует классический путь активации системы комплемента. В свою очередь С1-ингибитор подавляет не только три пути активации комплемента (классический, альтернативный и лектиновый), но также внутренний коагуляционный путь активации гемостаза (калликреин, фактор XIIa) [Davis А.Е. III, Mejia P., Lu F. (2008) Mol. Immunol. 45: 4057-4063; Ghebrehiwet В., Silverberg M., Kaplan A.P. (1981) J. Exp. Med. 153: 665-676]. В работе Clark и соавт. (2008) показано, что тромбин и плазмин могут участвовать в нетрадиционной активации системы комплемента при регенерации печени даже в отсутствие компонента С4 классического пути и при ингибировании фактора В альтернативного пути активации системы комплемента [Clark A., Weymann A., Hartman Е., Turmelle Y., Carroll М., Thurman J.M. et al. (2008) Vol. Immunol. 45: 3125-3132.]. Тромбин может также действовать как физиологический агонист протеинкиназа С-зависимой регуляции фактора, ускоряющего распад С3-конвертазы системы комплемента и может таким образом обеспечивать отрицательную обратную связь, помогая предотвращать тромбоз при воспалении [Lidington Е.А., Haskard D.O., Mason J.S. (2000) Blood 96: 2784-2792]. При системной воспалительной реакции активация коагуляционного каскада сопровождается глубокой активацией системы комплемента, которая приводит к генерации анафилатоксинов С3а и С5а [Levi М., van der Poll., Buller H.U (2004) Circulation 109: 2698-2704]. Также C5a индуциирует активность тканевого фактора в человеческих эндотелиальных клетках [Ikeda K., Nagasawa K., Horiuchi Т., Nishizaka Н., Niho Y. (1997) Thromb. Haemost. 77: 394-398] и поэтому вовлекается в активацию внешнего коагуляционного пути гемостаза. Кроме того, С5а стимулирует экспрессию тканевого фактора на нейтрофилах через С5а-рецептор, который связан с высокой про-коагулянтной активностью [Ritis K., Doumas М., Mastellos D., Micheli A., Giglis S., Magotti P., et al. (2006). J. Immunol. 177: 4794-4802]. Новые доказательства прокоагулянтных эффектов комплемента получены и представлены в недавних исследованиях, где покзано, что in vitro маннан-связывающий лектин-ассоциированная протеаза-2 лектинового пути активации комплемента способна запускать потребление (активацию) фибриногена с помощью превращения протромбина в тромбин [Krarup A., Wallis R., Presanis S., Gal P., Sim R.B. (2007). Plos ONE 2:е623]. Еще в 1986 году Wiedmer и соавт.показали, что терминальный комплементный комплекс (ТКК), C5b-9, может катализировать расщепление протромбина в тромбин даже в отсутствие фактора V, тем самым специфически повышать тромбоцитарную протромбиназную активность [Wiedmer Т., Esmon С.Т., Sim P.J. (1986). Blood. 68: 875-880]. С другой стороны, С5а оказывает фибринолитический эффект с помощью подавления экспрессии ингибитора-1 плазминогенового активатора в человеческих тучных клетках [Wojta J., Kaun С., Zorn G., Ghannadan M., Hauswirth A.W., Sperr W.R., et aj. (2002) Blood 100: 517-523].
Таким образом, в настоящее время становится очевидным то, что обе каскадные системы могут взаимодействовать более широко, чем ранее предполагалось [Markiewski М.М., Nilsson D., Ekdahl K.N., Mollnes Т.Е., Lambris J.D. (2007) Trends Immunol. 28: 184-192].
В процессе свертывания тромбин адсорбируется на фибрине [Lui Су., Nossel H.L., Kaplan K.L (1979) J. Biol. Chem. 254: 10421-5; Hogg P.J., Jackson C.M. Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: Implication for heparin efficacy / Proc Natl Acad Sci USA 1989; 86: 3619-3623]. Связанный с фибриновым сгустком тромбин сохраняет каталитическую активность, как было показано с освобождением пептида А (ФПА) от фибриногена [Weitz J.I., Hudoba М., Massel D., Maranore J., Hirsh J. (1990). J Clin Invest. 86: 385-391], при гидролизе хромогениого субстрата и укорочением времени коагуляции плазмы крови [Bendayan P., Baccalon Н., Dupouy D., Boneu B. (1994) Thromb Haemost. 71: 576-580]. Фибриновый сгусток, таким образом, ведет себя как резервуар активного тромбина. В таком состоянии тромбин более эффективен, как было показано ингибиторной характеристикой связанного тромбина плазменным физиологическим ингибитором, антитромбином III. Оказалось, что связанный с фибрином тромбин не чувствителен к действию антитромбина III в отличие от жидкофазного тромбина [Weitz J.I., Leslic В., Hudoba М. (1998). Circulation 97: 544-552]. Показано [Beguin S., Kessels H., Hemker H.C. (1993) Thromb Haemost. 69: 811; Kumar N., Beguin S., Hemker H.C. (1994). Thromb Haemost. 72(5): 713-721], что фибрин-связанный тромбин может усиливать образование дополнительно тромбина за счет активации плазменных кофакторов, белков V и VIII. Авторы также показали, что тромбоцит-богатая плазма в присутствии фибрин-связанного тромбина свертывается значительно быстрее за счет укорочения лаг-фазы, предшествующей взрыву при генерации тромбина. Данный факт свидетельствует о том, что тромбоциты находятся в «пред»-активированом состоянии под действием тромбина, связанного с фибриновым сгустком.
