RU2690918C1 - Способ получения порошковой композиции на основе оксикарбидов алюминия - Google Patents

Способ получения порошковой композиции на основе оксикарбидов алюминия Download PDF

Info

Publication number
RU2690918C1
RU2690918C1 RU2019100293A RU2019100293A RU2690918C1 RU 2690918 C1 RU2690918 C1 RU 2690918C1 RU 2019100293 A RU2019100293 A RU 2019100293A RU 2019100293 A RU2019100293 A RU 2019100293A RU 2690918 C1 RU2690918 C1 RU 2690918C1
Authority
RU
Russia
Prior art keywords
aluminum
temperature
heating rate
oxycarbides
composition based
Prior art date
Application number
RU2019100293A
Other languages
English (en)
Inventor
Ирина Владимировна Николаенко
Геннадий Петрович Швейкин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2019100293A priority Critical patent/RU2690918C1/ru
Application granted granted Critical
Publication of RU2690918C1 publication Critical patent/RU2690918C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/907Oxycarbides; Sulfocarbides; Mixture of carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium

Abstract

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении упрочняющих и легирующих добавок для алюминиевых сплавов, углеродсодержащих огнеупорных, керамических и абразивных материалов. Сначала готовят исходную смесь гидроксида алюминия и сажи путём осаждения азотнокислого водного раствора алюминия водным раствором аммония при рН, равном 6,0-7,5, и температуре 60-85 °С, при массовом соотношении алюминия в пересчете на оксид и сажи, равном 1-(1,0-4,5), соответственно. Затем полученный горячий осадок фильтруют, промывают водой и сушат при 100-110 °С. Высушенный осадок обжигают на первой стадии микроволновым излучением с частотой 2450-3000 МГц и мощностью 700 Вт в токе аргона, который подают со скоростью 5-6 л/ч, со скоростью нагрева 20 °С/мин до 500-510 °С, со скоростью нагрева 10 °С/мин до 700-710 °С и со скоростью нагрева 5 °С/мин до 1200-1210 °С с выдержкой при этой температуре в течение 120-130 мин. На второй стадии проводят обжиг при температуре 1600-1800 °С в течение 120-130 мин в вакууме 1,0·10-9,0·10Topp. Полученная композиции на основе смеси оксикарбидов алюминия представляет собой ультрадисперсный порошок со средним размером частиц менее 500 нм и не содержит посторонних примесей. 4 ил., 1 табл., 2 пр.

