RU2706252C1 - Листовая твип-сталь, включающая аустенитную матрицу - Google Patents

Листовая твип-сталь, включающая аустенитную матрицу Download PDF

Info

Publication number
RU2706252C1
RU2706252C1 RU2018143320A RU2018143320A RU2706252C1 RU 2706252 C1 RU2706252 C1 RU 2706252C1 RU 2018143320 A RU2018143320 A RU 2018143320A RU 2018143320 A RU2018143320 A RU 2018143320A RU 2706252 C1 RU2706252 C1 RU 2706252C1
Authority
RU
Russia
Prior art keywords
sheet steel
range
less
paragraphs
amount
Prior art date
Application number
RU2018143320A
Other languages
English (en)
Inventor
Колин СКОТТ
Тьерри ИУНГ
Мари-Кристин ТЕССЬЕ
Original Assignee
Арселормиттал
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арселормиттал filed Critical Арселормиттал
Application granted granted Critical
Publication of RU2706252C1 publication Critical patent/RU2706252C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/16Two-phase or mixed-phase rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к холоднокатаной и подвергнутой возврату листовой стали с пластичностью, наведенной двойникованием, имеющей аустенитную матрицу и использующуюся в автомобилестроении. Сталь содержит, в мас.%: 0,71<C<1,2, 13,0≤Mn<25,0, S≤0,030, P≤0,080, N≤0,1, 0,1≤Si≤3,0, 0,1≤V≤2,50, при необходимости один или несколько элементов, выбранных из Cu≤5,0, Al≤4,0, Nb≤0,5, B≤0,005, Cr≤1,0, Mo≤0,40, Ni≤1,0, Ti≤0,5 и 0,06≤Sn≤0,2, остальное - железо и неизбежные примеси. Сталь обладает высокими прочностью, деформируемостью и относительным удлинением. 2 н. и 14 з.п. ф-лы, 2 табл., 1 пр.