Тромбин белок коагуляционной системы с многогранным воздействием при онкологических заболеваниях с метастазированием. В настоящее время связь между коагуляцией и развитием рака хорошо установлена. Тромбин может также запускать клеточные процессы через протеаза-активируемые рецепторы (ПАР-1 и ПАР-4), приводящие к прогрессированию рака. Получены доказательства участия тромбина в метастазировании рака путем повышения адгезивного потенциала злокачественных клеток. Существуют доказательства участия тромбина на каждой стадии диссеминирования рака: 1) инвазия раковых клеток путем отрыва от первичной опухоли, миграция; 2) поступление в кровяное русло; 3) циркуляция в кровяном русле; 4) выход из кровотока; 5) имплантация в органы и ткани. Недавние исследования обеспечили новые молекулярные данные о генерации тромбина у раковых больных и механизмы, при помощи которых тромбин участвует в трансэндотелиальной миграции, взаимодействии тромбоцитов с опухолевыми клетками, ангиогенезе и других процессах. Хотя отлично известно о роли тромбина в распространении рака, появляются все новые данные о тромбин-опосредованных процессах, которые требуют дальнейших комплексных исследований [Wojtukiewicz M.Z., Hempel D., Sierko E., Tucker S., Honn K.V. (2016) Cancer Metastasis Rev. 35: 213-233].
Другим аспектом роли тромбина при патологических состояниях является ожирение. Ожирение способствует развитию хронического воспалительного и гиперкоагуляционного состояния, которое приводит к сердечно-сосудистым заболеваниям, диабету 2 типа, ожирению печени. Повышенная активность тромбина лежит в основе связанных с ожирением тромбоэмболических событий, но прямые связи между тромбином/фибрином и патологиями, связанными с ожирением, не полностью понятны. В работе Корес с соавт. (2017) иммуногистохимическими методами выявлены внесосудистые отложения фибрина в пределах белой жировой ткани и в печени у мышей, получавших рацион с высоким содержанием жиров, а также у пациентов с ожирением. Мыши, несущие мутантные формы фибриногена (Fibγ390-396A), неспособные связывать лейкоцитарный αМβ2-интегрин, были защищены от вызванного рационом с высоким содержанием жиров увеличения веса и ожирения. У мышей Fibγ390-396A заметно ниже системное, жировое и печеночное воспаление с меньшим количеством макрофагов в пределах белой жировой ткани, а также почти полная защита от развития жировой болезни печени и нарушения метаболизма глюкозы. Гомозиготные же тромбомодулин-мутантные мыши ThbdPro, у которых повышена функция тромбина, отличались заметным увеличением в весе и воспалительной реакцией при ожирении по сравнению с дикими мышами. Лечение дабигатраном, прямым ингибитором тромбина, ограничивало развитие ожирения, вызванное диетой с высоким содержанием жиров, и подавляло прогрессирование осложнений у мышей с ожирением. В совокупности эти данные подтверждают роль тромбина и фибрина как маркеров системной воспалительной реакции при ожирении [Kopec А.K., Abrahams S.R., Thornton S., Joseph S. Palumbo J.S., Mullins E.S., Divanovic S. Thrombin promotes diet-induced obesity through fibrin-driven inflammation // J Clinlnvest. 2017; 127(8): 3152-3166. doi.10.1172/JCI92744].
Таким образом, роль тромбина, связанного с растворимыми фибрин-мономерными комплексами, остается до конца не исследованным из-за отсутствия методик определения данной формы тромбина, как маркера внутрисосудистой активации свертывающей системы и системы комплемента.