Description

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков оксикарбида алюминия, которые является перспективным материалом для упрочнения композиционных матричных алюминиевых сплавов, а также служит легирующей добавкой в производстве углеродсодержащих огнеупорных, керамических и абразивных материалов. Дисперсно-упрочненные композиционные сплавы алюминия обладают высокими механическими характеристиками в условиях действия высоких температур и повышеной устойчивостью к окислению, в связи с чем они имеют широкое применение в самолетостроении, автомобилестрое-нии и космической промышленности.
Известен способ получения абразивной порошковой смеси оксида алюминия альфа-фазы и оксикарбидов алюминия Al2OC и Al4O4C путем восстановления чистой глины, содержащей, 0.35 % Na2O, предварительно помолотым коксом в результате плавления в электродуговой печи. Далее полученная затвердевшая пластина (плита) подвергается помолу для получения зерна нужного размера, после чего проводится дополнительная термообработка порошка при температуре 1200°С в течение 10 минут для снятия внутренних напряжений и окисления карбидов, которые могут присутствовать в материале (Патент US 4643983; МПК C01F 7/02, C09C 1/68,C09K 3/14; 1987 г.).
Недостатками известного способа являются многостадийность и невозможность получения конечного порошкообразного продукта с размером частиц в ультрадисперсном диапазоне.
Наиболее близким к предлагаемому способу является способ получения композиции на основе оксикарбида алюминия, включающий предварительное смешение исходных компонентов, прокаленного или плавленого оксида алюминия с размером частиц 350 мкм и углеродной составляющей (искусственный графит, чешуйчатый графит, смола, сажа или землистый графит) с размером частиц менее 500 мкм, до гомогенного состояния при помощи смесителя (шаровая мельница, лопастный или конический смеситель). Далее полученную смесь помещают в электродуговую печь и плавят в диапазоне температур 1800-2000оС. После охлаждения получают массив композиции на основе оксикарбида алюминия, который подвергается распылению (Патент RU 2509753; МПК C04B 35/657, C04B 35/103, C04B 35/56; 2014 г.).
Недостатками известного способа являются: во-первых, наличие дополнительной стадии за счет получение композиции в виде затвердевшего массива, который для получения порошка необходимо или распылять, или измельчать помолом; во-вторых, при использовании стадии помола и предварительного смешения исходных компонентов в шихте будет происходить намол примесей от шаров и барабанов, что снижает чистоту конечного продукта; в-третьих, высокая температура термообработки.
Перед авторами стояла задача разработать способ получения порошковой композиции на основе оксикарбидов алюминия Al4O4C и Al2OC, обеспечивающий получение конечного продукта в порошкообразном состоянии с размером частиц в ультрадисперсном диапазоне без наличия посторонних примесей.
Поставленная задача решена в предлагаемом способе получения порошковой композиции на основе оксикарбидов алюминия, включающем получение исходной смеси гидроксида алюминия и сажи с последующим обжигом, в котором исходную смесь получают осаждением азотнокислого водного раствора алюминия водным раствором аммония при рН, равном 6.0–7.5, и температуре 60–85°С, при этом соотношение алюминия (в пересчете на оксид) и сажи равно 1 ÷ 1.0–4.5, соответственно, затем полученный горячий осадок фильтруют, промывают водой и сушат при температуре 100-110 оС, а обжиг осуществляют в две стадии: на первой стадии микроволновым излучением на частоте 2450–3000 МГц и мощности 700 Вт в токе аргона, который подают со скоростью 5–6 л/час, со скоростью нагрева 20°С/мин до 500-550°С, со скоростью нагрева 10°С/мин до 700-750°С и со скоростью нагрева 5°С/мин до 1200-1250°С с выдержкой при этой температуре в течение 120-130 мин; на второй стадии обжиг используют температуру 1600–1800°С в течение 120-130 мин и вакуум 1,0*10-2-9,0*10-3 Topp.
В результате получают композицию на основе оксикарбидов алюминия Al2OC и Al4O4C в виде порошка с размером частиц не более 500 мкм.
В настоящее время по данным научно-технической и патентной литературы не известен способ получения ультрадисперсных порошков на основе оксикарбидов алюминия с получением в качестве промежуточного полупродукта (прекурсора) – механической смеси гидроксида алюминия с сажей путем жидкофазного осаждения из водного раствора азотнокислого алюминия и с последующим комбинированным отжигом в микроволновой муфельной и вакуумной печах при соблюдении предлагаемых параметров проведения процесса.