Description

Настоящее изобретение относится к подвергнутой холодной прокатке и возврату листовой ТВИП-стали, включающей аустенитную матрицу, и способу изготовления данной подвергнутой холодной прокатке и возврату ТВИП-стали. Изобретение является в особенности хорошо подходящим для использования при изготовлении автомобильных транспортных средств.
Как это известно, с учетом экономии массы транспортных средств для изготовления автомобильного транспортного средства используют высокопрочные стали. Например, для изготовления конструкционных деталей механические свойства таких сталей должны быть улучшены. Однако, даже в случае улучшения прочности стали относительное удлинение и поэтому деформируемость высокопрочных сталей ухудшались. В целях преодоления данных проблем появились стали, характеризующиеся пластичностью, индуцированной двойникованием, (ТВИП-стали), демонстрирующие хорошую деформируемость. Даже в случае демонстрации данными продуктами очень хорошей деформируемости механические свойства, такие как предел прочности при растяжении (UTS) и напряжение при пределе текучести (YS), не могут быть достаточно высокими для удовлетворения потребностям в автомобильной области применения.
В патентной заявке US2006278309 раскрывается горячекатаная листовая аустенитная железо/углерод/марганцовистая сталь, прочность которой составляет более, чем 900 МПа, у которой произведение (прочность (в МПа) * относительное удлинение при разрыве (в %)) составляет более, чем 45000, и химический состав которой включает нижеследующее, при этом уровни содержания выражают при расчете на массу: 0,5% ≤ С ≤ 0,7%, 17% ≤ Mn ≤ 24%, Si ≤ 3%, Al ≤ 0,050%, S ≤ 0,030%, P ≤ 0,080%, N ≤ 0,1% и необязательно один или несколько элементов, таких что: Cr ≤ 1%, Mo ≤ 0,40%, Ni ≤ 1%, Cu ≤ 5%, Ti ≤ 0,50%, Nb ≤ 0,50% и V ≤ 0,50%, причем состав, кроме того, включает железо и неизбежные примеси, получающиеся в результате плавления, при этом рекристаллизованная фракция стали составляет более, чем 75%, причем поверхностная фракция выделений карбидов в стали составляет менее, чем 1,5%, и при этом средний размер зерен стали составляет менее, чем 18 мкм.
Однако, прочность данной листовой аустенитной стали является в реальности низкой. В примерах прочность в диапазоне изобретения составляет 1130 МПа.
Таким образом, цель изобретения заключается в устранении вышеупомянутых недостатков в результате предложения ТВИП-стали, характеризующейся высокой прочностью, превосходными деформируемостью и относительным удлинением. Изобретение имеет намерение предоставить в распоряжение также легкий в осуществлении способ, имеющий своей целью получение данной ТВИП-стали.
Достижения данной цели добиваются в результате предложения листовой ТВИП-стали, соответствующей пункту 1 формулы изобретения. Листовая сталь также может включать характеристики из пунктов от 2 до 12 формулы изобретения.
Еще одна цель заключается в предложении способа производства листовой ТВИП-стали, соответствующего пункту 13 формулы изобретения. Способ также может включать характеристики из пунктов от 14 до 16 формулы изобретения.
Исходя из следующего далее подробного описания изобретения станут очевидными и другие характеристики и преимущества изобретения.
Должны быть определены следующие далее термины:
- все уровни процентного содержания «%» в составе стали определяют при расчете на массу,
- UTS: предел прочности при растяжении (МПа), и
- ТЕ: совокупное относительное удлинение (%).
Изобретение относится к подвергнутой холодной прокатке и возврату листовой ТВИП-стали, включающей аустенитную матрицу и содержащей при расчете на массу:
0,71 < C < 1,20%,
13,0 ≤ Mn < 25,0%,
S ≤ 0,030%,
P ≤ 0,080%,
N ≤ 0,10%,
0,1 ≤ Si ≤ 3,0%,
0,1 ≤ V ≤ 2,50%
и исключительно в необязательном порядке один или несколько элементов, таких как
Cu ≤ 5,0%,
Al ≤ 4,0%,
Nb ≤ 0,50%,
B ≤ 0,0050%,
Cr ≤ 1,0%,
Mo ≤ 0,40%,
Ni ≤ 1,0%,
Ti ≤ 0,50%,
0,06 ≤ Sn ≤ 0,2%,
при этом остаток состава составляют железо и неизбежные примеси, получающиеся в результате разработки.
Как это можно себе представить без желания связывать себя какой-либо теорией, листовая сталь ТВИП-сталь, соответствующая изобретению, делает возможным улучшение механических свойств благодаря данному конкретному составу. Действительно, как это представляется, вышеупомянутый состав, содержащий большое количество С, делает возможным, помимо всего прочего, улучшение предела прочности при растяжении.
Что касается химического состава стали, то С играет важную роль при получении микроструктуры и механических свойств. Он увеличивает энергию дефекта упаковки и промотирует стабильность аустенитной фазы. При объединении с уровнем содержания Mn в диапазоне от 13,0 до 25,0% (масс.). В случае присутствия карбидов ванадия высокий уровень содержания Mn может увеличить растворимость карбида ванадия (VC) в аустените. Однако, для уровня содержания С, составляющего более, чем 1,2%, имеет место риск уменьшения пластичности вследствие, например, наличия избыточных выделений цементита (Fe,Mn)3C. Предпочтительно уровень содержания углерода находится в диапазоне от 0,71 до 1,1%, более предпочтительно от 0,8 до 1,0%, (масс.), а в выгодном случае от 0,9 до 1,0%, (масс.) в целях получения достаточной прочности необязательно при оптимальном образовании выделений карбида или карбонитрида.
Mn также представляет собой существенный элемент для увеличения прочности, для увеличения энергии дефекта упаковки и для стабилизации аустенитной фазы. В случае его уровня содержания, составляющего менее, чем 13,0%, будет иметь место риск образования мартенситных фаз, что очень ощутимо уменьшает способность деформироваться. Помимо этого, в случае уровня содержания марганца, составляющего более, чем 25,0%, будет подавляться образование двойников, и, в соответствии с этим, несмотря на увеличение прочности ухудшится пластичность при комнатной температуре. Предпочтительно уровень содержания марганца находится в диапазоне от 15,0 до 24,0%, более предпочтительно от 17,0 до 24,0%, в целях оптимизирования энергии дефекта упаковки и предотвращения образования мартенсита под воздействием деформирования. Помимо этого, в случае уровня содержания Mn, составляющего более, чем 24,0%, режим деформирования в результате двойникования будет менее благоприятным в сопоставлении с режимом деформирования в результате скольжения совершенной дислокации.
Al представляет собой в особенности эффективный элемент для раскисления стали. Подобно С он увеличивает энергию дефекта упаковки, что уменьшает риск образования деформационного мартенсита, тем самым, улучшая пластичность и стойкость к замедленному разрушению. Однако, Al будет представлять собой недостаток в случае его присутствия в избытке в сталях, характеризующихся высоким уровнем содержания Mn, поскольку Mn увеличивает растворимость азота в жидком железе. В случае присутствия в стали избыточно большого количества Al элемент N, который объединяется с Al, образует выделения в форме нитридов алюминия (AlN), которые препятствуют мигрированию границ зерен во время горячей конверсии, и очень ощутимо увеличивает риск появления трещин при непрерывной разливке. В дополнение к этому, как это будет разъясняться ниже, в целях образования мелких выделений, в особенности карбонитридов, должно быть доступным достаточное количество N. Предпочтительно уровень содержания Al является меньшим или равным 2%. В случае уровня содержания Al, составляющего более, чем 4,0%, будет иметь место риск подавления образования двойников, что уменьшает пластичность. Предпочтительно количество Al составляет более, чем 0,1%.
В соответствии с этим, уровень содержания азота должен составлять 0,1% и менее в целях предотвращения образования выделений AlN и образования объемных дефектов (вздутий) во время затвердевания. В дополнение к этому, в случае присутствия элементов, способных образовывать выделения в форме нитридов, таких как ванадий, ниобий, титан, хром, молибден и бор, уровень содержания азота не должен превышать 0,1%.
В соответствии с настоящим изобретением количество V находится в диапазоне от 0,1 до 2,5%, предпочтительно от 0,1 до 1,0%. Предпочтительно V образует выделения. В выгодном случае, элемент ванадий характеризуется средним размером, составляющим менее, чем 7 нм, предпочтительно находящимся в диапазоне от 0,2 до 5 нм, и располагается в позиции внутри зерен в микроструктуре.
Кремний также представляет собой эффективный элемент для раскисления стали и для твердофазного упрочнения. Однако, выше уровня содержания 3% он уменьшает относительное удлинение и имеет тенденцию к образованию нежелательных оксидов во время определенных технологических процессов сборки, и поэтому он должен выдерживаться ниже данного предельного значения. Предпочтительно уровень содержания кремния является меньшим или равным 0,6%.
Сера и фосфор представляют собой примеси, которые охрупчивают границы зерен. Их соответствующие уровни содержания не должны превышать 0,030 и 0,080% в целях сохранения достаточной пластичности в горячем состоянии.
Может быть добавлено некоторое количество бора, доходящее вплоть до 0,005%, предпочтительно вплоть до 0,001%. Данный элемент подвергается ликвации на границах зерен и увеличивает их когезию. Как это можно себе представить без намерения связывать себя теорией, это приводит к уменьшению остаточных напряжений после профилирования в результате прессования и к получению лучшей стойкости к коррозии под напряжением для тем самым профилированных деталей. Данный элемент подвергается ликвации на границах аустенитных зерен и увеличивает их когезию. Бор образует выделения, например, в форме борокарбидов и боронитридов.
Никель может быть использован необязательно для увеличения прочности стали вследствие упрочнения в результате образования твердого раствора. Однако, помимо всего прочего по причинам, связанным с издержками, желательным является ограничение уровня содержания никеля максимальным уровнем содержания, составляющим 1,0% и менее, а предпочтительно менее, чем 0,3%.
Подобным образом, необязательно добавление меди при уровне содержания, не превышающем 5%, представляет собой одно средство обеспечения твердения стали в результате образования выделений металлической меди. Однако, выше данного уровня содержания медь несет ответственность за появление поверхностных дефектов на горячекатаном листе. Предпочтительно количество меди составляет менее, чем 2,0%. Предпочтительно количество Cu составляет более, чем 0,1%.
Титан и ниобий также представляют собой элементы, которые необязательно могут быть использованы для достижения твердения и упрочнения в результате образования выделений. Однако, в случае уровня содержания Nb или Ti, составляющего более, чем 0,50%, будет иметь место риск возможного стимулирования избыточным образованием выделений уменьшения вязкости, чего необходимо избегать. Предпочтительно количество Ti находится в диапазоне от 0,040 до 0,50% (масс.) или от 0,030% до 0,130% (масс.). Предпочтительно уровень содержания титана находится в диапазоне от 0,060% до 0,40 и, например, от 0,060% до 0,110%, (масс.). Предпочтительно количество Nb составляет более, чем 0,01%, а более предпочтительно находится в диапазоне от 0,070 до 0,50% (масс.) или от 0,040 до 0,220%. Предпочтительно уровень содержания ниобия находится в диапазоне от 0,090% до 0,40%, а в выгодном случае от 0,090% до 0,200%, (масс.).
В качестве необязательного элемента для увеличения прочности стали вследствие упрочнения в результате образования твердого раствора могут быть использованы хром и молибден. Однако, вследствие уменьшения хромом энергии дефекта упаковки его уровень содержания не должен превышать 1,0%, а предпочтительно должен находиться в диапазоне от 0,070% до 0,6%. Предпочтительно уровень содержания хрома находится в диапазоне от 0,20 до 0,5%. Молибден может быть добавлен в количестве, составляющем 0,40% и менее, предпочтительно в количестве в диапазоне от 0,14 до 0,40%.
Кроме того, как это можно себе представить без желания связывать себя какой-либо теорией, выделения ванадия, титана, ниобия, хрома и молибдена могут уменьшить восприимчивость к замедленному трещинообразованию и осуществить это без ухудшения характеристик пластичности и вязкости. Таким образом, по меньшей мере, один элемент может быть выбран из титана, ниобия, хрома и молибдена в форме карбидов, нитридов и карбонитридов.
Необязательно добавляют олово (Sn) в количестве в диапазоне от 0,06 до 0,2% (масс.). как это можно себе представить без желания связывать себя какой-либо теорией, потому, что олово представляет собой благородный элемент и само по себе не образует тонкую оксидную пленку при высоких температурах, Sn образует выделения на поверхности матрицы при отжиге до гальванизации при погружении в расплав, что подавляет диффундирование вглубь поверхности прооксидантного элемента, такого как Al, Si, Mn и тому подобное, и образование им оксида, тем самым, улучшая гальванизируемость. Однако, в случае добавляемого количества Sn, составляющего менее, чем 0,06%, эффект будет неотчетливым, и увеличение добавляемого количества Sn будет подавлять образование избранного оксида, в то время как в случае превышения добавляемым количеством Sn 0,2% добавляемый элемент Sn будет вызывать горячеломкость, что ухудшает обрабатываемость в горячем состоянии. Поэтому верхнее предельное значение для Sn ограничивают значением, составляющим 0,2% и менее.
Сталь также может содержать неизбежные примеси, представляющие собой результат разработки. Например, неизбежные примеси могут включать без какого-либо ограничения: O, H, Pb, Co, As, Ge, Ga, Zn и W. Например, массовый уровень содержания каждой примеси уступает 0,1% (масс.).
Предпочтительно средний размер зерна стали доходит вплоть до 5 мкм, предпочтительно находится в диапазоне от 0,5 до 3 мкм.
В одном предпочтительном варианте осуществления листовую сталь покрывают металлическим покрытием. Металлическое покрытие может быть покрытием на алюминиевой основе или покрытием на цинковой основе.
Предпочтительно покрытие на алюминиевой основе содержит менее, чем 15% Si, менее, чем 5,0% Fe, необязательно от 0,1% до 8,0% Mg и необязательно от 0,1% до 30,0% Zn, при этом остаток представляет собой Al.
В выгодном случае покрытие на цинковой основе содержит 0,01-8,0% Al, необязательно 0,2-8,0% Mg, при этом остаток представляет собой Zn.
Например, листовой сталью с нанесенным покрытием является отожженная и гальванизированная листовая сталь, полученная после стадии отжига, проводимой после осаждения покрытия.
В одном предпочтительном варианте осуществления листовая сталь имеет толщину в диапазоне от 0,4 до 1 мм.
Соответствующий настоящему изобретению способ производства листовой ТВИП-стали включает следующие далее стадии:
А. подача сляба, характеризующегося вышеупомянутым составом,
В. повторное нагревание такого сляба и его горячая прокатка,
С. стадия скатывания в рулон,
D. первая холодная прокатка,
Е. рекристаллизационный отжиг,
F. вторая холодная прокатка и
G. термообработка для возврата.
В соответствии с настоящим изобретением способ включает стадию подачи А) полуфабриката, такого как слябы, тонкие слябы или полоса, изготовленного из стали, характеризующейся описанным выше составом, такой сляб является отлитым. Предпочтительно отлитый подаваемый исходный материал нагревают до температуры, составляющей более, чем 1000°С, более предпочтительно более, чем 1050°С, а в выгодном случае находящейся в диапазоне от 1100 до 1300°С, или используют непосредственно при такой температуре после разливки без промежуточного охлаждения.
После этого проводят горячую прокатку при температуре, предпочтительно составляющей более, чем 890°С или более предпочтительно более, чем 1000°С, для получения, например, горячекатаной полосы, обычно имеющей толщину в диапазоне от 2 до 5 мм или даже 1-5 мм. Во избежание появления какой-либо проблемы, связанной с растрескиванием, вследствие недостатка пластичности температура окончания прокатки предпочтительно является большей или равной 850°С.
После горячей прокатки полоса должна быть скатана в рулон при температуре, такой, чтобы не образовывалось бы каких-либо значительных выделений карбидов (по существу цементита (Fe,Mn)3C)), того, что в результате приводило бы к ухудшению определенных механических свойств. Стадию скатывания в рулон С) проводят при температуре, меньшей или равной 580°С, предпочтительно меньшей или равной 400°С.
Проводят последующую операцию холодной прокатки со следующим далее рекристаллизационным отжигом. Данные дополнительные стадии в результате приводят к получению размера зерна, меньшего, чем соответствующий размер, полученный в отношении горячекатаной полосы, и поэтому в результате приводят к получению повышенных прочностных характеристик. Само собой разумеется то, что она должна быть проведена в случае желательности получения продуктов, имеющих уменьшенную толщину в диапазоне, например, от 0,2 мм до нескольких мм толщины, а предпочтительно от 0,4 до 4 мм. Горячекатаный продукт, полученный при использовании описанного выше способа, подвергают холодной прокатке после проведения возможной предшествующей операции травления обычным образом.
Стадию первой холодной прокатки D) проводят при степени обжатия в диапазоне от 30 до 70%, предпочтительно от 40 до 60%.
После данной стадии прокатки зерна в высокой степени подвергают механическому упрочнению, и необходимо провести операцию рекристаллизационного отжига. Данная обработка имеет эффект восстановления пластичности и одновременного уменьшения прочности. Предпочтительно данный отжиг проводят непрерывно. В выгодном случае рекристаллизационный отжиг Е) проводят при температуре в диапазоне от 700 до 900°С, предпочтительно от 750 до 850°С, например, на протяжении периода времени в диапазоне от 10 до 500 секунд, предпочтительно от 60 до 180 секунд.
После этого проводят стадию второй холодной прокатки F) при степени обжатия в диапазоне 1-50%, предпочтительно от 10 до 40%, а более предпочтительно от 20 до 40%. Это делает возможным уменьшение толщины стали. Помимо этого, листовая сталь, изготовленная в соответствии с вышеупомянутым способом, может характеризоваться увеличенной прочностью в результате деформационного упрочнения вследствие проведения стадии повторной прокатки. В дополнение к этому, данная стадия индуцирует получение высокой плотности двойников, улучшающей, таким образом, механические свойства листовой стали.
После второй холодной прокатки проводят стадию возврата G) в целях дополнительного обеспечения получения высоких относительного удлинения и изгибаемости листовой стали, подвергнутой повторной прокатке. Возврат характеризуется устранением или перегруппировкой дислокаций в микроструктуре стали при одновременном сохранении деформационных двойников. Как деформационные двойники, так и дислокации вводятся в результате пластического деформирования материала, таким образом, как при использовании стадии прокатки. Как это можно себе представить, стадия возврата делает возможным улучшение механических свойств, таких как относи тельное удлинение.
Таким образом, в дополнение к большому количеству С в ТВИП-стали, соответствующей настоящему изобретению, проводят стадию возврата, делающую возможным улучшение, в первую очередь, относительного удлинения. И благодаря комбинированию конкретной ТВИП-стали и способа, включающего стадию возврата, соответствующую настоящему изобретению, возможным является получение подвергнутой холодной прокатке и возврату ТВИП-стали, обладающей высокой механической прочностью и высоким относительным удлинением.
В одном предпочтительном варианте осуществления стадию возврата G) проводят в результате нагревания листовой стали при температуре в диапазоне от 390 до 700°С, а предпочтительно от 410 до 700°С, в печи периодического отжига или непрерывного отжига. В данном варианте осуществления после этого может быть проведена стадия гальванизации при погружении в расплав Н).
В еще одном предпочтительном варианте осуществления стадию возврата G) проводят в результате гальванизации при погружении в расплав. В данном случае стадию возврата G) и гальванизацию при погружении в расплав проводят в одно и то же время, что делает возможными экономию издержек и увеличение производительности.
Предпочтительно температура расплавленной ванны находится в диапазоне от 410 до 700°С в зависимости от природы расплавленной ванны.
В выгодном случае листовую сталь погружают в ванну на алюминиевой основе или ванну на цинковой основе. Предпочтительно погружение в расплавленную ванну проводят на протяжении 1-60 секунд, более предпочтительно 1-20 секунд, а в выгодном случае 1-10 секунд.
В одном предпочтительном варианте осуществления ванна на алюминиевой основе содержит менее, чем 15% Si, менее, чем 5,0% Fe, необязательно от 0,1 до 8,0% Mg и необязательно от 0,1 до 30,0% Zn, при этом остаток представляет собой Al. Предпочтительно температура данной ванны находится в диапазоне от 550 до 700°С, предпочтительно от 600 до 680°С.
В еще одном предпочтительном варианте осуществления ванна на цинковой основе содержит 0,01-8,0% Al, необязательно 0,2-8,0% Mg, при этом остаток представляет собой Zn. Предпочтительно температура данной ванны находится в диапазоне от 410 до 550°С, предпочтительно от 410 до 460°С.
Расплавленная ванна также может содержать неизбежные примеси и остаточные элементы от подачи слитков или от прохождения листовой стали в расплавленной ванне. Например, необязательно примеси выбирают из Sr, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Zr или Bi, при этом массовый уровень содержания каждого дополнительного элемента уступает 0,3% (масс.). Остаточные элементы от подачи слитков или от прохождения листовой стали в расплавленной ванне могут представлять собой железо при уровне содержания, доходящем вплоть до 5,0%, предпочтительно 3,0%, (масс.).
В выгодном случае стадию возврата G) проводят на протяжении от 1 секунды до 1 часа и 10 минут, предпочтительно от 30 секунд до 1 часа, а более предпочтительно от 30 секунд до 30 минут.
Например, стадия отжига может быть проведена после осаждения покрытия в целях получения отожженной и гальванизированной листовой стали.
Таким образом, при использовании способа, соответствующего изобретению, может быть получена листовая ТВИП-сталь, включающая аустенитную матрицу и характеризующаяся высокой прочностью, превосходными деформируемостью и относительным удлинением.
Пример
В данном примере использовали листовые ТВИП-стали, характеризующиеся следующим далее массовым составом:
Пробы C% Si% Mn% P% Cr% Al% Cu% Ti% V% N% Mo% Ni%
1 0,583 0,226 21,9 0,03 0,183 - 0,031 - 0,206 0,0148 0,01 0,06
2 * 0,900 0,505 17,2 0,024 - - - - 0,3 0,0192 - -
3 0,579 0,208 22,87 0,02 0,114 0,002 0,162 0,005 0,007 0,0037 - -
4 * 0,856 0,21 21,94 0,027 0,114 1,35 0,155 0,04 0,891 0,008
5 * 0,876 0,502 17,63 0,032 0,108 2,78 0,149 - 0,384 0,0061 - -
* примеры, соответствующие настоящему изобретению
Прежде всего, образцы подвергали нагреванию и горячей прокатке при температуре 1200°С. Температуру окончания горячей прокатки устанавливали равной 890°С и после горячей прокатки проводили скатывание в рулон при 400°С. После этого осуществляли 1-ую холодную прокатку при степени обжатия в ходе холодной прокатки 50%. Вслед за этим при 850°С на протяжении 180 секунд проводили рекристаллизационный отжиг. После этого осуществляли 2-ую холодную прокатку при степени обжатия в ходе холодной прокатки 30%.
В заключение, для проб 1 и 2 проводили стадию нагревания для возврата на протяжении 1 часа при 400°С в ходе периодического отжига.
Для проб от 3 до 5 проводили термообработку для возврата на протяжении 60 секунд в совокупности. Листовую сталь сначала подготавливали в результате нагревания в печи вплоть до 625°С, при этом время, затрачиваемое на переход от 460 до 625°С, составляло 54 секунд, а после этого погружали в цинковую ванну на протяжении, соответственно, 6 секунд. Температура расплавленной ванны составляла 460°С. Следующая далее таблица демонстрирует механические свойства всех проб после рекристаллизационного отжига Е), после стадии второй прокатки F) и после стадии возврата G).
Пробы После стадии E) После стадии F) После стадии G)
UTS (МПа) TE (%) UTS (МПа) TE (%) UTS (МПа) TE (%)
1 1139 53 1979 3,7 1977 7,4
2 * 1345 46,5 2247 1,4 2088 9,2
3 1087 62 1513 12,75 1418,5 27,95
4 * 1226 27,5 1828 3,55 1653,5 11,1
5 * 1100,5 36,05 1659,5 6,9 1515,5 15,25
Как это демонстрируют результаты, пробы 2, 4 и 5, характеризующиеся составом, соответствующим изобретению, обладают более высокими механическими свойствами, чем пробы 1 и 3, характеризующиеся составом вне диапазона изобретения. Действительно, специфический состав ТВИП-стали в дополнение к способу, соответствующему настоящему изобретению, делает возможными высокое значение UTS и высокое значение ТЕ.

Claims (41)

1. Холоднокатаная и подвергнутая возврату листовая сталь с пластичностью, наведенной двойникованием, включающая аустенитную матрицу и содержащая при расчете на массу:
0,71 < C < 1,2%,
13,0 ≤ Mn < 25,0%,
S ≤ 0,030%,
P ≤ 0,080%,
N ≤ 0,1%,
0,1 ≤ Si ≤ 3,0%,
0,1 ≤ V ≤ 2,50%
и необязательно один или несколько элементов, таких как
Cu ≤ 5,0%,
Al ≤ 4,0%,
Nb ≤ 0,5%,
B ≤ 0,005%,
Cr ≤ 1,0%,
Mo ≤ 0,40%,
Ni ≤ 1,0%,
Ti ≤ 0,5%,
0,06 ≤ Sn ≤ 0,2%,
при этом остаток представляет собой железо и неизбежные примеси.
2. Листовая сталь по п. 1, в которой количество С составляет от более чем 0,71 и до 1,1% или менее.
3. Листовая сталь по п. 2, в которой количество С находится в диапазоне от 0,80 до 1,0%.
4. Листовая сталь по п. 3, в которой количество С находится в диапазоне от 0,9 до 1,0%.
5. Листовая сталь по любому из пп. 1-4, в которой количество Сu составляет менее чем 2,0%.
6. Листовая сталь по любому из пп. 1-5, в которой количество Si является меньшим или равным 0,6%.
7. Листовая сталь по любому из пп. 1-6, в которой количество Al является меньшим или равным 2%.
8. Листовая сталь по любому из пп. 1-7, в которой количество V находится в диапазоне от 0,1 до 1,0%.
9. Листовая сталь по любому из пп. 1-8, которая имеет металлическое покрытие.
10. Листовая сталь по любому из пп. 1-9, которая имеет металлическое покрытие на алюминиевой основе или на цинковой основе.
11. Листовая сталь по п. 10, в которой покрытие на алюминиевой основе содержит менее чем 15% Si, менее чем 5,0% Fe, необязательно от 0,1% до 8,0% Mg и необязательно от 0,1% до 30,0% Zn, при этом остаток представляет собой Al.
12. Листовая сталь по п. 10, в которой покрытие на цинковой основе содержит 0,01-8,0% Al, необязательно 0,2-8,0% Mg, при этом остаток представляет собой Zn.
13. Способ производства листовой стали с пластичностью, наведенной двойникованием, включающий следующие стадии:
А. подачу сляба, имеющего химический состав по любому из пп. 1-8,
В. повторный нагрев сляба до температуры, составляющей более чем 1000°С, и его горячую прокатку с температурой окончания прокатки, составляющей, по меньшей мере, 850°С,
С. стадию скатывания в рулон при температуре, которая меньше или равна 580°С,
D. первую холодную прокатку со степенью обжатия в диапазоне от 30 до 70%,
Е. рекристаллизационный отжиг в диапазоне от 700 до 900°С,
F. вторую холодную прокатку со степенью обжатия в диапазоне от 1 до 50% и
G. термообработку для возврата.
14. Способ по п. 13, в котором стадию возврата G) проводят в результате нагрева листовой стали до температуры в диапазоне от 390 до 700°С в печи периодического отжига или непрерывного отжига.
15. Способ по п. 14, в котором проводят стадию Н) нанесения покрытия при погружении в расплав.
16. Способ по любому из пп. 13-15, в котором проводят стадию возврата G) в результате нанесения покрытия при погружении в расплав.
RU2018143320A 2016-05-24 2017-05-23 Листовая твип-сталь, включающая аустенитную матрицу RU2706252C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2016/000700 2016-05-24
PCT/IB2016/000700 WO2017203314A1 (en) 2016-05-24 2016-05-24 Twip steel sheet having an austenitic matrix
PCT/IB2017/000623 WO2017203348A1 (en) 2016-05-24 2017-05-23 Twip steel sheet having an austenitic matrix

