RU2699614C1 - Способ получения натрийсодержащего титаносиликатного сорбента - Google Patents

Способ получения натрийсодержащего титаносиликатного сорбента Download PDF

Info

Publication number
RU2699614C1
RU2699614C1 RU2018144041A RU2018144041A RU2699614C1 RU 2699614 C1 RU2699614 C1 RU 2699614C1 RU 2018144041 A RU2018144041 A RU 2018144041A RU 2018144041 A RU2018144041 A RU 2018144041A RU 2699614 C1 RU2699614 C1 RU 2699614C1
Authority
RU
Russia
Prior art keywords
sodium
titanosilicate
sorbent
suspension
titanium
Prior art date
Application number
RU2018144041A
Other languages
English (en)
Inventor
Лидия Георгиевна Герасимова
Екатерина Сергеевна Щукина
Марина Валентиновна Маслова
Анатолий Иванович Николаев
Тосио Ои
Хиромото ОНО
Original Assignee
Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН)
Priority to RU2018144041A priority Critical patent/RU2699614C1/ru
Application granted granted Critical
Publication of RU2699614C1 publication Critical patent/RU2699614C1/ru
Priority to PCT/RU2019/000799 priority patent/WO2020122758A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к технологии титаносиликатных сорбентов для очистки жидких стоков от радионуклидов и токсичных неорганических веществ. В титансодержащий раствор с концентрацией 45-70 г/л TOвводят кремненатриевый реагент и гидроксид натрия с получением суспензии. Суспензию выдерживают в герметичных условиях при повышенной температуре с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией. Затем проводят водную обработку полупродукта при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, с получением пульпы. Пульпу перемешивают в течение 0,5-1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20-50 мас. %. Осадок гранулируют путем экструдирования и подвергают сушке. Способ обеспечивает получение монофазного гранулированного натрийсодержащего титаносиликатного сорбента, который обладает более развитой поверхностью и более высокой сорбционной емкостью. 2 з.п. ф-лы, 5 пр.

Description

Изобретение относится к технологии титаносиликатных продуктов, используемых в качестве сорбентов для очистки жидких стоков от радионуклидов и токсичных неорганических веществ.
Существующая технология получения натрийсодержащего титаносиликатного продукта, обладающего сорбционными свойствами, не обеспечивает регулирование его вещественного состава и поверхностных свойств и не позволяет синтезировать продукт в гранулированной форме с повышенной сорбционной активностью по отношению к двухзарядным катионам, в том числе стронция, кобальта, никеля и меди. Получение такого продукта в значительной степени зависит от фазового состава, структурных особенностей, дисперсности частиц натрийсодержащего титаносиликатного полупродукта и пористости формируемых из него химически устойчивых гранул для длительного и эффективного использования в сорбционных колоннах, работающих в динамическом режиме. На решение этой проблемы направлено настоящее изобретение.
Известен способ получения натрийсодержащего титаносиликатного сорбента (см. пат. 2467953 РФ, МПК C01G 23/00, С22В 3/08 (2006.01), 2012), согласно которому в титансодержащий сернокислый раствор, образовавшийся при переработке титансодержащего концентрата, вводят сульфат аммония до обеспечения концентрации его в растворе 300-450 г/л с кристаллизацией аммоний-титансодержащей твердой фазы. Твердую фазу растворяют в воде с получением сернокислого раствора с рН 1-2, в который вводят кремненатриевый реагент в виде кристаллического силиката натрия или натриевого жидкого стекла и добавляют гидроксид натрия до обеспечения в полученной суспензии мольного соотношения TiO2:SiO2:Na2O=1:(0,75-5,5):(0,5-5). Затем суспензию выдерживают в герметичных условиях при температуре 150-250°С в течение 20-40 часов с образованием титаносиликатного натрийсодержащего осадка, который отделяют фильтрованием, промывают водой от маточного раствора и сушат при 70-150°С. Получают композиционнный титаносиликатный натрийсодержащий продукт кристаллической структуры. Полная сорбционная емкость продукта, мг-экв/г: по цезию - 2,2-3,8, стронцию - 1,4-2,0, кобальту - 1,1-1,8.
Данный способ обеспечивает получение полифазного порошкообразного сорбента, который характеризуется невысокой сорбционной емкостью, особенно по отношению к двухзарядным катионам стронция и кобальта. Способ является многооперационным и не обеспечивает получение гранул, что ограничивает его использование в сорбционных колоннах, работающих в динамическом режиме.
Известен способ получения натрийсодержащего титаносиликатного сорбента (см. пат. 9675957 США, МПК B01J 20/10, C01G 23/00, С01В 33/20 (2006.01), 2017), согласно которому смешивают источник кремниевой кислоты, соединение натрия, тетрахлорид титана и воду с получением геля, в котором мольное отношение Ti:Si составляет 0,5-3,0. Затем гель подвергают гидротермальной обработке с получением обводненной смеси кристаллического натрийсодержащего титаносиликата и титаната натрия при их различном соотношении, которую либо сразу сушат и измельчают, либо добавляют в нее связующее и экструдируют с образованием стержнеобразной формованной массы, которую высушивают и измельчают. В результате получают продукт в порошкообразной или гранулированной форме. По данным рентгеновской дифрактометрии состав полученных титаносиликата и титаната соответствует химическим формулам Na4Ti4Si3O16⋅nH2O, где n равно 0-8, и Na4Ti9O20⋅mH2O, где m равно 0-10. Для проведения сорбции гранулированным продуктом использовали модельные растворы цезия и стронция с концентрацией 50 ppm Cs и 50 ppm Sr при степени очистки растворов 20,4-29,2% по Cs и 83,9-84,8% по Sr, что соответствует показателям полной сорбционной емкости гранулированного продукта, мг-экв/г: 0,015-0,021 по Cs и 0,186-0,189 по Sr.
Данный способ направлен на получение полифазного порошкообразного или гранулированного сорбента, состоящего из двух фаз различной структуры, что снижает его сорбционные свойства. Получение гранулированного продукта требует использования связующего для обработки обводненной смеси кристаллических натрийсодержащего титаносиликата и титаната натрия, что усложняет способ. Сорбционная емкость гранулированного сорбента по отношению к катионам цезия и стронция относительно невысока.
Известен также принятый в качестве прототипа способ получения натрийсодержащего титаносиликатного сорбента (см. пат. 2568699 РФ, МПК B01J 20/02, С01В 33/20 (2006.01), 2015), согласно которому в исходном титансодержащем растворе восстановливают 20-40% титана (IV) до титана (III) путем электрохимической обработки постоянным током при плотности тока 0,02-0,1 А/см2. В качестве титансодержащего раствора используют сульфатный, сульфатноаммонийный или оксихлоридный раствор с концентрацией 50-100 г/л TiO2. Затем в титансодержащий раствор вводят кремненатриевый реагент в виде растворов силиката натрия или натриевого жидкого стекла до обеспечения мольного соотношения TiO2:SiO2=1:3,0-4,5 и добавляют раствор гидроксида натрия до рН 11,5-12,5. Образовавшуюся суспензию выдерживают на воздухе в течение 2-10 часов. Затем суспензию выдерживают в герметичных условиях при температуре 200-220°С в течение 100-120 часов с образованием натрийсодержащего титаносиликатного полупродукта, который промывают водой от маточного раствора и подвергают сушке при 80-150°C с получением натрийсодержащего титаносиликата. Изобретение обеспечивает полную сорбционную емкость по катионам, мг-экв/г: цезия 3,15-3,75, стронция - 3,35-4,58, кобальта - 2,66-3,15.
Известный способ обеспечивает получение монофазного порошкообразного продукта, который при относительно высокой сорбционной емкости по цезию обладает пониженной емкостью по отношению к двухзарядным катионам стронция и кобальта. Способ не обеспечивает получение гранул сорбента, что ограничивает его использование в сорбционных колоннах, работающих в динамическом режиме.
Настоящее изобретение направлено на достижение технического результата, заключающегося в получении монофазного гранулированного натрийсодержащего титаносиликатного сорбента без использования связующего и обладающего достаточно высокой сорбционной емкостью, в том числе по отношению к двухзарядным катионам. Все это позволяет эффективно использовать сорбент в сорбционных колоннах, работающих в динамическом режиме.
Технический результат достигается тем, что в способе получения натрийсодержащего титаносиликатного сорбента, включающем введение в титансодержащий раствор кремненатриевого реагента и гидроксида натрия с получением суспензии, выдержку суспензии в герметичных условиях при повышенной температуре с образованием натрийсодержащего титаносиликатного полупродукта, его отделение фильтрацией, водную обработку, сушку, согласно изобретению, используют титансодержащий раствор с концентрацией 45-70 г/л TiO2, водную обработку натрийсодержащего титаносиликатного полупродукта ведут при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, с получением пульпы, которую перемешивают в течение 0,5-1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20-50 мас. %, после чего осадок гранулируют, а гранулы подвергают сушке.
Достижению технического результата способствует также то, что гранулирование натрийсодержащего титаносиликатного осадка ведут экструдированием при давлении 2-6 кг/м2.
Достижению технического результата способствует также и то, что сушку гранул ведут при температуре 65-75°С.
Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.
Использование титансодержащего раствора с концентрацией 45-70 г/л TiO2 способствует формированию мелкокристаллического монофазного натрийсодержащего титаносиликатного полупродукта, что обеспечивает получение пористых гранул устойчивых к продолжительному гидродинамическому воздействию. При концентрации менее 45 г/л TiO2 пористость гранул снижается, и сорбционные свойства уменьшаются, а при концентрации более 70 г/л TiO2 устойчивость гранул к продолжительному гидродинамическому воздействию уменьшается и снижается срок их службы.
Проведение водной обработки полупродукта при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, приводит к образованию пульпы, содержащей в осадке требуемое количество технологически необходимых компонентов, преимущественно соединений кремния, обеспечивающих получение устойчивых гранул с повышенными сорбционными свойствами, особенно по отношению к двухзарядным катионам, без использования связующего. При расходе водной фазы менее 0,25 в заявленном соотношении повышается плотность гранул и понижается их сорбционная активность. При расходе водной фазы более 1,5 снижается содержание технологически необходимых компонентов, при этом устойчивость гранул уменьшается, что ведет к их разрушению при продолжительном гидродинамическом воздействии.
Перемешивание пульпы в течение 0,5-1,5 часов обеспечивает эффективное диспергирование твердых частиц в жидкой фазе. Перемешивание пульпы в течение менее 0,5 часа не обеспечивает эффективного диспергирования твердых частиц, а перемешивание в течение более 1,5 часов является технологически неоправданным.
Фильтрация пульпы до показателя влажности натрийсодержащего титаносиликатного осадка 20-50 мас. % обеспечивает формирование устойчивых гранул с высокой пористостью и повышенными сорбционными свойствами, особенно по отношению к двухзарядным катионам. При влажности менее 20 мас. % устойчивость гранул к продолжительному гидродинамическому воздействию уменьшается, а при влажности более 50 мас. % получаются плотные гранулы с низкой пористостью и пониженными сорбционными свойствами.
Гранулирование осадка обеспечивает получение сорбента с повышенными сорбционными свойствами, особенно по отношению к двухзарядным катионам, эффективно используемого в сорбционных колоннах, работающих в динамическом режиме.
Сушка полученных гранул способствует удалению из них воды и формированию пористой системы, обеспечивающей повышение сорбционных свойств.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в получении монофазного гранулированного натрийсодержащего титаносиликатного сорбента без использования связующего и обладающего достаточно высокой сорбционной емкостью, в том числе по отношению к двухзарядным катионам, что позволяет эффективно использовать сорбент в сорбционных колоннах, работающих в динамическом режиме.
В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.
Проведение гранулирования натрийсодержащего титаносиликатного осадка путем экструдирования при давлении 2-6 кг/м2 обеспечивает получение гранул сорбента заданного размера с общим объемом пор в интервале значений 0,85-1,25 см3/г. Это позволяет эффективно использовать их в сорбционных колоннах, работающих в динамическом режиме.
Сушка гранул сорбента при температуре 65-75°С способствует образованию эффективной пористой системы продукта. Сушка при температуре менее 65°С значительно повышает ее продолжительность без заметного изменения пористости гранул сорбента, а при температуре более 75°С пористость гранул снижается за счет увеличения скорости удаления из них воды, вызывающей растрескивание гранул.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с получением монофазного сорбента в гранулированной форме с повышенными сорбционными свойствами.
Сущность и преимущества предлагаемого способа могут быть пояснены следующими примерами конкретного выполнения изобретения.
Пример 1. Берут 100 мл титансодержащего сульфатноаммонийного раствора с концентрацией 45 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:4,2, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 210°С в течение 4,5 суток с образованием кристаллического натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:0,25, с получением пульпы. Пульпу перемешивают в течение 1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20 мас. %, после чего натрийсодержащий титаносиликатный осадок гранулируют путем экструдирования при давлении 6 кг/м2. Сформированные при этом гранулы сушат при температуре 65°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 0,85 см3/г, средний диаметр пор - 18,6 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,66, стронция - 5,22, кобальта - 3,29, никеля - 2,45, меди - 3,1.
Пример 2. Берут 100 мл титансодержащего сульфатного раствора с концентрацией 55 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=l:5, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 200°С в течение 4,5 суток с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:0,7, с получением пульпы. Пульпу перемешивают в течение 1 часа и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 35 мас. %, после чего его гранулируют путем экструдирования при давлении 4 кг/м2. Сформированные при этом гранулы сушат при температуре 70°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 1,25 см3/г, средний диаметр пор - 10,3 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,7, стронция - 5,57, кобальта - 3,72, никеля - 2,98, меди - 3,24.
Пример 3. Берут 100 мл титансодержащего оксихлоридного раствора с концентрацией 70 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:5,5, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 190°С в течение 5 суток с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:1,5, с получением пульпы. Пульпу перемешивают в течение 0,5 часа и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 50 мас. %, после чего его гранулируют путем экструдирования при давлении 2 кг/м2. Сформированные при этом гранулы сушат при температуре 75°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 0,99 см3/г, средний диаметр пор - 15,8 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,59, стронция - 5,1, кобальта - 3,45, никеля - 2,8, меди - 3,0.
Пример 4. Берут 100 мл титансодержащего сульфатного раствора с концентрацией 55 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора натриевого жидкого стекла с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:5, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 210°С в течение 4,5 суток с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:0,7, с получением пульпы. Пульпу перемешивают в течение 1 часа и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 35 мас. %, после чего его гранулируют путем экструдирования при давлении 4 кг/м2. Сформированные при этом гранулы сушат при температуре 70°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 0,92 см3/г, средний диаметр пор - 10,6 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,6, стронция - 5,46, кобальта - 3,25, никеля - 2,4, меди - 3,12.
Пример 5 (по прототипу). Берут 100 мл титансодержащего сульфатно-аммонийного раствора с концентрацией 50 г/л TiO2. Осуществляют восстановление 20% титана (IV) до титана (III) путем электрохимической обработки раствора постоянным током плотностью 0,02 А/см2 в течение 65 минут. Затем в раствор вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:3,5. После этого добавляют раствор гидроксида натрия до рН 12 с получением суспензии, которую выдерживают на воздухе в течение 10 часов. Затем суспензию выдерживают в герметичных условиях при температуре 200°С в течение 120 часов с образованием натрийсодержащего титаносиликатного полупродукта. Полученный полупродукт промывают на фильтре водой при массовом отношении твердой и жидкой фаз, равном 1:20, до практически полного удаления соединений кремния, содержащихся в маточном растворе, и подвергают сушке при 100°С. Полученный порошкообразный сорбент кристаллической структуры соответствует формуле Na3Ti4Si2O13(OH)⋅4H2O. Общий объем пор сорбента - 0,71 см3/г, диаметр пор - 9,2 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 3,75, стронция - 4,58, кобальта - 3,06, никеля - 1,82, меди - 2,0.
Из вышеприведенных Примеров видно, что предлагаемый способ по сравнению с прототипом позволяет получить монофазный гранулированный натрийсодержащий титаносиликатный сорбент, который обладает более развитой поверхностью. Общий объем пор выше в 1,2-1,8 раза и соответственно выше сорбционная емкость продукта по отношению к двухзарядным катионам, мг-экв/г: стронция - 5,1-5,57, кобальта - 3,25-3,72, никеля - 2,4-2,98, меди - 3,0-3,24. Способ согласно изобретению может быть реализован с использованием стандартного оборудования.