В ходе исследований, проводимых авторами, предлагаемого технического решения, во время получения промежуточного продукта – прекурсора, состоящего из осадка гидроксида алюминия, полученного путем осаждения на углеродном носителе из азотнокислого раствора алюминия Al(NO3)3⋅9 H2O водным раствором аммония NH4OH при pH 6–12 и в диапазоне температур от 50 до 100°С было установлено, что полностью алюминий выпадает в осадок при рН в диапазоне от 6 до 7,5 в диапазоне температур 60–85°С. Наилучшие показатели по осаждению алюминия были получены при величине рН среды 6,6–6,7 и температуре 70–80°С (Фиг. 1). Также в результате экспериментов, было установлено, что если проводить осаждение гидроксида алюминия при температуре ниже 60оС и рН выше 7,5, то в растворе остается до ~5 г/л алюминия, что объясняется частичным растворением свежеосажденного осадка и переходом алюминия в раствор. В случае, если проводить осаждение гидроксида алюминия при температуре выше 85оС и рН ниже 6, то алюминий тоже остается в растворе, так как эти условия именно для начала формирования кристаллов гидроксида алюминия.
При помощи рентгенофазового анализа установлено, что формируемые осадки гидроксида алюминия являются рентгеноаморфными (Фиг. 2 а), а морфология частиц зависит от рН среды и температуры, при которой проводят осаждения (Фиг. 3). На фиг. 3 a, b приведены морфологии частиц, полученных при ниже 60оС температуре и рН выше 7,5, когда происходит частичное растворение свежеосажденного осадка и существует наличие алюминия в растворе. На микрофотографиях видно, что при данной рН осадки гидроксида алюминия получаются рыхлыми с размером частиц менее 100 нм. На микрофотографиях фиг. 3 c, d приведена морфология частиц для осадков, полученных в диапазоне температур 60–7,5°С и рН 6–7,5, на которых наблюдается частичное слипание частиц в агломераты, и полное уплотнение частиц в агломераты слоями наблюдается при температурах выше 80°С в диапазоне рН 7–7,5 (Фиг. 3 f, g). Полученные данные при помощи SEM полностью согласуются с результатами измерений удельной поверхности, которые приведены в таблице 1. Из приведенных данных видно, что при повышенных температурах формируются осадки, состоящие из плотных агломератов с низкой удельной поверхностью, а при температуре ниже предлагаемой формируются рыхлые осадки с высокой микропористостью.
Первую стадию обжига прекурсора гидроксида алюминия проводили в электромагнитном поле в микроволновой муфельной печи фирмы «Урал-Гефест» мощностью 700 Вт на частоте 2450÷3000 МГц при температурах в диапазоне от 200 до 1200-1210°С в токе аргона, который подавали со скоростью 5-8 л/час, и окончательный обжиг проводили в камерной вакуумной графитовой печи ККН-4/2100 фирмы “Linn High Therm”, Германия при температуре 1600–1800°С. При исследовании реакций термолиза, восстановления и карбидизации от прекурсора алюминия Al(OH)3⋅9H2O||9C↓ до конечного продукта – порошкообразной смеси на основе оксикарбидов алюминия Al4O4C и Al2OC был зафиксирован только один промежуточный продукт – это оксид алюминия Al2O3, ромбоэдрической модификации с параметрами решетки (R-3c (167): a = 4.758 Ǻ, c = 12.991 Ǻ) (Фиг. 2 b), который присутствовал в процессе обжига в микроволновой муфельной печи вплоть до ее максимальной температуры 1200-1210°C и при выдержке 60-70 мин. Вторую стадию обжига проводили в графитовой вакуумной печи. При избыточном содержании углерода начало формирования карбида алюминия ромбоэдрической модификации (R-3c (166): a = 3.3388 Ǻ, c = 24.996 Ǻ) можно было зафиксировать при температуре 1350–1400°С (Фиг. 2 с). При недостаточном содержании углерода к оксиду алюминия 1.0-2.0 начало формирования монооксикарбида алюминия гексагональной модификации с параметрами решетки (P63, a = 3.170 Ǻ; c = 5.078 Ǻ) было зафиксировано при температуре 1600 °C (Фиг. 2 d) и тетраоксикарбида алюминия орторомбической модификации с параметрами решетки (Cmc21, a = 5.760(10) Ǻ; b = 8.537(5) Ǻ; c = 9.121(5) Ǻ) при температуре 1800°C и выдержке в течение двух часов (Фиг. 2 е). Морфология частиц оксикарбидов алюминия приведена на фиг. 4 a, b, на которых виден ультрадиспесрный размер частиц менее 500 нм. Измерения площади удельной поверхности ультрадисперсного порошка композиции на основе оксикарбидов алюминия показали, что величина может варьироваться в диапазоне от 0,5 до 2,5 м2/г в зависимости от содержания углерода в прекурсоре и условий синтеза конечного продукта (Табл. 1).
Конечный продукт – ультрадисперсный порошок композиции на основе оксикарбидов алюминия может состоять от трех фаз (Al2O3, Al2OC и Al4O4C) до четырех (Al2O3, Al2OC, Al4O4C и Al4C3).
Использование двухстадийного процесса обжига в микроволновой муфельной и вакуумной печах позволяет избегать сильного роста зерен, оплавления и спекания частиц, и получать конечный продукт в виде порошка с частицами в ультрадисперсном диапазоне. Таким образом, предлагаемый способ позволяет получать ультрадисперсные порошки на основе оксикарбидов алюминия со средним размером частиц менее чем 500 нм, с удельной площадью поверхности от 0,5 до 2,5 м2/г, которые могут широко применяться для упрочнения композиционных матричных алюминиевых сплавов, а также служить легирующей добавкой в производстве углеродсодержащих огнеупорных и керамических материалов.