Publications (1)

Publication Number Publication Date
RU2706252C1 true RU2706252C1 (ru) 2019-11-15

Family

ID=56113012

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018143320A RU2706252C1 (ru) 2016-05-24 2017-05-23 Листовая твип-сталь, включающая аустенитную матрицу

Country Status (12)

Country Link
US (1) US20190218639A1 (ru)
EP (1) EP3464667A1 (ru)
JP (2) JP6791989B2 (ru)
KR (2) KR102504626B1 (ru)
CN (1) CN109154051B (ru)
CA (1) CA3025451C (ru)
MA (1) MA45140A (ru)
MX (1) MX2018014321A (ru)
RU (1) RU2706252C1 (ru)
UA (1) UA120902C2 (ru)
WO (2) WO2017203314A1 (ru)
ZA (1) ZA201806809B (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3025469C (en) 2016-05-24 2021-12-28 Arcelormittal Method for the manufacture of twip steel sheet having an austenitic matrix
JP6176424B1 (ja) * 2017-01-16 2017-08-09 新日鐵住金株式会社 めっき鋼材
CN108893698B (zh) * 2018-07-31 2021-02-23 中研智能装备有限公司 钢结构用ZnAlMgTiSiB防腐涂层及其制备方法
CN112662931B (zh) * 2019-10-15 2022-07-12 中国石油化工股份有限公司 一种同时提高奥氏体钢强度和塑性的方法及其产品
DE102020120580A1 (de) 2020-08-04 2022-02-10 Muhr Und Bender Kg Verfahren zum herstellen von beschichtetem stahlband, und verfahren zum herstellen eines gehärteten stahlprodukts
US20230374636A1 (en) * 2020-10-22 2023-11-23 ExxonMobil Technology and Engineering Company High Manganese Alloyed Steels For Amine Service
WO2022087548A1 (en) * 2020-10-22 2022-04-28 Exxonmobil Research And Engineering Company High manganese alloyed steels with improved cracking resistance
CN112662971B (zh) * 2020-10-28 2022-05-20 西安交通大学 一种具有梯度结构的高强twip钛合金及其热轧方法
CN113388787B (zh) * 2021-06-27 2023-03-31 上交(徐州)新材料研究院有限公司 一种高强韧耐磨钢及其纳米孪晶增强增韧化的制备方法
CN115216704B (zh) * 2022-06-29 2023-02-07 张家港中美超薄带科技有限公司 一种基于薄带连铸的低密度钢的短流程生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053556A1 (en) * 2005-12-24 2009-02-26 Posco High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
RU2361931C2 (ru) * 2005-01-21 2009-07-20 АРСЕЛОР Франс Способ изготовления листа из аустенитной железо-углерод-марганцевой стали с высоким сопротивлением замедленному трещинообразованию и лист, полученный таким способом
RU2417265C2 (ru) * 2006-07-11 2011-04-27 Арселормитталь Франс Способ производства листа железо-углеродно-марганцевой аустенитной стали с превосходной стойкостью к замедленному трещинообразованию и изготовленный таким способом лист
US20130118647A1 (en) * 2010-06-10 2013-05-16 Tata Steel Ijmuiden Bv Method of producing an austenitic steel
US20130209833A1 (en) * 2010-10-21 2013-08-15 Arcelormittal Investigacion Y Desarrollo, S.L. Hot-rolled or cold-rolled steel plate, method for manufacturing same, and use thereof in the automotive industry