Claims (3)

1. Способ получения натрийсодержащего титаносиликатного сорбента, включающий введение в титансодержащий раствор кремненатриевого реагента и гидроксида натрия с получением суспензии, выдержку суспензии в герметичных условиях при повышенной температуре с образованием натрийсодержащего титаносиликатного полупродукта, его отделение фильтрацией, водную обработку, сушку, отличающийся тем, что используют титансодержащий раствор с концентрацией 45-70 г/л TiO2, водную обработку натрийсодержащего титаносиликатного полупродукта ведут при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, с получением пульпы, которую перемешивают в течение 0,5-1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20-50 мас. %, после чего осадок гранулируют, а гранулы подвергают сушке.
2. Способ по п. 1, отличающийся тем, что гранулирование натрийсодержащего титаносиликатного осадка ведут экструдированием при давлении 2-6 кг/м.
3. Способ по п. 1, отличающийся тем, что сушку гранул ведут при температуре 65-75°С.
RU2018144041A 2018-12-12 2018-12-12 Способ получения натрийсодержащего титаносиликатного сорбента RU2699614C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018144041A RU2699614C1 (ru) 2018-12-12 2018-12-12 Способ получения натрийсодержащего титаносиликатного сорбента
PCT/RU2019/000799 WO2020122758A1 (ru) 2018-12-12 2019-11-11 Способ получения натрийсодержащего титаносиликатного сорбента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018144041A RU2699614C1 (ru) 2018-12-12 2018-12-12 Способ получения натрийсодержащего титаносиликатного сорбента

Publications (1)

Publication Number Publication Date
RU2699614C1 true RU2699614C1 (ru) 2019-09-06

Family

ID=67851489

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018144041A RU2699614C1 (ru) 2018-12-12 2018-12-12 Способ получения натрийсодержащего титаносиликатного сорбента

Country Status (2)

Country Link
RU (1) RU2699614C1 (ru)
WO (1) WO2020122758A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742785C1 (ru) * 2020-08-03 2021-02-10 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) Способ получения цементной композиции
RU2777359C1 (ru) * 2021-11-22 2022-08-02 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Сибэнергомаш" Фильтрующий материал для очистки воды от радионуклидов и способ его получения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA76886C2 (en) * 2004-12-23 2006-09-15 Inst Of Sorption And Problems Method for producing titanium-silicate ion-exchanger
RU2467953C1 (ru) * 2011-07-05 2012-11-27 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ переработки титансодержащего концентрата
RU2568699C1 (ru) * 2014-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения натрийсодержащего титаносиликата
US20160107140A1 (en) * 2014-03-27 2016-04-21 Nippon Chemical Industrial Co., Ltd. Adsorbent material and method for producing crystalline silicotitanate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA76886C2 (en) * 2004-12-23 2006-09-15 Inst Of Sorption And Problems Method for producing titanium-silicate ion-exchanger
RU2467953C1 (ru) * 2011-07-05 2012-11-27 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ переработки титансодержащего концентрата
US20160107140A1 (en) * 2014-03-27 2016-04-21 Nippon Chemical Industrial Co., Ltd. Adsorbent material and method for producing crystalline silicotitanate
US9675957B2 (en) * 2014-03-27 2017-06-13 Nippon Chemical Industrial Co., Ltd. Adsorbent material and method for producing crystalline silicotitanate
RU2568699C1 (ru) * 2014-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения натрийсодержащего титаносиликата

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742785C1 (ru) * 2020-08-03 2021-02-10 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) Способ получения цементной композиции
RU2777359C1 (ru) * 2021-11-22 2022-08-02 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Сибэнергомаш" Фильтрующий материал для очистки воды от радионуклидов и способ его получения

Also Published As

Publication number Publication date
WO2020122758A1 (ru) 2020-06-18

Similar Documents

Publication Publication Date Title
KR100195324B1 (ko) 실리케이트 또는 알루미노실리케이트 형 화합물 및 카르보네이트 형 화합물을 포함하는 중금속 양이온 회수제
JP6618803B2 (ja) 水流からストロンチウム放射性核種を選択的に除去する方法
JPS6317771B2 (ru)
TWI457173B (zh) 吸附劑之造粒方法及該方法所製得之吸附劑顆粒
WO2013179940A1 (ja) 放射性物質吸着材、吸着容器、吸着塔、及び水処理装置
RU2699614C1 (ru) Способ получения натрийсодержащего титаносиликатного сорбента
KR20150137201A (ko) 실리코타이타내이트 제조방법 및 세슘 흡착제
WO2018066634A1 (ja) 放射性セシウムを含有する放射性廃液の処理方法
JP2013248555A (ja) セシウム吸着材及びその製造方法
JPH0119559B2 (ru)
CA1171839A (en) Process for the preparation of adsorbent materials
JP2016107257A (ja) 吸着剤及びその製造方法
JP3412455B2 (ja) 砒酸イオン吸着用活性アルミナおよびこれを用いてなる水溶液中からの砒酸イオンの吸着処理方法
RU2777359C1 (ru) Фильтрующий материал для очистки воды от радионуклидов и способ его получения
JPS6136973B2 (ru)
JPS6036831B2 (ja) ヒ素及びシリカ含有水の処理方法
JPH0429794A (ja) Ets―10型の広い細孔の分子ふるいを使用した、競合イオンを含有する水性系からの重金属、特に鉛の除去
JP2016107191A (ja) 吸着剤及びその製造方法
JPH1072213A (ja) 下水汚泥焼却灰からの粒状ゼオライト及び窒素含有土壌改良材の製造方法
CN110876921B (zh) 脱硫脱硝废水吸附剂的制备方法
JP7419952B2 (ja) 新規シリコチタネート組成物及びその製造方法
RU2263536C1 (ru) Сорбент, способ его получения и использования
JP7400421B2 (ja) 吸着剤、その製造方法及び水処理方法
JP2642961B2 (ja) 殺菌性組成物
JP2021087901A (ja) 水処理用浄化剤の製造方法