Предлагаемый способ осуществляют следующим образом.
Берут водный раствор азотнокислого алюминия, в который до стадии осаждения вводят рассчитанное количество углерода в виде ацетиленовой сажи в соотношении Al2O3÷C=1÷1.0-4.5. Осаждение кислой соли алюминия проводят водным раствором аммония до рН 6,0-7,5 в диапазоне температур 60–85°С при помощи делительной воронки и при постоянном перемешивании. Полученный осадок фильтруют в горячем виде, промывают и сушат в сушильном шкафу при Т=100-110°С. Далее полученный продукт подвергают обжигу в две стадии: сначала в микроволновой муфельной печи со скоростью нагрева 20°С/мин до 500-510°С, со скоростью нагрева 10°С/мин до 700-710°С и со скоростью нагрева 5°С/мин до 1200-1210°С с выдержкой при этой температуре в течение 120-130 мин в токе инертной среды (Ar, 5-6 л/час) и далее проводят обжиг в вакуумной печи в вакууме … при температуре 1600- 1800°С с выдержкой 120-130 мин. Перед проведением обжига высушенный прекурсор прессуют в таблетки (∅ 10 мм, h = 10 мм), помещают в кварцевый тигель, закрывают кварцевой крышкой и сначала устанавливают в рабочую часть муфеля в микроволновой печи, и далее в графитовом тигле проводят обжиг в вакуумной печи. Полученный конечный продукт аттестуют при помощи сканирующего электронного микроскопа, рентгенофазового анализа, измеряют удельную площадь и контролируют химический состав при помощи аналитической химии.
Пример 1.
Берут 1 л водного раствора азотнокислого алюминия концентрацией С(Al)=14,4 г/л, в который до стадии осаждения вводят 7,23 г ацетиленовой сажи в расчёте на Al2O3÷C=1÷4,5. Осаждение кислой соли алюминия проводят водным раствором аммония (СNH4OH = 25 %) при температуре 65°С до рН 6,0 при помощи делительной воронки и при постоянном перемешивании суспензии. Полученный осадок фильтруют в горячем виде, промывают и сушат в сушильном шкафу при Т=100°С. Далее полученный продукт подвергают обжигу в две стадии: на первой стадии в микроволновой муфельной печи “СВЧ- лаборант” фирмы ООО “НПО “Урал-Гефест” со скоростью нагрева 20°С/мин до 500°С, со скоростью нагрева 10°С/мин до 700°С и со скоростью нагрева 5°С/мин до 1200°С с выдержкой при этой температуре в течение 120 мин в токе аргона со скоростью 6 л/час и далее на второй стадии проводят обжиг в вакуумной графитовой печи ККН-4/2100 фирмы “Linn High Therm”, Германия, в вакууме 1,0*10-2 при температуре 1800°С с выдержкой 120 мин. Перед проведением обжига высушенный прекурсор прессуют в таблетки (∅ 10 мм, h = 10 мм), помещают в кварцевый тигель, закрывают кварцевой крышкой и сначала устанавливают в рабочую часть муфеля микроволновой печи, и далее в графитовом тигле проводят обжиг в вакуумной печи. В результате получают ~20,0 г конечного продукта - ультрадисперсный порошок композиции на основе оксикарбидов алюминия со средним размером частиц ~500 нм и площадью удельной поверхности 0,82 м2/г, состоящий из четырех фаз - Al2O3, Al2OC, Al4O4C и Al4C3.
Пример 2.
Берут 1 л водного раствора азотнокислого алюминия концентрацией С(Al)=12,5 г/л, в который до стадии осаждения вводят 2,07 г ацетиленовой сажи в расчёте на Al2O3÷C=1÷1,0. Осаждение кислой соли алюминия проводят водным раствором аммония (СNH4OH = 25 %) при температуре 85°С до рН 7,5 при помощи делительной воронки и при постоянном перемешивании суспензии. Полученный осадок фильтруют в горячем виде, промывают и сушат в сушильном шкафу при Т=110°С. Далее полученный продукт подвергают обжигу в две стадии: на первой стадии в микроволновой муфельной печи “СВЧ- лаборант” фирмы ООО “НПО “Урал-Гефест” со скоростью нагрева 20°С/мин до 510°С, со скоростью нагрева 10°С/мин до 710°С и со скоростью нагрева 5°С/мин до 1210°С с выдержкой при этой температуре в течение 130 мин в токе аргона 5 л/час и далее проводят вторую стадию - обжиг в вакуумной графитовой печи ККН-4/2100 фирмы “Linn High Therm”, Германия, в вакууме 9,0*10-3 Topp до температуры 1600°С с выдержкой 130 мин. Перед проведением термообработки высушенный прекурсор прессуют в таблетки (∅ 10 мм, h = 10 мм), помещают в кварцевый тигель, закрывают кварцевой крышкой и сначала устанавливают в рабочую часть муфеля микроволновой печи, и далее в графитовом тигле проводят обжиг в вакуумной печи. В результате получают ~14,0 г конечного продукта - ультрадисперсный порошок композиции на основе оксикарбидов алюминия со средним размером частиц менее 450 нм и площадью удельной поверхности 1,75 м2/г, состоящий из трех фаз - Al2O3, Al2OC и Al4O4C.
Таким образом, используя в способе получения композиции на основе оксикарбидов алюминия сочетание двухстадийного обжига и синтеза прекурсора путем жидкофазного осаждения на углеродном носителе, авторам удалось получить ультрадисперсный порошок композиции на основе смеси оксикарбидов алюминия со средним размером частиц менее 500 нм с высокоразвитой поверхностной активностью.

