RU2708677C1 - Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках - Google Patents

Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках Download PDF

Info

Publication number
RU2708677C1
RU2708677C1 RU2019103594A RU2019103594A RU2708677C1 RU 2708677 C1 RU2708677 C1 RU 2708677C1 RU 2019103594 A RU2019103594 A RU 2019103594A RU 2019103594 A RU2019103594 A RU 2019103594A RU 2708677 C1 RU2708677 C1 RU 2708677C1
Authority
RU
Russia
Prior art keywords
metal
semiconductor
holes
semi
metallization
Prior art date
Application number
RU2019103594A
Other languages
English (en)
Inventor
Николай Анатольевич Торхов
Валентин Натанович Брудный
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2019103594A priority Critical patent/RU2708677C1/ru
Application granted granted Critical
Publication of RU2708677C1 publication Critical patent/RU2708677C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Abstract

Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов и интегральных схем с использованием трехмерной 3D-интеграции посредством электрического соединения их металлических конструктивных элементов сквозными металлизированными отверстиями с обратными металлизированными сторонами полуизолирующих полупроводниковых подложек. Способ металлизации внутренних поверхностей сквозных отверстий в полупроводниковых структурах включает формирование на лицевой стороне поверхности полупроводниковой структуры металлических конструкций, утонение с обратной стороны несущей полупроводниковой полуизолирующей подложки, нанесение на нее маски с расположенными напротив металлических конструкций окнами заданной формы и размера, травление в полупроводниковой полуизолирующей подложке по нанесенной маске сквозных отверстий с положительным, вертикальным, или отрицательным наклоном стенок до расположенных на противоположной стороне металлических конструкций и металлизацию обратной стороны подложки. Металлизацию внутренней поверхности сквозных отверстий с отношением глубины отверстия к его диаметру h/D>3 осуществляют путем латерального (бокового) электрохимического заращивания внутренней поверхности отверстия металлической пленкой без нанесения адгезионных или затравочных слоев, используя электрохимическое осаждение металла из электролита с катодным потенциалом Uкb, где ϕb - высота барьера Шоттки в образующемся при электрохимическом осаждении контакте металл-полупроводник, с последующим электрохимическим утолщением металлической пленки. Изобретение обеспечивает получение сплошной и однородной по толщине металлизации внутренней поверхности сквозных отверстий. 3 ил.