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836308B2 (ja) * 2000-04-19 2011-12-14 日新製鋼株式会社 燃料タンク用アルミ系めっき鋼板
DE10259230B4 (de) * 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Stahlprodukts
FR2857980B1 (fr) 2003-07-22 2006-01-13 Usinor Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
CN101617059A (zh) * 2007-02-23 2009-12-30 克里斯塔尔公司 热机械形成具有很高强度的最终产品的方法及由此制备的产品
JP4964650B2 (ja) * 2007-04-03 2012-07-04 新日本製鐵株式会社 加工後の耐食性に優れた溶融Al系めっき鋼板及びその製造方法
KR100928795B1 (ko) * 2007-08-23 2009-11-25 주식회사 포스코 가공성 및 강도가 우수한 고망간 용융아연도금 강판 및 그제조 방법
KR20090070502A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 가공성이 우수한 고강도 고망간강 및 고망간 도금강판의제조방법
KR20090070509A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 고연성 및 고강도를 가지는 고망간 도금강판 및 그제조방법
EP2208803A1 (de) * 2009-01-06 2010-07-21 ThyssenKrupp Steel Europe AG Höherfester, kaltumformbarer Stahl, Stahlflachprodukt, Verfahren zur Herstellung eines Stahlflachprodukts sowie Verwendung eines Stahlflachproduktes
KR101090822B1 (ko) * 2009-04-14 2011-12-08 기아자동차주식회사 고강도 트윕 강판 및 그 제조방법
ES2455222T5 (es) * 2010-07-02 2018-03-05 Thyssenkrupp Steel Europe Ag Acero de resistencia superior, conformable en frío y producto plano de acero compuesto de un acero de este tipo
CN101956134B (zh) * 2010-11-01 2012-08-08 福州大学 一种高强度、高塑性含铜高碳twip钢及其制备工艺
KR101280502B1 (ko) * 2011-03-11 2013-07-01 포항공과대학교 산학협력단 냉간 압조성이 우수한 고강도 고망간 강선재와 그 제조방법 및 상기 강선재를 이용한 볼트의 제조방법
DE102011051731B4 (de) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
KR101439613B1 (ko) * 2012-07-23 2014-09-11 주식회사 포스코 굽힘 가공성과 연신율이 우수한 고강도 고망간 강판 및 그 제조방법
JP6055343B2 (ja) * 2013-03-13 2016-12-27 株式会社神戸製鋼所 低温曲げ加工性に優れた非磁性鋼およびその製造方法
UA117494C2 (uk) * 2013-07-26 2018-08-10 Ніппон Стіл Енд Сумітомо Метал Корпорейшн Високоміцна марганцева сталь для нафтової свердловини і труба для нафтових свердловин
CN104379277B (zh) * 2013-11-27 2016-08-31 青岛玉兰祥商务服务有限公司 一种孪晶诱导塑性钢及其生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2361931C2 (ru) * 2005-01-21 2009-07-20 АРСЕЛОР Франс Способ изготовления листа из аустенитной железо-углерод-марганцевой стали с высоким сопротивлением замедленному трещинообразованию и лист, полученный таким способом
US20090053556A1 (en) * 2005-12-24 2009-02-26 Posco High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
RU2417265C2 (ru) * 2006-07-11 2011-04-27 Арселормитталь Франс Способ производства листа железо-углеродно-марганцевой аустенитной стали с превосходной стойкостью к замедленному трещинообразованию и изготовленный таким способом лист
US20130118647A1 (en) * 2010-06-10 2013-05-16 Tata Steel Ijmuiden Bv Method of producing an austenitic steel
US20130209833A1 (en) * 2010-10-21 2013-08-15 Arcelormittal Investigacion Y Desarrollo, S.L. Hot-rolled or cold-rolled steel plate, method for manufacturing same, and use thereof in the automotive industry

Also Published As

Publication number Publication date
CA3025451C (en) 2023-02-28
JP6791989B2 (ja) 2020-11-25
JP7055171B2 (ja) 2022-04-15
BR112018072187A2 (pt) 2019-02-12
WO2017203314A1 (en) 2017-11-30
ZA201806809B (en) 2019-06-26
CN109154051A (zh) 2019-01-04
EP3464667A1 (en) 2019-04-10
CN109154051B (zh) 2021-04-27
KR102504626B1 (ko) 2023-02-27
UA120902C2 (uk) 2020-02-25
KR20180135036A (ko) 2018-12-19
JP2020186470A (ja) 2020-11-19
CA3025451A1 (en) 2017-11-30
US20190218639A1 (en) 2019-07-18
KR20210098545A (ko) 2021-08-10
WO2017203348A1 (en) 2017-11-30
MA45140A (fr) 2019-04-10
MX2018014321A (es) 2019-02-25
JP2019519681A (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
RU2706252C1 (ru) Листовая твип-сталь, включающая аустенитную матрицу
RU2706942C1 (ru) Способ производства листовой аустенитной стали с пластичностью, наведенной двойникованием
EP2772556B1 (en) Method for producing high-strength steel sheet having superior workability
JP2018536764A (ja) 成形性及び穴拡げ性に優れた超高強度鋼板及びその製造方法
RU2705826C1 (ru) Способ изготовления листовой твип-стали, включающей аустенитную матрицу
RU2707002C1 (ru) Листовая сталь с пластичностью, наведенной двойникованием, имеющая аустенитную матрицу
CN113840930A (zh) 经冷轧和涂覆的钢板及其制造方法
KR20230016218A (ko) 열처리 냉연 강판 및 그 제조 방법
RU2788613C1 (ru) Холоднокатаный и покрытый стальной лист и способ его получения