Биохимические методы определения активности тромбина можно разбить на две группы. В первой группе применяются низкомолекулярные пептидные субстраты, которые расщепляются ферментом с образованием окрашенного продукта. Примерами таких субстратов служат H-D-Phe-Pro-Arg-п-нитроанилид (FPR) [Whitton С., Sands D., Lee Т., Chang A., Longstaff C. Thromb Haemost. - 2005. - V. 93. - P. 261-266], h-D-Phe-Pro-Phe-п-нитроанилид (FpF) [Bush L.A., Nelson R.W., Di Cera E. (2006). J. Biol. Chem., 281, 7183-7188]. Данная реакция характеризует активность только каталитического центра тромбина, поэтому корректнее использовать методы второй группы.
Ко второй группе относятся методы, учитывающие эффективность как работы каталитической триады, так и связывания природных субстратов с распознающим участком протеазы. Активность тромбина можно определеить исходя из кривых накопления продуктов реакции PAR1, PAR4, протеина С или фибриногена [Nieman М.Т., Schmaier А.Н. (2007). Biochemistry, 46, 8603-8610; Mullin J.L., Gorkun O.V., Binnie C.G., Lord ST. (2000). J. Biol. Chem., 275, 25329-25246; Pineda A.O., Cantwell A.M., Bush L.A., Rose Т., Di Cera E. (2002). J. Biol. Chem., 97, 807-813.]. Отщепляемые пептиды от фибриногена при активации тромбином определяют хроматографическими методами. При определении фибрина, продукта протеолиза фибриногена тромбином, используются оптико-механические или спектрофотометрические методы тестирования.
Суть оптико-механического метода состоит в перемешивании реакционной смеси магнитной мешалкой, что приводит к наматыванию на нее фибриновых нитей, которые тормозят вращению мешалки вплоть до полной остановки. Время остановки мешалки фиксируется как время сворачивания плазмы. Несмотря на некоторую условность получаемой величины и отсутствии корреляции с кинетическими параметрами, стандартизация реагентов и условий реакции делают время сворачивания хорошо воспроизводимы параметром. Оптико-механический метод, в основном, находит применение в клинических лабораториях, что объясняется небольшим диапазоном определяемой активности тромбина (0,3-0,6 IU на 300 мкл пробы), значительной погрешностью результатов (до 50%) и потребностью в узкоспециализированном оборудовании. [Спиридонова В.А., Рог УюВ., Баранов Ю.В., Дугина Т.Н., Струкова С.М., Копылов A.M. (2003). Биоорг. Химия. 29, 1-4.]. Результаты оптико-механического метода недостоверно отражают степень агрегации фибрина в случае некоторых мутаций, поэтому более предпочтительно использование спектрофотометрических методов исследования агрегированного фибрина [Lefkowitz J.B., DeBoom Т., Weller A., Clarke S., Lavrinets D. (2000). Am J Hematol., 63, 149-155.].
В спектрофотометрических методах определения активности тромбина не используется перемешивание раствора во время реакции. На начальных этапах протеолиза раствор агрегирующего фибрина ведет себя подобно коллоидному раствору, который с течением реакции переходит в гель, образованный трехмерным каркасом агрегированного фибрина и раствора низкомолекулярных соединений, удерживаемого им. Протекание реакции сопровождается помутнением и увеличением вязкости, соответственно для наблюдения можно использовать нефелометрию, турбидиметрию, вискозиметрию.
Тест генерации тромбина является одним из «глобальных» тестов, разработанных в 2001 г. [Hemker H.C., Giesen P., Al Dieri R., Regnault V., de Smedt E., Wagenvoord R., Lecompte Т.,
Figure 00000001
(2003) Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol. Haemost. Thromb., 33, 4-15.]. Принцип метода заключается в использовании специфического к тромбину флуорогенного субстрата. После предварительной инкубации тромбоцит-богатой плазмы крови в нее вносят буфер, содержащий ионизированный кальций и флуорогенный субстрат. Образующийся тромбин расщепляет субстрат, в результате высвобождается молекула флуорофора, излучение которого автоматически регистрируется флуориметром через равные промежутки времени. Интенсивность свечения пропорциональна концентрации образовавшегося тромбина. На основании измерений с помощью программного обеспечения выстраивается кривая генерации тромбина. В ходе исследования оцениваются: время задержки образования тромбина (лаг-период), максимальная скорость образования тромбина (пик), время достижения максимальной скорости (время пик), количество образовавшегося тромбина (площадь под кривой, эндогенный тромбиновый потенциал) и некоторые другие параметры.