Claims (1)

  1. Способ получения порошковой композиции на основе оксикарбидов алюминия, включающий получение исходной смеси гидроксида алюминия и сажи с последующим обжигом, отличающийся тем, что исходную смесь получают осаждением азотнокислого водного раствора алюминия водным раствором аммония при рН, равном 6,0-7,5, и температуре 60-85 °С, при этом соотношение алюминия (в пересчете на оксид) и сажи равно 1-(1,0-4,5) соответственно, затем полученный горячий осадок фильтруют, промывают водой и сушат при температуре 100-110 °С, а обжиг осуществляют в две стадии: на первой стадии микроволновым излучением на частоте 2450-3000 МГц и мощности 700 Вт в токе аргона, который подают со скоростью 5-6 л/ч, со скоростью нагрева 20 °С/мин до 500-510 °С, со скоростью нагрева 10 °С/мин до 700-710 °С и со скоростью нагрева 5 °С/мин до 1200-1210 °С с выдержкой при этой температуре в течение 120-130 мин; на второй стадии - при температуре 1600-1800 °С в течение 120-130 мин в вакууме 1,0·10-2-9,0·10-3 Topp.
RU2019100293A 2019-01-11 2019-01-11 Способ получения порошковой композиции на основе оксикарбидов алюминия RU2690918C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100293A RU2690918C1 (ru) 2019-01-11 2019-01-11 Способ получения порошковой композиции на основе оксикарбидов алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100293A RU2690918C1 (ru) 2019-01-11 2019-01-11 Способ получения порошковой композиции на основе оксикарбидов алюминия