Description

Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов (ПП) и монолитных интегральных схем (МИС) с использованием трехмерной (3D) интеграции посредством электрического соединения их металлических конструктивных элементов (контактных площадок, индуктивностей, обкладок конденсаторов, контактов стока и истока HEMT (High-Electron-Mobility Transistor) сквозными металлизированными отверстиями с обратными металлизированными сторонами полуизолирующих полупроводниковых подложек.
Известен способ металлизации внутренней поверхности сквозных отверстий с положительным наклоном стенок в полуизолирующих полупроводниковых подложках путем их магнетронного запыления металлизацией ванадий-никель Ni-V с последующим гальваническим утолщением золотом Au или медью Cu [1].
Недостатком известного способа является невозможность получать сплошные и однородные по толщине покрытия внутренних поверхностей сквозных отверстий в полуизолирующих полупроводниковых подложках с вертикальными стенками и с большими (>3) аспектными соотношениями (отношение глубины h отверстия к его диаметру D).
Наиболее близким аналогом – прототипом [2], является способ металлизации поверхности сквозных отверстий в полуизолирующих полупроводниковых подложках посредством химического осаждения пленок никеля Ni или палладия Pd.
Недостатком аналога, является то, что для отверстий с большим (>3) аспектным соотношением в большинстве случаев химическое осаждение металлических пленок никеля Ni или палладия Pd на внутреннюю поверхность стенок отверстий лимитируется диффузионными процессами подвода реагентов и отвода продуктов реакций в приповерхностных диффузионных слоях электролитов, что не позволяет воспроизводимо получать сплошную и однородную по толщине металлизацию внутренней поверхности сквозных отверстий.
Целью изобретения является устранение указанных недостатков.
Поставленная цель осуществляется за счет того, что в известном способе – аналоге, для нанесения металлических слоев на внутреннюю поверхность сквозных отверстий в полуизолирующих полупроводниковых подложках используется не химическое, а электрохимическое осаждение металлов.
Технический результат достигается за счет использования эффекта электрохимического заращивания металлом полуизолирующей полупроводниковой поверхности. Данный эффект проявляется в гальваностатическом режиме (при постоянной плотности тока Js) электрохимического осаждения металлов из некоторых электролитов с низким катодным потенциалом Uк<ϕ электрохимического осаждения, где ϕ≈ϕb - высота барьера Шоттки в образующемся при электрохимическом осаждении контакте металл-полупроводник.
Изобретение иллюстрируется рисунками.
Фиг. 1. Схема двухэлектродной электрохимической ячейки с платиновым Pt электродом.
Фиг. 2. Схематическое изображение основных технологических этапов одного из возможных вариантов предлагаемого способа металлизации сквозных отверстий с вертикальными стенками в полуизолирующей полупроводниковой подложке.
Фиг. 3. Электронно-микроскопическое изображение металлизированного отверстия в полуизолирующей подложке карбида кремния 4H-SiC глубиной 100 мкм с аспектным соотношением K=4 соединяющее исток GaN HEMT с обратной стороной металлизированной 4H-SiC подложки.
В известном способе, после формирования металлизации омических контактов истока или стока HEMT-транзистора и/или иных металлических конструктивных элементов МИС на лицевой стороне поверхности гетероструктуры полупроводниковой пластины, утонения с обратной стороны несущей полуизолирующей полупроводниковой подложки, травления по маске в ней отверстий до металлических стопслоев, или до вышеупомянутых металлических конструктивных элементов, на внутреннюю поверхность сквозных отверстий в гальваностатическом режиме осуществляют электрохимическое осаждение слоя металла при катодном потенциале Uкb с последующим его утолщением алюминием, золотом, или медью.
Например, при гальваностатическом режиме электрохимического осаждения палладия Pd из фосфатного электролита на полуизолирующую поверхность 4H-SiC при катодном потенциале Uк≈0.6 В (барьер Шоттки Pd/4H-SiC ϕb≈1.6 В [3]) происходит его латеральное разрастание и заращивание поверхности.
В этом случае закрывающая противоположный торец отверстия металлизация металлических стопслоев, омических контактов HEMT, или иных металлизированных конструктивных элементов МИС выступает в роли затравки, на которую в начале процесса электрохимически осаждаются зерна палладия Pd. Срастаясь, зерна Pd образуют пленку на вскрытых в отверстиях поверхностях металлизированных конструкций, которая, достигая внутренней полуизолирующей 4H-SiC поверхности отверстий, образует с ней контакт металл-полупроводник с барьером Шоттки (фиг. 1, область I) величиной ϕb≈1.6 В [3]. Согласно теории контакта Шоттки [4] в прилегающей к такому контакту участку поверхности возникает область объемного заряда (фиг. 1, область II, space charge). Согласно [4] разность потенциалов между металлом и окружающей его полупроводниковой поверхностью может достигать значений ϕ≈ϕb (фиг. 1, область II). В результате, в окружающей палладиевый контакт области электролита при наличии потока ионов палладия Pd+ (при протекании катодного тока Js) реализуются условия по катодному потенциалу Uкb пригодные для электрохимического осаждения Pd на прилегающую к контакту полупроводниковую поверхность, что приводит к его латеральному разрастанию в плоскости (x,y). Скорость латерального разрастания такой металлической пленки может в несколько раз превышать скорость её вертикального роста, так как полностью определяется условиями электрохимического осаждения Pd в области II (фиг. 1). Данный процесс не зависит от угла наклона стенок отверстия, что приводит к быстрому покрытию металлом его внутренней поверхности, как с положительным, так с вертикальным и даже с отрицательным наклоном (фиг. 1, область III, пунктирные стрелки).
В общем случае такой технологический процесс осаждения металла на полуизолирующую полупроводниковую поверхность в гальваностатическом режиме можно реализовать только для электролитов катодный потенциал Uк электрохимического осаждения металлов которых меньше ϕb. Для электролитов, Uк которых равен, или превышает ϕb такой процесс реализовать невозможно по причине того, что в области II фиг. 1 не реализуются условия по катодному потенциалу для протекания процессов электрохимического осаждения.
На фиг. 2 показаны ключевые моменты одного из возможных вариантов предлагаемого способа металлизации внутренней поверхности сквозного отверстия в полупроводниковой полуизолирующей подложке.