Известен также способ определения генерации анафилатоксина С5а тромбином в отсутствие компонента С3 комплемента у мышей [Huber-Lang М., Sarma J.V., Zetoune F.S., Rittirsch D., Neff T.A., McGuire S.R. et al. (2005). Nature Medicine, 12 (6). doi: 10.1038/nm1419]. Авторами было показано образование активного С5а анафилатоксина при инкубации компонента С5 комплемента человека с тромбином. Генерацию анафилатоксина С5а в данной работе тестировали методом иммуноферментного анализа.
Наиболее близким техническим решением к заявляемому способу является определение активности тромбина плазмы крови, представленной в работе [Stief T.W. Specific determination of plasmatic thrombin activity (2006). Clinical and Applied Thrombosis/Haemostasis, 12(3): 324-329]. Используя конечную концентрацию хромогенного субстрата менее 0,4 мМоль/л (приблизительное значение константы Михаэлиса для тромбина), аргинина, при концентрации выше 0,8 Моль/л, и фактор II-истощенную плазму авторы проводили коагуляцию с использованием в качестве активатора либо тканевой фактор, либо активатор контактной фазы коагуляции плазмы. Авторами были выявлены активности циркулирующего тромбина на уровне 5,5 мМЕ/мл тромбина.
Основным недостатком данного метода является низкая специфичность хромогенного субстрата, использование высокой концентрации аргинина и, как следствие, низкая информативность теста, а также недоступность теста для рутинных исследований.
Задачей настоящего изобретения является расширение арсенала лабораторных скрининг-тестов для определения циркулирующего тромбина крови по активации системы комплемента для рутинных исследований.
Технический результат заявленного изобретения заключается в принципиально новом подходе для определения активности циркулирующего тромбина, где в качестве природного субстрата используется компонент С5 системы комплемента, а уровень потребления компонента С5 оценивают по лизису эритроцитов барана при формировании мембрано-атакующего комплекса (C5b-9).
Технический результат достигается тем, что для определения активности циркулирующего тромбина используют аутологичные белки системы комплемента С5, С6, С7, С8 и С9, циркулирующие в плазме крови обследуемого человека. С целью ингибирования образования С5-конвертазы (тотального ингибирования активации трех путей системы комплемента, классического, альтернативного и лектинового) в тесте определения активности циркулирующего тромбина не проводят рекальцификацию цитратной плазмы. При наличии циркулирующего тромбина активируется компонент С5 и формируется мембрано-атакующий комплекс, который определяют по лизису эритроцитов барана. Активность тромбина определяют по калибровочному графику, где 100% лизис представляет собой полный лизис эритроцитов барана при добавлении воды, а контроль эритроцитов на спонтанный лизис - 0% лизиса.
Изобретение поясняется следующими фигурами:
Фиг. 1. Калибровочный график для определения степени лизиса эритроцитов барана по оптической плотности при длине волны 620 нм.
Способ осуществляют следующим образом. Проводят стандартный забор крови в раствор 3,8% цитрата натрия в соотношении 9:1, готовят тромбоцит-обедненную плазму путем центрифугирования при 3000 об/мин в течение 20 мин. Затем для определения активности циркулирующего тромбина в лунки иммунологических планшет с плоским дном вносят по 25 мкл цитратной плазмы, 50 мкл вероналового буфера и 25 мкл суспензии эритроцитов барана (ЭБ) с концентрацией 1,5×108 кл/мл. В качестве контролей используют: контроль на полный лизис ЭБ (25 мкл ЭБ + 75 мкл Н2О) и контроль на спонтанный лизис ЭБ (25 мкл ЭБ + 75 мкл вероналового буфера). Пробы тщательно перемешивают и инкубируют при перемешивании в термостате для иммунологических 96-ти луночных планшет при 37°С в течение 10 мин. После инкубации измеряют оптическую плотность проб на фотометре для иммуноферментного анализа при 620 нм. Активность тромбина определяют по степени лизиса ЭБ с использованием калибровочного графика, где 100% лизис представляет собой полный лизис эритроцитов барана при добавлении воды, а контроль эритроцитов на спонтанный лизис - 0% лизиса. При лизисе более 10% констатируют повышенную тромбиновую активность плазмы крови.
Пример 1. Определение оптимальной концентрации эритроцитов барана для определения активности циркулирующего тромбина. Эритроциты барана (ЭБ) 3 раза отмывают 0,15 М раствором NaCl центрифугированием в течение 10 мин при 2500 об/мин. Строят график зависимости оптической плотности суспензии эритроцитов (при длине волны 620 нм) от концентрации эритроцитов. Для этого 1% суспензию эритроцитов прогрессивно разводят в плоскодонной 96-ти луночной иммунологической планшете в объеме 25 мкл 0Д5М NaCl, добавляют 75 мкл физиологического раствора, тщательно перемешивают и измеряют на фотометре для иммуноферментного анализа при длине волны 620 нм. Результаты представлены в таблице 1.