Publications (1)

Publication Number Publication Date
RU2690918C1 true RU2690918C1 (ru) 2019-06-06

Family

ID=67037450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100293A RU2690918C1 (ru) 2019-01-11 2019-01-11 Способ получения порошковой композиции на основе оксикарбидов алюминия

Country Status (1)

Country Link
RU (1) RU2690918C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643983A (en) * 1984-08-01 1987-02-17 Hans Zeiringer Method of producing a grinding medium
RU2509753C2 (ru) * 2009-03-30 2014-03-20 Кросакихарима Корпорейшн Композиция на основе оксикарбида алюминия и способ ее получения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643983A (en) * 1984-08-01 1987-02-17 Hans Zeiringer Method of producing a grinding medium
RU2509753C2 (ru) * 2009-03-30 2014-03-20 Кросакихарима Корпорейшн Композиция на основе оксикарбида алюминия и способ ее получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СИТНИКОВ П.А., Синтез и свойства карбидных соединений алюминия, Автореферат диссертации на соискание учёной степени кандидата химических наук, Санкт-Петербург, 2002, с.с. 4-6. *

Similar Documents

Publication Publication Date Title
CN107074573B (zh) 板状氧化铝粉末的制法及板状氧化铝粉末
TWI732944B (zh) 含氧化鎂之尖晶石粉末及其製造方法
JPWO2013146713A1 (ja) 窒化ケイ素粉末の製造方法及び窒化ケイ素粉末、ならびに窒化ケイ素焼結体及びそれを用いた回路基板
Simonenko et al. Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics
JP6754288B2 (ja) 高強度で熱伝導率の低い酸化亜鉛焼結体作製用酸化亜鉛粉末
RU2690918C1 (ru) Способ получения порошковой композиции на основе оксикарбидов алюминия
CN111836915A (zh) 溅射靶用Fe-Pt-氧化物-BN系烧结体
CN113348148B (zh) 磷酸钛锂的制造方法
CN111847930B (zh) 一种碳纳米管/铝酸钙水泥、制备方法及应用
Nikolaenko et al. Synthesis of ultrafine powder (W, Ti) C by microwave heating in a stream of argon
WO2017057322A1 (ja) 板状アルミナ粉末の製法
CN113784923A (zh) 尖晶石粉末
CN113912391B (zh) 尖晶石结构钛酸锌纳米粉体的制备方法以及固化放射性废物的组合物及其固化氧化镧的方法
Nikolaenko et al. Synthesis of ultrafine powder of vanadium carbide V8C7 by microwave heating
RU2460706C2 (ru) Способ получения порошковой композиции на основе карбосилицида титана
CN113353974A (zh) 一种固相合成制备钛酸钡粉体的方法
JP5987778B2 (ja) 希土類酸化物粉末の製造方法
JP6509668B2 (ja) ホウ酸アルミニウムウィスカーの製造方法
Miller et al. Submicron boron carbide synthesis through rapid carbothermal reduction
JPS6117403A (ja) 金属硼化物、炭化物、窒化物、珪化物、酸化物系物質およびそれらの製造方法
JPS58213617A (ja) 炭窒化チタン粉末の製造法
CN110550952A (zh) 一种氧化锆陶瓷粉体及其制备方法
JPS61132509A (ja) 炭化珪素の製造方法
WO2023238508A1 (ja) 固体電解質材料およびその製造方法
RU2674526C1 (ru) Способ получения порошка карбида хрома