RU2687360C1 - Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него - Google Patents

Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него Download PDF

Info

Publication number
RU2687360C1
RU2687360C1 RU2018126710A RU2018126710A RU2687360C1 RU 2687360 C1 RU2687360 C1 RU 2687360C1 RU 2018126710 A RU2018126710 A RU 2018126710A RU 2018126710 A RU2018126710 A RU 2018126710A RU 2687360 C1 RU2687360 C1 RU 2687360C1
Authority
RU
Russia
Prior art keywords
steel
calcium
corrosion resistance
manganese
component
Prior art date
Application number
RU2018126710A
Other languages
English (en)
Inventor
Петр Александрович Мишнев
Артем Викторович Митрофанов
Светлана Андреевна Мишнева
Мария Валентиновна Петрова
Илья Евгеньевич Кириллов
Original Assignee
Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Северсталь" (ПАО "Северсталь") filed Critical Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority to RU2018126710A priority Critical patent/RU2687360C1/ru
Application granted granted Critical
Publication of RU2687360C1 publication Critical patent/RU2687360C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,04-0,12, кремний не более 0,03, марганец 0,15-0,40, сера не более 0,015, фосфор не более 0,020, хром 0,15-0,30, никель не более 0,1, медь не более 0,1, алюминий 0,01-0,05, азот не более 0,006, молибден не более 0,015, ниобий не более 0,01, титан не более 0,01, ванадий не более 0,01, мышьяк не более 0,08, железо и неизбежные примеси - остальное. Прокат имеет феррито-перлитную структуру с содержанием перлита не более 8%. Плотность коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция и/или магния, содержащих кремний при отсутствии сульфидной составляющей или имеющих сульфидную составляющую в виде сульфида марганца, составляет не более 2 вкл./мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2. Повышается коррозионная стойкость проката в водных средах. 2 н.п. ф-лы, 2 табл.