Figure 00000002
Как видно из данных, представленных в таблице 1, наблюдается линейная зависимость оптической плотности суспензии от концентрации ЭБ в растворе до А620 равной 0,56 ЕД. Свыше 0,56 ЕД при А620 данная зависимость - нелинейная. Поэтому для теста определения активности циркулирующего тромбина нами выбрана концентрация суспензии ЭБ, которая в объеме 100 мкл в 96-луночных планшетах дает оптическую плотность, равную 0,40-0,56 ЕД. Для определения степени лизиса эритроцитов нами предложен калибровочный график, в котором динамику лизиса эритроцитов оценивают по снижению оптической плотности при длине волны 620 нм. За 0% лизиса принимают оптическую плотность контроля эритроцитов на спонтанный лизис (25 мкл ЭБ + 75 мкл вероналового буфера), соответственно за 100% лизис принимают оптическую плотность контроля на полный лизис (25 мкл ЭБ + 75 мкл H2O) (фиг. 1). Определяют мутность эритроцитов турбидиметрически при длине волны 620 нм после 10 мин инкубации при 37°С и по калибровочному графику определяют степень лизиса (фиг. 1).
Как видно из фиг. 1, калибровочный график позволяет определять степень лизиса эритроцитов в процентах по оптической плотности пробы без стадии центрифугирования и измерения гемоглобина в супернатанте и последующего расчета степени лизиса эритроцитов по формуле, что существенно упрощает регистрацию результатов анализа активности циркулирующего тромбина по лизису ЭБ в рутинных исследованиях.
Пример 2. Определение активности циркулирующего тромбина по лизису эритроцитов барана. Тест проводят в 96-луночных плоскодонных иммунологических планшетах. Вначале по 25 мкл цитратной плазмы вносят в лунки, затем последовательно добавляют по 50 мкл вероналового буфера и 25 мкл суспензии стандартизованных (А620=0,56 оптических единиц) в этом же буфере ЭБ. Параллельно ставят контроли: 3 контроля на полный лизис (25 мкл ЭБ + 75 мкл H2O); 3 контроля на спонтанный лизис эритроцитов (25 мкл ЭБ + 75 мкл вероналового буфера). Тщательно перемешивают и сразу измеряют оптическую плотность на фотометре для иммуноферментного анализа при длине волны 620 нм (бланк устанавливают против воздуха). После измерения планшеты инкубируют при 37°С в течение 10 мин при постоянном перемешивании. После 10-ти мин инкубации измеряют оптическую плотность при тех же условиях, что описано выше. Проведено исследование циркулирующего тромбина в тесте активации комплемента в 40 пробах цитратной плазмы крови пациентов «НМИЦ профилактической медицины». Полученные результаты представлены в таблице 2.
Как видно из данных, представленных в таблице 2, в 14 пробах наблюдается лизис эритроцитов барана более 10%, что составляет 35% из тестированных 40 проб.
Таким образом, инкубация ЭБ с цитратными плазмами приводит к активации компонента С5 циркулирующим тромбином, генерированным в условиях in vivo, формированию мембрано-атакующего комплекса и лизису ЭБ. Присутствие цитрата натрия в пробе обеспечивает ингибирование активации по классическому пути начиная с С1 комплекса, активация которого иммунными комплексами зависит от присутствия ионов кальция. Отсутствие в среде ионов магния ингибирует формирование и активацию С3-конвертазы, а отсутствие С3-конвертазы также ингибирует формирование С5-концертазы классического пути активации системы комплемента.
Полученные результаты убедительно доказывают четвертый путь активации системы комплемента - тромбиновый путь активации и формирования мембрано-атакующего комплекса и лизиса ЭБ.
