RU2696623C1 - Способ получения полимерного электрета - Google Patents
Способ получения полимерного электрета Download PDFInfo
- Publication number
- RU2696623C1 RU2696623C1 RU2018124723A RU2018124723A RU2696623C1 RU 2696623 C1 RU2696623 C1 RU 2696623C1 RU 2018124723 A RU2018124723 A RU 2018124723A RU 2018124723 A RU2018124723 A RU 2018124723A RU 2696623 C1 RU2696623 C1 RU 2696623C1
- Authority
- RU
- Russia
- Prior art keywords
- electret
- curing
- polymer
- sample
- proposed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 229920000642 polymer Polymers 0.000 title claims abstract description 23
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims abstract description 10
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 claims abstract description 8
- -1 polyethylene Polymers 0.000 claims abstract description 5
- 239000004698 Polyethylene Substances 0.000 claims abstract description 4
- 229920000768 polyamine Polymers 0.000 claims abstract description 4
- 229920000573 polyethylene Polymers 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- 238000007872 degassing Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 3
- 239000003822 epoxy resin Substances 0.000 abstract description 2
- 229920000647 polyepoxide Polymers 0.000 abstract description 2
- 229920005596 polymer binder Polymers 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract description 2
- 238000004870 electrical engineering Methods 0.000 abstract 2
- 239000002491 polymer binding agent Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004848 polyfunctional curative Substances 0.000 description 6
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G7/00—Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
- H01G7/02—Electrets, i.e. having a permanently-polarised dielectric
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Изобретение относится к области электротехники, в частности к способу получения полимерного электрета, который может быть использован в герметизирующих системах, в триботехнике, в различной аппаратуре и приборах, таких как электретные дозиметры, электретные фильтры и электретные микрофоны. Для изготовления пластин или пленок из получаемых полимерных электретов предлагается использовать в качестве основного полимера-связующего эпоксидную смолу марки ЭД-20 (ГОСТ 10587-84), нанесенную на твердую подложку и отверждаемую полиэтиленполиамином (ТУ 6-05-861-73), при этом поляризация материала является следствием процесса отверждения, при котором используют ультрафиолетовое излучение. В предложенном способе образование поверхностного заряда является следствием различия скоростей процесса отверждения на противоположных сторонах образца. Повышение срока сохранения суммарной поверхностной плотности электрического заряда в полимерном электрете является техническим результатом изобретения. 1 ил., 1 табл., 14 пр.
Description
Изобретение относится к области получения полимерных электретов. Электретные материалы применяются в качестве герметизирующих систем, в триботехнике, в бытовой технике (широко известны высококачественные электретные микрофоны), в технике специального назначения (электретные фильтры, электретные дозиметры).
Известен способ получения электретов (аналог), заключающийся в получении электретов в процессе совмещения синтеза полимера путем отверждения исходного эпоксидного олигомера DER-331 отвердителем Л-20, с процессом поляризации в постоянном электрическом поле, с напряжением 5 кВ в течение 2 часов и последующим охлаждением в течение 30 минут без снятия поляризующего воздействия [Мочалова В.Н. Влияние температуры одновременной поляризации и отверждения на электретные характеристики композитов на основе эпоксидного олигомеров DER-331 при отверждении полиаминоамидом Л-20 / Е.Н. Мочалова, P.P. Бурганов, Р.Н. Вахитова, Н.А. Лимаренко // Вестник Казанского технологического университета. - 2015, Т. 18, №20, С. 47-49].
Недостатком аналога является то, что в основе этого способа лежит традиционная технология полимерных электретов, в которой термопластичный полимер был заменен термореактивной смолой.
Наиболее близким техническим решением (прототипом) является способ получения полимерного электрета, включающий синтез полимера из олигомерной термореактивной смолы ЭД-20 и отвердителя полиэтиленполиамина, поляризацию полимера путем нагревания смеси между двумя обкладками из различных металлов, охлаждении и отделении обкладок. Причем в процессе отверждения обкладки могут быть замкнуты или разомкнуты. [Пат. 2298245 РФ, МПК H01G 7/02. Способ получения полимерного электрета / Левин Р.В., Студенцов В.Н., Скудаев Е.А., Дорошенко Л.М., заявитель - Федеральное государственное бюджетное общеобразовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.», патентообладатель - Федеральное государственное бюджетное общеобразовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.», заявлено - 20.12.2015, опубликовано - 27.04.2017]. Отличительной особенностью прототипа является то, что отверждение термореактивной смолы происходит не в чистом виде, а больший вклад в поляризацию материала вносит протекающий электрохимический процесс между обкладками и эпоксидной композицией.
Недостатком прототипа является повышенная металлоемкость и необходимость нагрева.
Техническая проблема данного изобретения заключается в необходимости повышения срока сохранения суммарной поверхностной плотности электрических зарядов, понижение материалоемкости, что достигается за счет отсутствия термообработок и дополнительных физических воздействий.
Для решения поставленной проблемы предлагается способ получения полимерного электрета, в основе которого лежит нанесение смеси олигомерной смолы с отвердителем на твердую подложку. Предлагается рассмотреть процесс поляризации материала как следствие процесса отверждения, в ходе которого изменяется полярность реагирующих веществ, происходит превращение проводящего материала в диэлектрик, возникают новые полярные группы, то есть поляризация протекает одновременно с процессами полимерообразования, при этом полярные группы локализуются в сетчатой структуре.
Полученные материалы могут найти применение в аппаратах, где электреты применяются в виде пленок или пластин.
Изобретение поясняется чертежом: фиг. 1 - электрохимический способ определения потенциала поверхности по трехточечной схеме, где 1 - образец электрета; 2 - капля 2% водного раствора NaCl; 3 - вспомогательный графитовый электрод; 4 - стандартный электрод сравнения; 5, 6, 7 - кабель к потенциостату.
Способ получения полимерного электрета на основе термореактивных смол заключается в следующем.
Для изготовления пластин или пленок из получаемых полимерных электретов предлагается использовать в качестве основного полимера (связующего) эпоксидную смолы марки ЭД-20 (ГОСТ 10587-84), отверждаемую полиэтиленполиамином (ПЭПА) (ТУ 6-02-594-88).
Для образцов стандартных размеров определяли следующие характеристики: разность потенциалов между сторонами электрета Δϕ, мВ; электрическая емкость С, нФ; суммарная поверхностная плотность электрического заряда σ, Кл/м2.
Процесс получения образцов на основе термореактивной смолы состоит в следующем: приготавливается смесь олигомерной смолы с отвердителем, после тщательного перемешивания и дегазации получившуюся смесь наносят на подложку таким образом, чтобы композиция не выступала за края подложки и поверхность была равномерной. После процесса отверждения, который можно проводить как в полной темноте, так и в присутствии белого света, электреты готовы к использованию. Условия отверждения непосредственно влияют на характеристики электрета, так например, отверждение в полной темноте приводит к увеличению суммарной поверхностной плотности заряда, а отверждение в присутствии белого света, наоборот, снижает. Такое же воздействие наблюдается, если неотвержденные композиты обработать ультрафиолетовым излучением. Кратковременное облучение (в течение 10 минут) приводит к увеличению разности потенциалов между сторонами электрета.
Пример 1: Способ-прототип. Жидкую смесь смолы марки ЭД-20 и отвердителя ПЭПА при массовом соотношении 9:1 помещают в алюминиевую кювету и сверху закрывают пластиной из меди или цинка так, чтобы жидкость, края кюветы и верхняя пластина находились на одном уровне. Кювету и верхнюю пластину закорачивают. Заполненную и закрытую кювету помещают в камеру отверждения на 24 часа.
Пример 2: Жидкую смесь смолы марки ЭД-20 и отвердителя ПЭПА при массовом соотношении 9:1 наносят на подложку из полиэтилетерифталатной пленки (удельная теплопроводность ПЭТ-пленки 0,22 Вт/м⋅К). Отверждение композиции протекает в камере отверждения в течение 24 часов.
Пример 3: По примеру 2, отличающийся тем, что в качестве подложки использовали целлюлозную пленку (удельная теплопроводность целлюлозы 4,6 Вт/м⋅К).
Пример 4: По примеру 2, отличающийся тем, что в качестве подложки использовали алюминиевую фольгу (удельная теплопроводность алюминия 230 Вт/м⋅К).
Пример 5: По примеру 4, отличающийся тем, что отверждение проводили в унифицированных условиях в присутствии белого света. В качестве источника света использовали лампу накаливания мощностью 40 Вт. Расстояние между источником света и образцами, в примерах 5-9 составляло 0,3 м.
Пример 6: По примеру 5, отличающийся тем, что в качестве унифицированных условий использовали обычный дневной (рассеянный) свет.
Пример 7: По примеру 5, отличающийся тем, что в качестве источника света использовали лампу накаливания мощностью 25 Вт.
Пример 8: По примеру 5, отличающийся тем, что в качестве источника свет использовали лампу накаливания мощностью 60 Вт.
Пример 9: По примеру 5, отличающийся тем, что отверждение проводили в полной темноте.
Пример 10: По примеру 9, отличающийся тем, что неотвержденные композиции обрабатывали ультрафиолетовым излучением в течение 10 минут. Мощность УФИ лампы и расстояние от лампы до образцов, в примерах 9-14 равны 0,70 Вт/м3 и 0,2 м. соответственно.
Пример 11: По примеру 9, отличающийся тем, что неотвержденные композиции обрабатывали ультрафиолетовым излучением в течение 30 минут.
Пример 12: По примеру 9, отличающийся тем, что неотвержденные композиции обрабатывали ультрафиолетовым излучением в течение 20 минут.
Пример 13: По примеру 9, отличающийся тем, что неотвержденные композиции обрабатывали ультрафиолетовым излучением в течение 5 минут.
Пример 14: По примеру 9, отличающийся тем, что неотвержденные композиции обрабатывали ультрафиолетовым излучением в течение 60 минут.
Сравнение примеров 2-4 показывает, что теплопроводность материала, используемого в качестве подложки, влияет на электретные характеристики полимерных композиций. Применение подложки с высокой теплопроводностью способствует отводу теплоты, выделяющейся в процессе отверждения, что приводит к увеличению суммарной поверхностной плотности заряда. Поляризация в примере 1 обусловлена электрохимическими процессами, а в примерах 2-4 образование поверхностного заряда обусловлено процессом отверждения.
Анализ примеров 5-9 показывает, что условия отверждения полимерной композиции влияют на электретные характеристики. Процессу поляризации способствуют более мягкие условия отверждения. Наличие дополнительной энергетической подпитки отрицательно влияет на величину суммарной поверхностной плотности заряда.
Сравнение примеров 10-14 показывает, что характер влияния УФИ схож с влиянием белого света на электретные характеристики, т.к. оба воздействия относятся к способам энергетической подпитки. С увеличением продолжительности УФИ происходит уменьшение суммарной поверхностной плотности заряда. Таким образом, энергетическая подпитка негативно влияет на электретные характеристики полимерных композиций.
Процесс отверждения необходимо проводить в интервале температур 20-25°С, т.к. отверждение протекает с выделением теплоты и повышение температуры может привести к вспениванию реакционной смеси. Также необходимо обеспечивать максимальный отвод теплоты с одной из поверхностей, т.к. движущей силой поляризации материала является разница скоростей отверждения на противоположных сторонах полимерной композиции.
При отверждении термореактивных смол конкурируют процесс образования сетчатых продуктов (процесс 1) и процесс образования линейных продуктов (процесс 2) [Иржак В.И. Сетчатые полимеры: Синтез, структура, свойства / В.И. Иржак, Б.А. Розенберг, Н.С. Униколопян. -Москва: Наука, 1979. - 248 с: ил.; 27 см.]. Процесс 2 характеризуется образованием более прочных химических связей и более высокой эффективной энергией активации по сравнению с процессом 1, поэтому процесс 2 более чувствителен к подводу дополнительной энергии, в виде теплоты или энергии излучений [Студенцов В.Н., Пятаев И.В. Влияние колебательных воздействий на процессы структурообразования в полимерах / Журнал прикладной химии. - 2014, Т. 87, №3].
Полярные группы, обуславливающие процесс поляризации, образуются преимущественно при образовании сетчатого полимера (процесс 1). Повышение температуры отверждения и вообще дополнительный подвод энергии подавляют процесс 1 и приводят к уменьшению суммарной поверхностной плотности заряда. Таким образом, в заявляемом способе, образование поверхностного заряда является следствием различия скоростей процесса отверждения на противоположных сторонах образца, а энергетические воздействия сглаживают это различие.
Предлагаемый новый способ получения электретов на основе термореактивные смолы обладает следующими преимуществами по сравнению с традиционным способом получения электретов путем выдержки термопластичного полимера при повышенной температуре между обкладками из различных материалов [Воронежцев Ю.И., Гольдаде В.А., Пинчук Л.С., Снежков В.В. Электрические и магнитные поля в технологии полимерных композитов / Под ред. А.И. Свириденка. - Мн.: Навука i тэхнiка, 1990. - 263 с: ил. - ISBN 5-343-00535-7]: значительно более длительный срок сохранения величины суммарной поверхностной плотности электрического заряда; более высокая теплостойкость; более высокие прочностные характеристики.
Предлагаемый способ получения рекомендуется использовать для изготовления методом залива пластин или пленок обладающих электретными свойствами.
Claims (1)
- Способ получения полимерного электрета, включающий приготовление смеси термореактивной смолы ЭД-20 и полиэтиленполиамина, которую после перемешивания и дегазации наносят на твердую подложку равномерным слоем с последующим отверждением, отличающийся тем, что отверждение ведут при комнатной температуре, при этом в начале процесса отверждения проводят дополнительную обработку поверхности образца ультрафиолетовым излучением (УФИ) мощностью 0,70 Вт/м3 в течение 10-20 минут, при этом подложку выполняют из алюминия, обладающего высокой удельной теплопроводностью, для создания различия в скоростях отверждения на противоположных сторонах образца, что способствует образованию поверхностного заряда.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018124723A RU2696623C1 (ru) | 2018-07-05 | 2018-07-05 | Способ получения полимерного электрета |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018124723A RU2696623C1 (ru) | 2018-07-05 | 2018-07-05 | Способ получения полимерного электрета |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2696623C1 true RU2696623C1 (ru) | 2019-08-05 |
Family
ID=67586997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018124723A RU2696623C1 (ru) | 2018-07-05 | 2018-07-05 | Способ получения полимерного электрета |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2696623C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2825438C1 (ru) * | 2023-12-21 | 2024-08-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" | Пленочный электрет |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652997A (en) * | 1979-10-05 | 1981-05-12 | Matsushita Electric Ind Co Ltd | Preparation of acoustic diaphragm unit |
RU2251560C2 (ru) * | 2003-05-21 | 2005-05-10 | Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского" (ФГУП "ЦАГИ") | Эпоксидная композиция и способ ее получения |
RU2298245C1 (ru) * | 2005-12-20 | 2007-04-27 | Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (ГОУ ВПО СГТУ) | Способ получения полимерного электрета |
WO2010030011A1 (ja) * | 2008-09-12 | 2010-03-18 | 株式会社ユポ・コーポレーション | エレクトレット化フィルム及びそれを含むエレクトレット |
US20100127595A1 (en) * | 2007-03-22 | 2010-05-27 | The University Of Tokyo | Electret and electrostatic induction conversion device comprising the same |
CN102150225A (zh) * | 2008-09-12 | 2011-08-10 | 优泊公司 | 驻极体化薄膜及含有其的驻极体 |
RU2523337C1 (ru) * | 2012-12-25 | 2014-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный педагогический университет им. А.И. Герцена" | Способ изготовления пленочного электрета |
-
2018
- 2018-07-05 RU RU2018124723A patent/RU2696623C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652997A (en) * | 1979-10-05 | 1981-05-12 | Matsushita Electric Ind Co Ltd | Preparation of acoustic diaphragm unit |
RU2251560C2 (ru) * | 2003-05-21 | 2005-05-10 | Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского" (ФГУП "ЦАГИ") | Эпоксидная композиция и способ ее получения |
RU2298245C1 (ru) * | 2005-12-20 | 2007-04-27 | Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (ГОУ ВПО СГТУ) | Способ получения полимерного электрета |
US20100127595A1 (en) * | 2007-03-22 | 2010-05-27 | The University Of Tokyo | Electret and electrostatic induction conversion device comprising the same |
WO2010030011A1 (ja) * | 2008-09-12 | 2010-03-18 | 株式会社ユポ・コーポレーション | エレクトレット化フィルム及びそれを含むエレクトレット |
CN102150225A (zh) * | 2008-09-12 | 2011-08-10 | 优泊公司 | 驻极体化薄膜及含有其的驻极体 |
RU2523337C1 (ru) * | 2012-12-25 | 2014-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный педагогический университет им. А.И. Герцена" | Способ изготовления пленочного электрета |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2825438C1 (ru) * | 2023-12-21 | 2024-08-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" | Пленочный электрет |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Engineered and laser‐processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation | |
Du et al. | Dynamic behavior of surface charge on direct-fluorinated polyimide films | |
Lv et al. | Dependence of charge accumulation on sample thickness in nano-SiO 2 doped IDPE | |
Zhang et al. | Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO 2 nanocomposites | |
Risse et al. | A versatile method for enhancement of electromechanical sensitivity of silicone elastomers | |
DE2449652A1 (de) | Fluessigkristallvorrichtung und verfahren zu ihrer herstellung | |
Du et al. | Effect of surface fluorination on space charge behavior in multilayered polyimide films | |
ATE224093T1 (de) | Materialien mit hoher elektrischer leitfähigkeit bei raumtemperatur und verfahren zu deren herstellung | |
RU2696623C1 (ru) | Способ получения полимерного электрета | |
CN111886664B (zh) | 双轴取向聚丙烯膜、电力电容器及相关制造方法和系统 | |
US3793715A (en) | Process for producing high-quality electrets | |
Viraneva et al. | Electret properties of PP/ZnO and PP/CuO composite films | |
CN116021855A (zh) | 高储能密度的介电复合膜、制备方法及用途 | |
JP6696798B2 (ja) | 傾斜機能材料の製造方法 | |
Harun et al. | Influence of gamma irradiation on the electrical conductivity and dielectric properties of polypyrrole conducting polymer composite films | |
Susilawati et al. | Effects of gamma radiation on electrical conductivity of PVA-CH composites | |
JP4783956B2 (ja) | 熱伝導体とその製造方法 | |
Xu et al. | Research on gamma-ray irradiation-assisted synthesis of cross-linked polystyrene via bulk polymerization | |
Iizuka et al. | Measurement of space charge distribution in epoxy resin after water absorption treatment | |
Guermazi et al. | Behaviour of space charge distribution in air-aged samples of poly (methyl metacrylate) | |
DE2105003C3 (de) | Verfahren zum Überziehen von Kor pern mit isolierenden Stoffen | |
RU2606445C2 (ru) | Электроизоляционный лак | |
Mongal et al. | Characterization of electron beam irradiated ethylene methyl acrylate copolymer | |
RU2825438C1 (ru) | Пленочный электрет | |
JP4682387B2 (ja) | 絶縁物の表面処理方法 |