Description

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем.
Коренное отличие трубопроводов, транспортирующих водные среды (теплотрассы, системы водоснабжения, нефтепромысловые трубопроводы), от магистральных газо- и нефтепроводов заключается в том, что основной причиной их преждевременных разрушений являются процессы общей и локальной коррозии, которая развивается по классическому электрохимическому механизму (так как водная среда является электролитом). Поэтому и требования к стали должны быть разными. Нельзя считать правильными попытки использовать газопроводные трубы для теплосетей или водоснабжения. Помимо того, что стоимость их существенно выше, они не обеспечат требуемую коррозионную стойкость. Таким образом, требования к химическому составу, микроструктуре, чистоте по неметаллическим включениям для сталей, эксплуатируемых в водных средах (содержащих активаторы коррозии углеродистых сталей сульфаты и хлориды) должны обеспечить стойкость против электрохимической общей и локальной коррозии.
Известна сталь повышенной коррозионной стойкости, содержащая следующие компоненты, мас. %,:
углерод 0,07-0,30
марганец 0,35-1,50
кремний 0,15-0,70
хром 0,05-1,00
никель 0,05-0,50
медь 0,05-0,50
алюминий 0,01-0,05
сера не более 0,010
фосфор не более 0,020
кальций 0,0008-0,0020
железо и неизбежные примеси, в том числе кислород остальное,
причем содержание углерода, марганца и кремния соответствуют условия 2[C]+0,1[Mn]+0,4[Si]<0,63, где [С], [Mn] и [Si] - содержание углерода, марганца и кремния соответственно, мас. %, при этом содержание алюминатов кальция в стали не превышает 3 включений в 1 мм2, содержание кислорода составляет не более 0,3 содержания алюминия, а балл сульфидов составляет не более 1,0. Сталь дополнительно может содержать ниобий в количестве 0,01-0,06% (Патент РФ №2243284, МПК С22С 38/42, опубл. 20.06.2004 г.).
Сталь обеспечивает повышение коррозионной стойкости при сохранении прочности, вязкости и хладостойкости. Однако недостатком известной стали является невысокая стойкость к локальной коррозии ввиду отсутствия требований к содержанию коррозионно-активных неметаллических включений (КАНВ). Кроме того, себестоимость такой стали высокая ввиду повышенного содержания легирующих элементов.
Наиболее близким аналогом к заявленному изобретению является сталь повышенной коррозионной стойкости, содержащая следующие компоненты, мас. %:
углерод 0,02-0,20
марганец 0,35-1,4
кремний 0,01-0,40
хром 0,01-0,40
никель 0,01-0,40
медь 0,10-0,30
алюминий 0,01-0,05
сера не более 0,005
фосфор 0,005-0,035
ниобий 0,02-0,05
кальций 0,0001-0,002
цинк, олово, мышьяк и свинец не более 0,005 каждого
кислород не более 0,004
железо и неизбежные примеси остальное,
причем содержание меди определено в зависимости от содержания серы в соответствии с условием: где |Cu| и |S| - абсолютные величины содержания меди и серы соответственно, при этом максимально допустимое значение плотности коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция составляет 3 вкл./мм2 площади микрошлифа, а максимально допустимое значение плотности КАНВ на основе алюминатов магния составляет 2 вкл./мм2 площади микрошлифа.
Недостатком известной стали является невысокая коррозионная стойкость в водных средах ввиду отсутствия требований к микроструктуре проката, высокого максимально допустимого значения плотности коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция и/или магния, высокого содержания легирующих элементов, таких как углерод, марганец и кремний.
Техническим результатом предлагаемого изобретения является повышение коррозионной стойкости стального проката и изделий из него в водных средах при одновременном снижении себестоимости.
Указанный технический результат достигается тем, что стальной прокат повышенной коррозионной стойкости выполнен из стали, содержащей углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, азот, молибден, ниобий, титан, ванадий, мышьяк, железо и неизбежные примеси, при ограничении максимально допустимого значения плотности коррозионно-активных неметаллических включений в стали, согласно изобретению сталь содержит компоненты в следующем соотношении, мас. %:
углерод 0,04-0,12
кремний не более 0,03
марганец 0,15-0,40
сера не более 0,015
фосфор не более 0,020
хром 0,15-0,30
никель не более 0,1
медь не более 0,1
алюминий 0,01-0,05
азот не более 0,006
молибден не более 0,015
ниобий не более 0,01
титан не более 0,01
ванадий не более 0,01
мышьяк не более 0,08
железо и неизбежные примеси остальное
при этом прокат имеет феррито-перлитную структуру с содержанием перлита не более 8%, а плотность коррозионно-активных неметаллических включений (КАНВ) основе алюминатов кальция и/или магния, содержащие кремний и некоторые другие элементы, при отсутствии сульфидной составляющей или имеющие сульфидную составляющую, преимущественно в виде сульфида марганца составляет не более 2 вкл./мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2.
Технический результат достигается также тем, что изделие изготавливают из стального проката указанного состава.
Сущность технического решения заключается в следующем.
Содержание углерода и марганца в заявленных диапазонах обеспечивает необходимый уровень прочности проката при сохранении его коррозионной стойкости. При более низком содержании указанных элементов не обеспечивается требуемая прочность проката. При более высоком их содержании снижается коррозионная стойкость проката.
Содержание кремния и алюминия в заявленном диапазоне определяет необходимую степень раскисленности стали при ограниченном количестве оксидов, отрицательно влияющих на коррозионную стойкость стали. При более высоком содержании указанных элементов снижается коррозионная стойкость проката.
Присутствие в стали хрома при заявленном содержании углерода и марганца положительно влияет на стойкость стали против общей коррозии и против локальной коррозии в системах водоснабжения. С этим связано ограничение нижнего предела по содержанию этого элемента в стали.
Содержание никеля, меди и молибдена положительно влияет на стойкость стали против общей коррозии в системах водоснабжения, но приводит к повышению себестоимости проката. В связи с этим введено ограничение верхнего предела по содержанию этих элементов.
Ограничение содержания серы связано с необходимостью обеспечения требований по плотности КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей.
Микролегирование стали ниобием, титаном и ванадием обеспечивает необходимый уровень механических свойств. Ограничение верхнего предела содержания элементов позволяет снизить себестоимость проката.
Ограничение содержания фосфора, азота и мышьяка, как вредной примеси, позволяет повысить качество готового проката.
Феррито-перлитная структура проката с содержанием перлита не более 8% положительно влияет на стойкость стали против общей и локальной коррозии, так как имеет низкую плотность дислокаций на поверхности проката, низкий уровень внутренних напряжений и минимальное содержание второй фазы.
Ограничение плотности коррозионно-активных неметаллических включений (КАНВ) основе алюминатов кальция и/или магния, содержащие кремний и некоторые другие элементы, при отсутствии сульфидной составляющей или имеющие сульфидную составляющую, преимущественно в виде сульфида марганца не более 2 вкл./мм2 (КАНВ 1-го типа, сокращенно КАНВ1), плотности КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2 (КАНВ 2-го типа, сокращенно КАНВ2), позволяет повысить стойкость проката против локальной коррозии.
Пример реализации способа. В кислородном конвертере выплавили стали, химический состав которых приведен в таблице 1. Выплавленную сталь разливали на машине непрерывного литья в слябы. Слябы нагревали в нагревательной печи с шагающими балками и прокатывали на непрерывном широкополосном стане 2000. Горячекатаные полосы на отводящем рольганге охлаждали водой и сматывали в рулоны. Далее часть горячекатаных рулонов отгружали потребителю для дальнейшей переработки. Другую часть горячекатаных рулонов подвергали соляно-кислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане. Холоднокатаные полосы отжигали в колпаковых печах. Отожженные полосы дрессировали на дрессировочном стане. Холоднокатаные полосы отгружали потребителю для дальнейшей переработки.
Плотность КАНВ1 и КАНВ2 на горячекатаном и холоднокатаном прокате определяли специальными методами (Патент РФ №2149400, МПК G01N 33/20, опубл. 20.05.2000). Коррозионную стойкость проката оценивали по значению плотности тока при потенциале свободной коррозии. Известно, что чем выше плотность тока при потенциале свободной коррозии, тем ниже коррозионная стойкость проката.
Результаты испытаний проката приведены в таблице 2.
Figure 00000001
Figure 00000002
Как видно, при выполнении всех параметров формулы изобретения (варианты №№1, 2, 4) стальной прокат обладает высокой коррозионной стойкостью, о чем свидетельствует низкая плотность тока. В случае запредельных значений заявленных параметров (варианты №№3, 5) стальной прокат с повышенной коррозионной стойкостью получить не удалось.
Таким образом, использование настоящего изобретения повышает коррозионную стойкость стального проката и изделий из него в водных средах при одновременном снижении себестоимости.