Figure 00000003
Пример 3. Определение тромбина в цитратных плазмах с хромогенным субстратом. Определение активности тромбина в цитратной плазме проводили как описано в прототипе [Stief T.W. Specific determination of plasmatic thrombin activity (2006). Clinical and Applied Thrombosis/Haemostasis, 12(3): 324-329], используя конечную концентрацию хромогенного субстрата 0,38 мМоль/л (в прототипе менее 0,4 мМоль/л). Концентрацию цитратной плазмы использовали 25% в конечном объеме инкубационной системы равной 100 мкл. После добавления 20 мкл хромогенного субстрата (Chromozym® ТН (Tos-Gly-Pro-Arg-pNA), с исходной концентрацией 1,9 мМоль/л) к 80 мкл разведенной цитратной плазмы (конечная концентрация плазмы в пробе составляет 25%) в лунки иммунологической планшеты с плоским дном, тщательно перемешивали и определяли оптическую плотность проб при 405 нм. Пробы инкубировали в течение 10 мин при 37°С и повторно измеряли изменение оптической плотности проб. В качестве контроля использовали тромбин производства «Boehringer Mannheim» (Германия) с активностью 3 NIH и контроль бланка хромогенного субстрата. Для сравнительного анализа использовали активности тромбина в цитратных плазмах и в контроле тромбина использовали изменение оптической плотности пробы при 405 нм в мин. Параллельно определяли тромбиновую активность цитратной плазмы (ТАЦП) в тесте активации комплемента по лизису ЭБ, как описано выше. Полученные результаты представлены в таблице №3.
Figure 00000004
Как видно из данных, представленных в таблице 3, нами не выявлены прямые зависимости амидолитической активности тромбина по хромогенному субстрату и тромбиновой активности цитратной плазмы в тесте активации комплемента по лизису ЭБ.
Пример 4. Определение плазмина в цитратных плазмах с хромогенным субстратом. Определение активности плазмина в цитратной плазме проводили, используя конечную концентрацию хромогенного субстрата 1 мкМоль/л. Концентрацию цитратной плазмы использовали 25% в конечном объеме инкубационной системы равной 100 мкл. После добавления 50 мкл хромогенного субстрата (Chromozym® PL (Tos-Gly-Pro-Lys-pNA), с исходной концентрацией 2 мкМоль/л) к 50 мкл разведенной 50% цитратной плазмы в лунки иммунологической планшеты с плоским дном, тщательно перемешивали и определяли оптическую плотность проб при 405 нм. Пробы инкубировали в течение 10 мин при 37°С и повторно измеряли изменение оптической плотности проб. Ставили контроль бланка хромогенного субстрата. Активность плазмина цитратной плазмы определяли как отношение изменения экстинкции при А405 в опытных пробах в минуту (ΔА405/МИН). Параллельно в этих же пробах определяли тромбиновую активность цитратной плазмы (ТАЦП) в тесте активации комплемента по лизису ЭБ, как описано выше. Полученные результаты представлены в таблице №4.
Как видно из данных, представленных в таблице 4, нами также не выявлена зависимость между амидолитической активностью плазмина с хромогенным субстратом и тромбиновой активностью цитратной плазмы в тесте активации комплемента по лизису ЭБ.
Figure 00000005
Ниже представлена сводная таблица (таблица 5) амидолитической активности тромбина, плазмина и тромбиновая активность цитратной плазмы (ТАЦП) в тесте активации комплемента по лизису ЭБ.
Figure 00000006
Как видно из данных, представленных в таблице 5, между амидолитическими активностями, как тромбина, так и плазмина и комплемент-активирующей активностью циркулирующего тромбина в тесте лизиса ЭБ какой-либо зависимости не было выявлено. Данные результаты могут свидетельствовать о том, что в активации комплемента роль плазмина явно не прослеживается. В то время как связывание тромбина с растворимыми фибрин-мономерными комплексами или же с антитромбином III, а также модификация тромбина нейтрофильной эластазой при активации нейтрофилов приводит к изменениям специфичности тромбина, что мы и наблюдаем при определении тромбина в тесте активации комплемента по лизису ЭБ. Для подтверждения данной гипотезы нами проведены исследования связывания тромбина с растворимыми фибрин-мономерными комплексами.
Пример 5. Определение связывания тромбина с растворимыми фибрин-мономерными комплексами. Для подтверждения образования комплекса тромбина с растворимыми фибрин-мономерными комплексами были проведены следующие исследования. В опытных пробах цитратную плазму инкубировали 5 мин при 56°С для термокоагуляции фибриногена и растворимых фибрин-мономерных комплексов. Далее коагулированный фибриноген осаждали центрифугированием при 8000 об/мин. В супернатанте определяли тромбиновую активность в тесте активации комплемента по лизису ЭБ, как описано выше. В качестве контроля использовали исходные цитратные плазмы без термокоагуляции фибриногена. Полученные результаты представлены в таблице 6.
Figure 00000007
Как видно из данных, представленных в таблице 6, тромбин полностью осаждается вместе с термокоагулированным фибриногеном/фибрином. Таким образом, полученные данные полностью подтверждают данные, полученные с тромбином, связанным с фибриновым сгустком, описанным в работе Waitz J.I. и соавт. (1998). Дополнительно были проведены исследования амидолитической активности исходных цитратных плазм (контроль) и супернатанта (опыт) после осаждения термокоагулированного фибриногена с использованием хромогенного субстрата тромбина и плазмина. Условия подробно описаны выше (см. пример 4). Полученные результаты представлены в таблице 7.
