RU2695397C1 - Способ получения брикетов титановых с флюсом - Google Patents

Способ получения брикетов титановых с флюсом Download PDF

Info

Publication number
RU2695397C1
RU2695397C1 RU2019103015A RU2019103015A RU2695397C1 RU 2695397 C1 RU2695397 C1 RU 2695397C1 RU 2019103015 A RU2019103015 A RU 2019103015A RU 2019103015 A RU2019103015 A RU 2019103015A RU 2695397 C1 RU2695397 C1 RU 2695397C1
Authority
RU
Russia
Prior art keywords
titanium
briquettes
powder
flux
mixture
Prior art date
Application number
RU2019103015A
Other languages
English (en)
Inventor
Дмитрий Анатольевич Рымкевич
Игорь Александрович Кашкаров
Евгений Валерьевич Полежаев
Original Assignee
Публичное Акционерное Общество "Корпорация Всмпо-Ависма"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное Акционерное Общество "Корпорация Всмпо-Ависма" filed Critical Публичное Акционерное Общество "Корпорация Всмпо-Ависма"
Priority to RU2019103015A priority Critical patent/RU2695397C1/ru
Application granted granted Critical
Publication of RU2695397C1 publication Critical patent/RU2695397C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к порошковой технологии, а именно к способам получения изделий из порошковых композиций на основе титана, в частности титановых брикетов с флюсом. Может использоваться для легирования титаном алюминиевых сплавов, применяемых в ракетостроительной, авиационной, автомобильной и других отраслях промышленности. Из титанового порошка с размерами частиц от 1,0 до 3,2 мм и калия хлористого электролитного с размерами частиц от 1,0 до 2,0 мм готовят двухкомпонентную смесь при следующем соотношении компонентов, мас.%: титановый порошок - 80, калий хлористый электролитный - 20. Перед прессованием двухкомпонентную смесь перемешивают в течение 30-50 минут, а затем прессуют при удельном давлении 15-17 МПа. Обеспечивается получение брикетов заданной плотности с прочностью, оптимальной для их транспортировки. 2 пр.