Claims (4)

1. Стальной прокат повышенной коррозионной стойкости, выполненный из стали, содержащей углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, азот, молибден, ниобий, титан, ванадий, мышьяк, железо и неизбежные примеси, отличающийся тем, что сталь содержит компоненты в следующем соотношении, мас.%:
углерод 0,04-0,12 кремний не более 0,03 марганец 0,15-0,40 сера не более 0,015 фосфор не более 0,020 хром 0,15-0,30 никель не более 0,1 медь не более 0,1 алюминий 0,01-0,05 азот не более 0,006 молибден не более 0,015 ниобий не более 0,01 титан не более 0,01 ванадий не более 0,01 мышьяк не более 0,08 железо и неизбежные примеси остальное,
при этом прокат имеет феррито-перлитную структуру с содержанием перлита не более 8%, а плотность коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция и/или магния, содержащих кремний, при отсутствии сульфидной составляющей или имеющих сульфидную составляющую в виде сульфида марганца, составляет не более 2 вкл./мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2.
2. Изделие, выполненное из стального проката повышенной коррозионной стойкости, отличающееся тем, что оно выполнено из стального проката повышенной коррозионной стойкости по п. 1.
RU2018126710A 2018-07-19 2018-07-19 Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него RU2687360C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018126710A RU2687360C1 (ru) 2018-07-19 2018-07-19 Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018126710A RU2687360C1 (ru) 2018-07-19 2018-07-19 Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Publications (1)

Publication Number Publication Date
RU2687360C1 true RU2687360C1 (ru) 2019-05-13

Family

ID=66578914

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018126710A RU2687360C1 (ru) 2018-07-19 2018-07-19 Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Country Status (1)

Country Link
RU (1) RU2687360C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2243284C2 (ru) * 2002-12-02 2004-12-27 Открытое акционерное общество "Волжский трубный завод" Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее
RU2433198C2 (ru) * 2009-12-07 2011-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
RU2532768C1 (ru) * 2013-07-23 2014-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ призводства проката из низколегированной толстолистовой стали
RU2561569C2 (ru) * 2013-11-25 2015-08-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства толстолистового проката из низколегированной стали
US9121079B2 (en) * 2010-03-10 2015-09-01 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet and method of manufacturing the same
US9732405B2 (en) * 2011-03-18 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Hot rolled steel sheet and method of producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2243284C2 (ru) * 2002-12-02 2004-12-27 Открытое акционерное общество "Волжский трубный завод" Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее
RU2433198C2 (ru) * 2009-12-07 2011-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
US9121079B2 (en) * 2010-03-10 2015-09-01 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet and method of manufacturing the same
US9732405B2 (en) * 2011-03-18 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Hot rolled steel sheet and method of producing same
RU2532768C1 (ru) * 2013-07-23 2014-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ призводства проката из низколегированной толстолистовой стали
RU2561569C2 (ru) * 2013-11-25 2015-08-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства толстолистового проката из низколегированной стали

Similar Documents

Publication Publication Date Title
RU2406780C2 (ru) Нержавеющая сталь, полученная дуплекс-процессом
US11447844B2 (en) Manufacturing method for hot rolled steel sheet
KR102242067B1 (ko) 고강도 강판 및 그 제조 방법
TWI604067B (zh) 兩片式罐用鋼板及其製造方法
JP4460343B2 (ja) 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP6212473B2 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
US9879332B2 (en) Method of manufacturing high-strength steel sheet for a can
JP5195413B2 (ja) 曲げ加工性及び靭性の異方性に優れた高強度熱延鋼板及びその製造方法
RU2768710C1 (ru) Горячекатаный стальной лист с высоким отношением раздачи отверстия и способ его производства
RU2728981C1 (ru) Рулонный прокат для обсадных и насосно-компрессорных труб и способ его производства
JP4943244B2 (ja) 極薄容器用鋼板
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
JP2007197742A (ja) 溶接缶用冷延鋼板およびその製造方法
RU2351661C1 (ru) Способ производства тонких холоднокатаных полос под металлические или полимерные покрытия
AU2019200246A1 (en) Steel material and expandable oil country tubular goods
KR101735003B1 (ko) 내식성이 향상된 린 듀플렉스 스테인리스강 및 이의 제조 방법
RU2687360C1 (ru) Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него
RU2465346C1 (ru) Способ производства высокопрочного штрипса для труб магистральных трубопроводов
KR20140082491A (ko) 듀플렉스강의 냉간압연 방법
RU2676543C1 (ru) Способ производства горячекатаного проката из конструкционной стали
KR20130077072A (ko) 강도 및 연신율이 우수한 플럭스 코드 와이어용 강판 및 그 제조 방법
RU2689491C1 (ru) Способ производства тонких холоднокатаных полос для нанесения полимерного покрытия
JPS58161722A (ja) 管曲げ加工性の優れた電気抵抗溶接管用素材熱延鋼板の製造方法
JP3911075B2 (ja) 焼付硬化性に優れる超深絞り用鋼板の製造方法
US20230287549A1 (en) Austenitic stainless steel with improved deep drawing