Figure 00000008
Как видно из данных, представленных в таблице 7, амидолитическая активность плазмина и тромбина в отличие от тромбиновой активности плазмы в тесте активации комплемента по лизису ЭБ существенно не меняется в супернатанте по сравнению с амидолитической активностью исходной цитратной плазмы. Интересные данные получены по амидолитической активности плазмина в супернатанте, где почти в 2 раза активность выше, чем в исходной плазме крови. При термокоагуляции фибриногена/фибрина, видимо, происходит диссоциация плазмина от фибриногена/фибрина и за счет этого возрастает амидолитическая активность плазмина в опытных пробах. Далее были проведены исследования гепарино-резистентности тромбина, связанного с растворимыми фибрин-мономерными комплексами.
Пример 6. Определение ингибирования циркулирующего тромбина, связанного с фибрин-мономерными комплексами, гепарином в тесте активации комплемента по лизису эритроцитов барана. Предварительно в тесте определения активности контактного пути коагуляции цитратной плазмы при рекальцификации подбирали эффективную дозу гепарина с 25% плазмой. Для этого раствор гепарина (10 мг/мл) прогрессивно раститровали на 16 лунок в объеме 25 мкл, добавляли по 25 мкл вероналового буфера, цитратной плазмы и 10% раствора хлорида кальция, разведенного 32 раза. Ставили контроли плазмы без гепарина и бланка плазмы. Пробы инкубировали 30 мин при 37°С и степень коагуляции определяли турбидиметрически при длине волны 450 нм. При концентрации 0,15 мкг/мл гепарина в пробе наблюдается полное ингибирование коагуляции 25% цитратной плазмы при рекальцификации. Для дальнейших исследований нами использована концентрация гепарина в 2 раза превышающая эффективную концентрацию в тесте рекальцификации, т.е. 0,3 мкг/мл. Описание эксперимента. В опытную пробу, содержащую 25 мкл вероналового буфера, 25 мкл цитратной плазмы и 25 мкл стандартизованных эритроцитов барана (1,5x10 кл/мл), добавляли 25 мкл раствора гепарина (1 мкг/мл). Ставили следующие контроли: Контроль системы (не содержал гепарина); контроль ЭБ на спонтанный лизис (25 мкл ЭБ + 75 мкл вероналового буфера); контроль полного лизиса (25 мкл ЭБ+75 мкл дистиллированной воды). Пробы тщательно перемешивали и инкубировали 10 мин при 37°С при постоянном перемешивании. После инкубации степень лизиса определяли турбидиметрически при длине волны 620 нм на фотометре для иммуноферментного анализа. Полученные результаты свидетельствовали об отсутствии ингибирования циркулирующего тромбина, связанного с растворимыми фибрин-мономерными комплексами при данных концентрациях гепарина.
Таким образом, разработан принципиальной новый тест определения внутрисосудистого свертывания крови путем определения функциональной активности тромбина, связанного с циркулирующими фибрин-мономерными комплексами, с использованием физиологического субстрата, компонента С5 аутологичной системы комплемента. Протеолиз С5 компонента определяют по формированию мембрано-атакующего комплекса (C5b-9) и лизиса эритроцитов барана. Для ингибирования комплемента и формирования С5-конвертаз по трем путям активации комплемента (классическому и лектиновому - C4bC2aC3b, альтернативному - C3bBbC3b), используется цитратная плазма, т.е. не требуется дополнительные реактивы для проведения теста. Следующим достоинством теста является использование метода турбидиметрии для оценки степени лизиса эритроцитов барана и инкубация в течение 10 мин, что многократно упрощает тест и исключает многократный контакт оператора с биоматериалом. При необходимости тест может быть продолжен, т.е. пробы далее инкубируют для усиления степени лизиса эритроцитов барана. Тест также может быть использован для поиска и скрининга препаратов, ингибирующих тромбин, связанный с циркулирующими фибрин-мономерными комплексами. Как было нами показано, что такая форма тромбина является резистентной к действию препаратов гепарина. Учитывая наличие протеазо-активируемых рецепторов на мембранах органов и тканей выявление тромбина, связанного с циркулирующими фибрин-мономерными комплексами, в тесте активации комплемента до 10% лизиса эритроцитов барана можно считать нормой.