На фиг. 2, а) показано сечение полупроводниковой гетероструктуры, содержащей расположенные на контактном полупроводниковом слое 1 металлизацию омического контакта истока 2 с гальваническим утолщением 3 и металлизацию омического контакта стока 4 с гальваническим утолщением 5, расположенный в канале на барьерном слое 6 в окне диэлектрического слоя 7 полевой затвор Шоттки 8, пассивирующий лицевую сторону диэлектрический слой 9, полуизолирующую подложку 10, нанесенный на обратную сторону подложки диэлектрический слой 11 и маску 12, протравленное в полуизолирующей подложке по маске до металлизации омического контакта истока сквозное отверстие 13 диаметром D и глубиной h.
На фиг. 2, б) показано сечение описанной на фиг. 2, а полупроводниковой гетероструктуры после удаления с обратной стороны маски 12, нанесения на лицевую сторону химически стойкого лака (ХСЛ) 14, и электрохимическое заращивание пленкой палладия Pd 15 (показано стрелками) внутренней поверхности сквозного отверстия 13 в полуизолирующей подложке 10 с маскирующим слоем диэлектрика 11.
На фиг. 2, в) показано сечение описанной на фиг. 2, б полупроводниковой гетероструктуры после удаления с лицевой стороны лака ХСЛ 14 и удаления с обратной стороны маскирующего диэлектрика 11 с последующим напылением металлизации 16.
На фиг. 2, г) показано сечение описанной на фиг. 2, в полупроводниковой гетероструктуры после повторного нанесения на лицевую сторону лака ХСЛ 17 и электрохимического утолщения 18 металлизации поверхности отверстия 13 и металлизации обратной стороны подложки 16.
Пример: Технический результат использовался в технологическом процессе изготовления мощных нитридгаллиевых (AlGaN/GaN, или AlInN/GaN) мощных HEMT для электрического соединения контактов истока с металлизированной обратной стороной несущей 4H-SiC полуизолирующей полупроводниковой подложкой посредством металлизированных отверстий глубиной 100 мкм с большим аспектным соотношением K>4.
Изготовление мощного полевого транзистора, включало выделение активной области химическим, или физическим травлением, или имплантацией, создание омических контактов истока 2 и стока 4 на контактном слое полупроводниковой структуры с гальваническим утолщением 3 и 5, формирование Ni-Au затвора Шоттки 8 на барьерном слое 6 в окнах диэлектрика Si3N4 7, пассивацию поверхности диэлектриком Si3N4 9, утонение полуизолирующей подложки 4H-SiC 10 до толщины 100 мкм, нанесение на обратную сторону подложки маскирующего слоя SiO2 толщиной 0.3 мкм 11, нанесения маски на основе борида никеля NiB/Ni 12, химическое удаление слоя SiO2 в окнах маски 12, формирование по маске методом сухого физического травления со стороны подложки до контактов истока сквозных с вертикальными стенками отверстий 13 шириной 25 мкм и глубиной 100 мкм (аспектное соотношение K=h/D=4), нанесение защитного лака ХСЛ 14 на лицевую сторону структуры, отличающийся тем, что для металлизации внутренней поверхности сквозного отверстия 13 в полуизолирующей полупроводниковой подложке 4H-SiC 10 вместо химически осажденного адгезионного металлического подслоя Pd использовался электрохимически осажденный в гальваностатическом активационном режиме из фосфатного электролита подслой палладия Pd 15 толщиной 0.1 мкм. Процесс электрохимического осаждения палладия Pd из фосфатного электролита на внутреннюю полупроводниковую поверхность отверстия в полуизолирующей 4H-SiC подложке становился возможным при плотности тока 0.045 мА/см2 и катодном потенциале относительно платинового Pt-электрода Uк(Pt)≈-0.6 В (фиг. 1, область II). Напомним, что высота барьера Шоттки палладия Pd на 4H-SiC составляет приблизительно ϕb ≈1.6 эВ [3], что превышает значение Uк(Pt)≈-0.6 В и, как указывалось выше, создает необходимые условия для электрохимического осаждения Pd в области II на прилегающую к контакту поверхность и эффективного зарастания внутренней стороны отверстия. Окна в маскирующем слое SiO2 11 выполняют роль маски, обеспечивающей формирование ровного края входного торца отверстия 13. Затем лак ХСЛ 14 и маскирующий слой SiO2 11 удалялись, и осуществлялась металлизация обратной стороны подложки напылением металлизации V-Au 16. Затем лицевая поверхность пластины вновь защищалась лаком ХСЛ 17, и осуществлялось электрохимическое осаждение золота Au 18 толщиной 5 мкм. После этого лак ХСЛ 17 удалялся.
Таким образом, была достигнута поставленная цель и осуществлено электрическое соединение металлизированными с вертикальными стенками отверстиями глубиной 100 мкм с большим аспектным соотношением (фиг. 3) контактов истока нитрид-галлиевого HEMT с металлизированной обратной стороной полуизолирующей подложкой 4H-SiC.
Преимущество предлагаемого способа металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках перед аналогом заключается в возможности получения сплошных и однородных по толщине покрытий поверхностей сквозных отверстий с большими аспектными соотношениями не только с положительным, но и с вертикальным, и даже с отрицательным наклоном стенок.
Использование электролитов способных в гальваностатических режимах при малых значениях катодных потенциалов Uкb, где ϕb – барьер Шоттки металла с полупроводником, осуществлять электрохимическое осаждение металлов не только на проводящие, но и на полуизолирующие полупроводниковые поверхности.
Активационный характер процессов происходящих в гальваностатических режимах электрохимического осаждения металлов при Uкb гарантирует воспроизводимо металлизировать узкие отверстия практически с любым аспектным соотношением. Скорости электрохимических реакций в активационных процессах определяются только энергиями их активаций и не зависят от диффузионных процессов подвода реагентов и отвода продуктов реакций.
Источники информации:
[1]. Patent US 7923842 B2, Int. Cl. H01L 23/48. GaAs integrated circuit device and method of attaching same / Shen H. (US), Ramanathan R. (US), Luo Q. (US), Warren R. W (US), Abdali U. K (US). – Appl. No 11/377,690; filed 03.16.2006; pub. date 04.12.2011.
[2]. US 2012/0153477 A1, Int. Cl. H01L 23/532, H01L 21/768. Method for metal plating and related devices / Shen H. (US). – Appl. No 12/972,119; filed 12.17.2010; pub. date 06.21.2012.
[3]. Porter L.M., Davis R.F. A critical review of ohmic and rectifying contacts for silicon carbide. Mat. Sci. Eng. B. B 34, N2–3. (1995) 83–105.
[4]. Н.А. Торхов. Влияние электростатического поля периферии на вентильный фотоэффект в контактах металл−полупроводник с барьером Шоттки. Физика и техника полупроводников. 52(10), (2018) 1150-1171.

Claims (1)

  1. Способ металлизации сквозных отверстий в полуизолирующей полупроводниковой подложке, включающий формирование на лицевой стороне поверхности полупроводниковой структуры металлических конструкций, утонение несущей полупроводниковой полуизолирующей подложки с обратной стороны, нанесение на нее маски с расположенными напротив металлических конструкций окнами заданной формы и размера, травление в полупроводниковой полуизолирующей подложке по нанесенной маске сквозных отверстий с положительным, вертикальным, или отрицательным наклоном стенок до расположенных на противоположной стороне металлических конструкций и металлизацию обратной стороны подложки, отличающийся тем, что металлизацию внутренней поверхности сквозных отверстий с отношением глубины отверстия к его диаметру h/D>3 осуществляют путем латерального (бокового) электрохимического заращивания внутренней поверхности отверстия металлической пленкой без нанесения адгезионных или затравочных слоев, используя электрохимическое осаждение металла из электролита с катодным потенциалом Uкb, где ϕb - высота барьера Шоттки в образующемся при электрохимическом осаждении контакте металл-полупроводник, с последующим электрохимическим утолщением металлической пленки.
RU2019103594A 2019-02-08 2019-02-08 Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках RU2708677C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019103594A RU2708677C1 (ru) 2019-02-08 2019-02-08 Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019103594A RU2708677C1 (ru) 2019-02-08 2019-02-08 Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках

Publications (1)

Publication Number Publication Date
RU2708677C1 true RU2708677C1 (ru) 2019-12-11

Family

ID=69006454

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019103594A RU2708677C1 (ru) 2019-02-08 2019-02-08 Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках

Country Status (1)

Country Link
RU (1) RU2708677C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791206C1 (ru) * 2022-09-15 2023-03-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ формирования сквозных металлизированных отверстий в подложке карбида кремния

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU921124A1 (ru) * 1979-06-19 1982-04-15 Институт Физико-Химических Основ Переработки Минерального Сырья Со Ан Ссср Способ металлизации отверстий печатных плат
RU2008743C1 (ru) * 1991-04-02 1994-02-28 Научно-исследовательский институт "Пульсар" Способ изготовления полупроводникового кристалла
US20060290002A1 (en) * 2005-06-28 2006-12-28 Arana Leonel R Method of forming through-silicon vias with stress buffer collars and resulting devices
US20080088020A1 (en) * 2006-10-16 2008-04-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method of the same
US20110042803A1 (en) * 2009-08-24 2011-02-24 Chen-Fu Chu Method For Fabricating A Through Interconnect On A Semiconductor Substrate
US20120153477A1 (en) * 2010-12-17 2012-06-21 Skyworks Solutions, Inc. Methods for metal plating and related devices
RU2676240C1 (ru) * 2018-01-25 2018-12-26 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ формирования плат микроструктурных устройств со сквозными металлизированными отверстиями на монокристаллических кремниевых подложках

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU921124A1 (ru) * 1979-06-19 1982-04-15 Институт Физико-Химических Основ Переработки Минерального Сырья Со Ан Ссср Способ металлизации отверстий печатных плат
RU2008743C1 (ru) * 1991-04-02 1994-02-28 Научно-исследовательский институт "Пульсар" Способ изготовления полупроводникового кристалла
US20060290002A1 (en) * 2005-06-28 2006-12-28 Arana Leonel R Method of forming through-silicon vias with stress buffer collars and resulting devices
US20080088020A1 (en) * 2006-10-16 2008-04-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method of the same
US20110042803A1 (en) * 2009-08-24 2011-02-24 Chen-Fu Chu Method For Fabricating A Through Interconnect On A Semiconductor Substrate
US20120153477A1 (en) * 2010-12-17 2012-06-21 Skyworks Solutions, Inc. Methods for metal plating and related devices
RU2676240C1 (ru) * 2018-01-25 2018-12-26 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ формирования плат микроструктурных устройств со сквозными металлизированными отверстиями на монокристаллических кремниевых подложках

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791206C1 (ru) * 2022-09-15 2023-03-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ формирования сквозных металлизированных отверстий в подложке карбида кремния

Similar Documents

Publication Publication Date Title
TWI697124B (zh) 場效電晶體的電極結構
US7850836B2 (en) Method of electro-depositing a conductive material in at least one through-hole via of a semiconductor substrate
US5723028A (en) Electrodeposition apparatus with virtual anode
KR100710654B1 (ko) 트래핑을 저감하는 3족 질화물 기반 전계 효과트랜지스터와 고전자 이동도 트랜지스터 및 그 제조 방법
CN103137476B (zh) 具有钝化以及栅极电介质多层结构的GaN高压HFET
CN102576727B (zh) 门控iii-v半导体结构和方法
CN103177960B (zh) 对硅衬底上的iii族氮化物的衬底击穿电压的改进
US8188459B2 (en) Devices based on SI/nitride structures
CN108140568B (zh) 局部半导体晶片削薄
TW201941430A (zh) 用於在氮化鎵材料中透過擴散而形成摻雜區的方法及系統
DE102017112644B4 (de) Plasma-zerteilen von siliziumcarbid
USRE37749E1 (en) Electrodeposition apparatus with virtual anode
RU2708677C1 (ru) Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках
JP2013524019A (ja) ミクロスケール構造中でのシード層堆積
CN110541161B (zh) 半导体装置的制造装置及半导体装置的制造方法
US3699010A (en) Beam lead plating process
US3728236A (en) Method of making semiconductor devices mounted on a heat sink
RU2635853C2 (ru) Способ изготовления диода с вискером терагерцового диапазона
RU2746845C1 (ru) Способ изготовления t-образного гальванического затвора в высокочастотном полевом транзисторе
Marquez et al. Electrochemical deposition of Ag, Au and Ag-Au alloys on n-Si (111)
US11171005B2 (en) Semiconductor device manufacturing method
US20230103850A1 (en) Method of manufacturing semiconductor device
RU161515U1 (ru) Мощная полупроводниковая микросхема
US20220172960A1 (en) Method for producing a connnection structure and semiconductor device
US9435048B2 (en) Layer by layer electro chemical plating (ECP) process

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200310

Effective date: 20200310