Description

Изобретение относится к порошковой технологии, а именно к способам получения изделий из порошковых композиций на основе титана, в частности брикетов титановых с флюсом, которые могут быть использованы для легирования титаном алюминиевых сплавов, применяемых в ракетостроительной, авиационной, автомобильной и других отраслях промышленности, в которых используются высоколегированные литейные и деформируемые алюминиевые сплавы.
Известен способ получения лигатур для производства алюминиевых сплавов (патент на изобретение РФ №2208656, опубл. 20.07.2003 г., бюл. №20), включающий смешивание грубых порошков активных металлов дисперсностью от 0,1 до 3,0 мм с последующим прессованием. Полученный брикет имеет плотность от 0,5 до 0,95 от теоретической плотности смеси порошков активных металлов. При нагревании в расплаве обрабатываемого металла происходит синтез компонентов брикета.
Недостатком указанного способа является налипание порошковой композиции на стенки матрицы, что нарушает процесс прессования, и ухудшает физико-механические свойства полученных брикетов.
Известен способ получения таблетированной титановой лигатуры для алюминиевых сплавов (патент на изобретение РФ №2636212, опубл. 21.11.2017 г., бюл. №33), по количеству общих признаков принятый за ближайших аналог-прототип. Способ включает смешивание порошков активных металлов и их прессование. В качестве порошков активных металлов используют титановые порошки гранулометрического состава от 0,25 до 0,50 мм в количестве от 25 до 35% и от 1,5 до 2,0 мм в количестве от 40 до 50%, их смешивание совместно с порошками легкоплавкого флюса в количестве не менее 18% и мелассой. Прессование смеси осуществляют при давлении от 250 до 300 кг/см2 с получением брикетов в виде таблетки с ее последующим обжигом при температуре от 80 до 100°С в течение от 60 до 90 мин.
Недостатками известного способа являются низкая плотность получаемых брикетов, неоднородность гранулометрического и химического состава брикетов, налипание смеси на стенки матрицы, что нарушает процесс прессования и как следствие, пониженные физико-механические свойства брикетов. Кроме того, применение мелассы приводит к загрязнению шихты и, следовательно, сплава алюминия, примесями углерода, образующегося в процессе обжига мелассы из спрессованных брикетов в виде таблеток, а также при серийном производстве таблетированной лигатуры с использованием мелассы происходит загрязнение оборудования (налипание связующего ингредиента на инструмент, тару, рабочую камеру смесителя, пресс-инструмент).
Задачами, на решение которых направлено изобретение, устранить налипания смеси на стенки матрицы при прессовании, и получить брикеты титановые с флюсом, однородного гранулометрического и химического состава, без внесения в химический состав шихты вредных примесей.
Технический результат направлен на устранение недостатков прототипа и позволяет получить брикеты титановые с флюсом с заданной плотностью и обладающие оптимальной прочностью, позволяющей осуществить их транспортировку, погрузочно-разгрузочные работы и использовать для легирования титаном алюминиевых сплавов.
Поставленные задачи решаются тем, что предложен способ получения брикетов титановых с флюсом, включающий приготовление смеси компонентов, содержащей титановый порошок и порошок легкоплавкого флюса с последующим смешиванием смеси и ее прессование в брикеты, новым является то, что в качестве исходных компонентов для приготовления смеси используют титановый порошок с размерами частиц от 1,0 до 3,2 мм и калий хлористый электролитный с размерами частиц от 1,0 до 2,0 мм, двухкомпонентную смесь готовят с обеспечением следующего соотношения компонентов, масс. %:
титановый порошок - 80,
калий хлористый электролитный - 20,
перед прессованием двухкомпонентную смесь перемешивают в течение 30-50 минут, затем прессуют двухкомпонентную смесь при удельном давлении 15-17 МПа.
Использование в качестве исходных компонентов для приготовления смеси титанового порошка с размерами частиц от 1,0 до 3,2 мм и калий хлористый электролитный с размерами частиц от 1,0 до 2,0 мм, и смешивание двухкомпонентной смеси с обеспечением следующего соотношения компонентов, масс. %: титановый порошок - 80, калий хлористый электролитный - 20 в течение 15-30 минут позволяет эффективно перемешать компоненты и при проведении процесса прессования в указанных интервалах удельного давления достичь равномерного распределения компонентов в брикетах титановых с флюсом, и получить брикеты титановые с флюсом, обладающих пористостью и оптимальной прочностью.
При давлении прессования менее 15 МПа прочность брикетов титановых с флюсом недостаточна для транспортировки, погрузочно-разгрузочных работ и хранения, а увеличение давления прессования выше 17 МПа является нецелесообразным, так как не приводит к дальнейшему повышению прочности брикета.
Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения брикетов титановых с флюсом, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию "новизна".
Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Результаты поиска показали, что заявленное изобретение не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".
Промышленную применимость предлагаемого изобретения подтверждает следующие примеры осуществления способа.
Пример 1.
В процессе восстановления тетрахлорида титана металлическим магнием губчатый титан получают в виде твердого губчатого блока, который подвергают измельчению с помощью прессового оборудования для комплектования товарных партий определенных фракций (см. кн. Титан. Гармата В.А., Петрунько А.Н., Олесов Ю.Г., Сандлер Р.А., Галицкий Н.В.: Металлургия, 1983, стр. 443-553). В процессе измельчения блока губчатого титана мелкую часть фракций титана с размерами частиц до 12,0 мм используют для получения порошков титана. Массовая доля примесей составляет, масс. % хлора - не более 0,3, азота - не более 0,2, железа - не более 1,5. Мелкую часть фракции с размерами частиц до 12,0 мм подвергают доизмельчению и классификации на фракции. Полученный титановый порошок соответствует требованиям технических условий ТУ 1791-449-05785388-2016. В качестве исходных компонентов при приготовлении смеси для получения брикетов титановых с флюсом используют: титановый порошок марки ТПП-3 с размером частиц от 1,0 до 3,2 мм (ТУ 1791-449-05785388), и калий хлористый электролитный с размерами частиц от 1,0 до 2,0 мм (ТУ 2180-472-0578588). Калий хлористый электролитный является попутным продуктом при производстве магния методом электролиза из карналлита. В электролизер для получения магния и хлора в рабочий электролит состава, масс. %: MgCl2 - 8, KCl - 58, NaCl - 36, Mg - 0,04, заливают из вакуум-ковша расплавленный безводный карналлит в количестве 8,2 тонны на 1 тонну магния, состава, масс. %: MgCl2 - 51,6, KCl - 45,4, NaCl - 2,3, CaCl2 - 0,3, MgO - 0,3, Fe - 0,014, Si - 0,01, Ti - 0,0007, Mn - 0,013, Cu - 0,0008, Co - менее 0,0005, Zn - 0,0022, Cr - 0,002 и другие элементы. Безводный карналлит под воздействием постоянного тока разлагается на магний и хлор. В процессе электролиза в электролизер также подгружают фторид кальция в виде плавикового шпата фракции 0,05 мм и хлорид натрия в количестве 0,328 т на 1 тонну магния, состава, масс. %: NaCl - 99,6, MgCl2 - 0,015, KCl - 0,013, CaCl2 - 0,206, Fe - 0,01, Si - 0,002, Mn - 0,002, V - 0,008, Cu - 0,0005, Co - менее 0,0003, Zn - 0,01, Cr - 0,005. Продукты электролиза - магний извлекают из электролизера один раз в сутки вакуум-ковшом, а хлор отводят по хлоропроводу потребителю. В период электролиза расплав циркулируют в системе сборная ячейка -электролитическое отделение через переточные окна в разделительной перегородке до содержания в расплаве хлорида магния 7 масс. %. Периодически из электролизера откачивают заборным устройством отработанный электролит в стальные короба емкостью 1,5 тонн. Смесь охлаждают, выгружают из короба на инерционную решетку ИР-120, с помощью лоткового питателя подают на наклонный ленточный транспортер и дробят в роторной дробилке. Дробленый отработанный электролит ленточным элеватором транспортируют на инерционный грохот и методом грохочения рассеивают по фракциям менее 3,0 мм, а продукт, оставшийся на сетке, возвращают в дробилку на повторную переработку. Затем направляют элеватором в бункер силосной башни, отбирают пробу на химический и гранулометрический анализы. При соответствии полученного продукта по содержанию компонентов техническим условиям ТУ 2180-472-0578588, калий хлористый электролитный подают в бункер фасовочного комплекса, откуда его затаривают в мягкие контейнера разового использования типа МКР. Затем калий хлористый электролитный загружают в бункер установки рассева с помощью крана мостового, грузоподъемностью 2,0 т. Установка рассева состоит из бункера и сита двухдечного с установленными на нем сетками №2 и №1. Производят рассев калия хлористого электролитного на фракции с размером частиц более 2,0 мм, от 1,0 до 2,0 мм и менее 1,0 мм. Калий хлористый электролитный с размерами частиц от 1,0 до 2,0 мм ссыпают в контейнер. Для приготовления смеси компонетов для получения брикетов титановых с флюсом титановый порошок марки ТПП-3 с размером частиц от 1,0 до 3,2 мм (ТУ 1791-449-05785388) взвешивают на весах ВСДП 1.15.10 «Гранит», предел взвешивания которых 1000 кг, а калий хлористый электролитный с размерами частиц от 1,0 до 2,0 мм (ТУ 2180-472-0578588) взвешивают на весах ВТ-150, предел взвешивания которых 150 кг. После взвешивания титановый порошок в количестве 160 кг (80,0 мас. %) и калий хлористый электролитный в количестве 40 кг (20 мас. %) засыпают в контейнер объемом 0,5 м3. Смесь титанового порошка и калия хлористого электролитного из контейнера в количестве 200 кг загружают в бункер объемом 0,3 м3, из бункера через загрузочную воронку ссыпают в смеситель двухконусный для приготовления двухкомпонентной смеси для получения брикетов. Смеситель представляет собой двухконусный барабан, оборудованный в верхней части загрузочным люком с крышкой, герметично закрывающийся болтовыми соединениями. Нижняя часть барабана закрывается разгрузочным люком, оборудованным запирающим устройством. Вращение смесителя двухконусного осуществляется от электродвигателя через редуктор. Смеситель двухконусный закрывают крышкой на шесть болтов, и производят пуск духконусного смесителя. Барабан начинает вращаться, и титановый порошок и калий хлористый электролитный перемешивают. Продолжительность процесса перемешивания двухкомпонентной смеси 30 минут. После окончания перемешивания производят остановку смесителя двухконусного, и двухкомпонентную смесь из смесителя двухконусного по разгрузочной течке ссыпают в приемный контейнер, и после направляют на прессование. Двухкомпонентную смесь из приемного контейнера кран-балкой, управляемой с пола загружают в бункер пресса. Брикетирование двухкомпонентной смеси производили на пресс-автомате гидравлическом модели ДА 1532БМ усилием 1600 тс в автоматическом режиме. Размеры брикетов были выбраны исходя из усилия пресса и удельного давления прессования 15 МПа. Вес полученных брикетов составил 1,120 кг. Высота брикета 75 мм, диаметр - 86 мм, плотность - 2,69 г/см3. Налипание двухкомпонентной смеси на стенки матрицы при прессовании не наблюдалось.
Пример 2.
То же, что и в примере 1, но продолжительность процесса перемешивания двухкомпонентной смеси 50 минут. После окончания процесса перемешивания производят остановку смесителя двухконусного, и двухкомпонентную смесь из смесителя двухконусного по разгрузочной течке ссыпают в приемный контейнер, и после направляют на прессование. Двухкомпонентную смесь из приемного контейнера кран-балкой, управляемой с пола загружают в бункер пресса. Брикетирование двухкомпонентной смеси производили на пресс-автомате гидравлическом модели ДА 1532БМ усилием 1600 тс в автоматическом режиме. Размеры брикетов были выбраны исходя из усилия пресса и удельного давления прессования 17 МПа. Вес полученных брикетов составил 1,160 кг. Высота брикета 75 мм, диаметр - 86 мм, плотность - 2,55 г/см3. Налипание двухкомпонентной смеси на стенки матрицы при прессовании не наблюдалось.
Таким образом, предложенный способ позволяет получить брикеты титановые с флюсом с заданной плотностью и обладающие оптимальной прочностью, позволяющей осуществить их транспортировку, погрузочно-разгрузочные работы, и использовать для легирования титаном алюминиевых сплавов.

Claims (4)

  1. Способ получения брикета титанового с флюсом, включающий приготовление двухкомпонентной смеси компонентов, содержащей титановый порошок и порошок легкоплавкого флюса, последующее смешивание смеси и ее прессование в брикеты, отличающийся тем, что в качестве исходных компонентов для приготовления смеси используют титановый порошок с размерами частиц от 1,0 до 3,2 мм и калий хлористый электролитный с размерами частиц от 1,0 до 2,0 мм, причем двухкомпонентную смесь готовят с обеспечением следующего соотношения компонентов, мас.%:
  2. титановый порошок - 80,
  3. калий хлористый электролитный - 20,
  4. перед прессованием двухкомпонентную смесь перемешивают в течение 30-50 минут, а затем прессуют при удельном давлении 15-17 МПа.
RU2019103015A 2019-02-04 2019-02-04 Способ получения брикетов титановых с флюсом RU2695397C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019103015A RU2695397C1 (ru) 2019-02-04 2019-02-04 Способ получения брикетов титановых с флюсом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019103015A RU2695397C1 (ru) 2019-02-04 2019-02-04 Способ получения брикетов титановых с флюсом

Publications (1)

Publication Number Publication Date
RU2695397C1 true RU2695397C1 (ru) 2019-07-23

Family

ID=67512245

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019103015A RU2695397C1 (ru) 2019-02-04 2019-02-04 Способ получения брикетов титановых с флюсом

Country Status (1)

Country Link
RU (1) RU2695397C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097472A (zh) * 1993-07-16 1995-01-18 郭盾 铝-钛-硼中间合金的生产工艺
CN1570154A (zh) * 2004-05-09 2005-01-26 郭庆成 用于炼钢脱氧和合金化的铝钙锰钛铁合金
RU2533245C1 (ru) * 2013-06-25 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Способ получения пвсевдолигатуры для алюминиевых сплавов
RU2542191C1 (ru) * 2013-11-13 2015-02-20 Олег Павлович Чечушкин Способ получения лигатур для производства алюминиевых сплавов
US9452413B2 (en) * 2009-08-05 2016-09-27 Hoganas Ab (Publ) Permeable porous composite
RU2636212C1 (ru) * 2016-05-30 2017-11-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения титановой лигатуры для алюминиевых сплавов
RU2637545C1 (ru) * 2016-11-09 2017-12-05 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ получения модифицирующей лигатуры Al - Ti

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097472A (zh) * 1993-07-16 1995-01-18 郭盾 铝-钛-硼中间合金的生产工艺
CN1570154A (zh) * 2004-05-09 2005-01-26 郭庆成 用于炼钢脱氧和合金化的铝钙锰钛铁合金
US9452413B2 (en) * 2009-08-05 2016-09-27 Hoganas Ab (Publ) Permeable porous composite
RU2533245C1 (ru) * 2013-06-25 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Способ получения пвсевдолигатуры для алюминиевых сплавов
RU2542191C1 (ru) * 2013-11-13 2015-02-20 Олег Павлович Чечушкин Способ получения лигатур для производства алюминиевых сплавов
RU2636212C1 (ru) * 2016-05-30 2017-11-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения титановой лигатуры для алюминиевых сплавов
RU2637545C1 (ru) * 2016-11-09 2017-12-05 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ получения модифицирующей лигатуры Al - Ti

Similar Documents

Publication Publication Date Title
US4687632A (en) Metal or alloy forming reduction process and apparatus
JP5524257B2 (ja) 金属物品を融解せずに製造する方法
EP3909752A1 (en) Method for the recovery and regeneration of metal powder in ebm applications
CA2003167A1 (en) Silicon Powder and a Method for Producing Silicon Powder
EP0861909B1 (en) Use of a briquette of foundry waste agglomerated with a hydraulic binder as a charge material for smelting furnaces of an iron foundry
CA2563439A1 (en) Improved recycling method for al-b4c composite materials
RU2695397C1 (ru) Способ получения брикетов титановых с флюсом
Amosov et al. Nanostructured aluminum matrix composites of Al-10% TiC obtained in situ by the SHS method in the melt
JP2018513921A (ja) 鉄−ケイ素−アルミニウム合金の製造方法
Bazhin et al. Specificity of the titanium-powder alloying tablets usage in aluminium alloys
CN209985547U (zh) 物料破碎包装系统
EA032204B1 (ru) Способ получения брикетов для производства феррохрома
JP2010047809A (ja) チタン又はチタン合金インゴット製造方法
RU2636212C1 (ru) Способ получения титановой лигатуры для алюминиевых сплавов
RU2755187C1 (ru) Способ алюминотермического получения ферротитана
EP1489161B1 (en) Method for the production of high-concentration manganese mini-tablets for alloying aluminum baths and device for implementing said method
CZ280719B6 (cs) Metalotermická reakční směs
SU443085A1 (ru) Способ получени титан-циркониевой лигатуры
RU2759284C1 (ru) Способ получения из вторичного алюминиевого сырья глиноземсодержащего материала для рафинирования и формирования шлака при выплавке стали.
Andreev et al. Gravity-assisted metallothermic SHS of titanium aluminide with Al–Ca mixture as a reducing agent
JP7083784B2 (ja) 塊状物の製造方法、および塊状物
RU2543574C2 (ru) Магниевый сплав, подходящий для применения при комнатной температуре, и способ его получения
EP2243844B1 (en) Improved method for recycling steel-plant dust
RU2329311C2 (ru) Способ пакетирования лома и отходов черных металлов
US20120180598A1 (en) Process using fly ash to create chunks of raw material for iron or steel mill activities.