Claims (1)

  1. Способ определения активности тромбина, связанного с циркулирующими фибрин-мономерными комплексами в тесте активации комплемента, включающий использование цитратной плазмы крови человека, добавление к ней суспензии эритроцитов барана, инкубацию при 37°С в течение 10 минут, измерение оптической плотности пробы на фотометре для иммуноферментного анализа при 620 нм, определение активности тромбина по степени лизиса эритроцитов барана с использованием калибровочного графика, где 100% лизис представляет собой полный лизис эритроцитов барана при добавлении воды, а контроль на спонтанный лизис - 0% лизиса, при лизисе более 10% констатируют повышенную тромбиновую активность плазмы крови.
RU2019112043A 2019-04-19 2019-04-19 Определение циркулирующего тромбина в тесте активации системы комплемента RU2709341C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019112043A RU2709341C1 (ru) 2019-04-19 2019-04-19 Определение циркулирующего тромбина в тесте активации системы комплемента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019112043A RU2709341C1 (ru) 2019-04-19 2019-04-19 Определение циркулирующего тромбина в тесте активации системы комплемента

Publications (1)

Publication Number Publication Date
RU2709341C1 true RU2709341C1 (ru) 2019-12-17

Family

ID=69006896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019112043A RU2709341C1 (ru) 2019-04-19 2019-04-19 Определение циркулирующего тромбина в тесте активации системы комплемента

Country Status (1)

Country Link
RU (1) RU2709341C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2422835C2 (ru) * 2005-04-29 2011-06-27 Синапс Б.В. Измерение активности тромбина в цельной крови
RU2429488C1 (ru) * 2010-05-18 2011-09-20 Общество С Ограниченной Ответственностью "Апто-Фарм" Способ определения активности тромбина

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2422835C2 (ru) * 2005-04-29 2011-06-27 Синапс Б.В. Измерение активности тромбина в цельной крови
RU2429488C1 (ru) * 2010-05-18 2011-09-20 Общество С Ограниченной Ответственностью "Апто-Фарм" Способ определения активности тромбина

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.W.Stief. Specific determination of plasmatic thrombin activity / Clin Appl Thromb Hemost., 2006, 12(3), pages 324-329. *

Similar Documents

Publication Publication Date Title
JP3137261B2 (ja) 血しょうおよび血液の内因性トロンビンポテンシャルの測定方法と同方法に使用するキット
JP4931826B2 (ja) 止血アッセイ
JP4718833B2 (ja) 複合生物媒体における、一時的なタンパク質分解活性の濃度を決定するための診断試験
Miles et al. New insights into the role of Plg-RKT in macrophage recruitment
EP2529221B1 (en) Thrombin generation determination method
EP1774327B1 (en) Methods and kits for measuring adamts13/fxi complexes
RU2696981C1 (ru) Определение чувствительности эритроцитов человека к лизису при активации системы комплемента по тромбиновому пути
Jackson et al. A critical evaluation of the prothrombin time for monitoring oral anticoagulant therapy
AU2003231661B2 (en) Pharmaceutical preparation with RNA as hemostasis cofactor
Aoki et al. Elevation of plasma free PAI-1 levels as an integrated endothelial response to severe burns
Charest-Morin et al. Comparing pathways of bradykinin formation in whole blood from healthy volunteers and patients with hereditary angioedema due to C1 inhibitor deficiency
RU2709341C1 (ru) Определение циркулирующего тромбина в тесте активации системы комплемента
RU2717946C1 (ru) Способ определения тромбинового пути активации системы комплемента
Devani et al. Kallikrein-kinin system activation in Crohn's disease: differences in intestinal and systemic markers
EA042025B1 (ru) Определение тромбинового пути активации системы комплемента
Ichinose Extracellular transglutaminase: factor XIII
Mashayekhi et al. Coagulation Factor VII: Genetic, Molecular, and Clinical Characteristics
Gandrille et al. Association of inherited dysfibrinogenaemia and protein C deficiency in two unrelated families
AU729843B2 (en) Method for the functional detection of disorders in the protein C system
Nieuwenhuys et al. Monitoring hypocoagulant conditions in rat plasma: factors determining the endogenous thrombin potential of tissue factor-activated plasma
Von Tempelhoff et al. Plasmatic plasminogen activator inhibitor activity in patients with primary breast cancer
RU2772195C1 (ru) Способ определения функциональной активности антитромбина iii в плазме крови
Scharrer et al. Congenital abnormal plasminogen, Frankfurt I, a cause for recurrent venous thrombosis
JP3761925B2 (ja) 安定なプラスミン溶液
WO2012124798A1 (ja) 試料中の総プロテインsの活性測定試薬及び活性測定方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner