RU2243284C2 - Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее - Google Patents

Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее

Info

Publication number
RU2243284C2
RU2243284C2 RU2002132331/02A RU2002132331A RU2243284C2 RU 2243284 C2 RU2243284 C2 RU 2243284C2 RU 2002132331/02 A RU2002132331/02 A RU 2002132331/02A RU 2002132331 A RU2002132331 A RU 2002132331A RU 2243284 C2 RU2243284 C2 RU 2243284C2
Authority
RU
Russia
Prior art keywords
steel
content
corrosion
carbon
manganese
Prior art date
Application number
RU2002132331/02A
Other languages
English (en)
Other versions
RU2002132331A (ru
Inventor
В.Ю. Кузнецов (RU)
В.Ю. Кузнецов
А.А. Печерица (RU)
А.А. Печерица
Е.Я. Кузнецова (RU)
Е.Я. Кузнецова
И.И. Лубе (RU)
И.И. Лубе
В.В. Фролочкин (RU)
В.В. Фролочкин
Н.Н. Лашкуль (RU)
Н.Н. Лашкуль
Ю.Н. Уткин (RU)
Ю.Н. Уткин
И.Г. Родионова (RU)
И.Г. Родионова
О.Н. Бакланова (RU)
О.Н. Бакланова
А.А. Быков (RU)
А.А. Быков
ров В.И. Стол (RU)
В.И. Столяров
И.И. Реформатска (RU)
И.И. Реформатская
С.В. Порецкий (RU)
С.В. Порецкий
А.Н. Рыбкин (RU)
А.Н. Рыбкин
Original Assignee
Открытое акционерное общество "Волжский трубный завод"
Ассоциация "Центр научно-технического сотрудничества Нефтегазовой компании "Славнефть"
Закрытое акционерное общество "Институт биметаллических сплавов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Волжский трубный завод", Ассоциация "Центр научно-технического сотрудничества Нефтегазовой компании "Славнефть", Закрытое акционерное общество "Институт биметаллических сплавов" filed Critical Открытое акционерное общество "Волжский трубный завод"
Priority to RU2002132331/02A priority Critical patent/RU2243284C2/ru
Publication of RU2002132331A publication Critical patent/RU2002132331A/ru
Application granted granted Critical
Publication of RU2243284C2 publication Critical patent/RU2243284C2/ru

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к металлургии, а именно к стали повышенной коррозионной стойкости и выполненным из нее бесшовным трубам. Может применяться для строительства трубопроводов, транспортирующих агрессивные среды, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты. Предложена сталь повышенной коррозионной стойкости, содержащая, мас.%: углерод 0,07-0,30; марганец 0,35-1,50; кремний 0,15-0,70; хром 0,05-1,00; никель 0,05-0,50; медь 0,05-0,50; алюминий 0,01-0,05; сера не более 0,010; фосфор не более 0,020; кальций 0,0008-0,0020; железо и неизбежные примеси, в том числе кислород - остальное. Размер зерна стали не крупнее 8 номера. Содержание углерода, марганца и кремния соответствует условию: 2[С]+0,1[Mn]+0,4[Si]<0,63. Содержание алюминатов кальция в стали не более 3 включений в 1 мм3, содержание кислорода не более 0,3 от содержания алюминия, а балл сульфидов не более 1,0. Из стали изготавливают бесшовные трубы с полосчатостью структуры не более 2 баллов. Техническим результатом является повышение коррозионной стойкости при сохранении прочности, вязкости и хладостойкости. 2 с. и 1 з.п.ф-лы, 1 табл.

Description

Изобретение относится к металлургии, а именно к составам углеродистой и низколегированной стали повышенной коррозионной стойкости и выполненным из нее бесшовным трубам, которые могут быть использованы для строительства трубопроводов, транспортирующих агрессивные среды, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты. Такие трубы могут быть использованы для теплотрасс, нефтепромысловых трубопроводов и для других назначений. Обычные стали в указанных условиях могут быть подвержены общей и локальной коррозии, коррозионному растрескиванию под напряжением, водородному охрупчиванию, коррозионной эрозии, что приводит к сквозным коррозионным повреждениям трубопровода. Поэтому основными требованиями, предъявляемыми к таким сталям, должны быть их высокая стойкость против различных видов коррозионного и коррозионно-механического разрушения при достаточной прочности, необходимой для трубопроводов, работающих под давлением, а также удовлетворительной свариваемости, вязкости и хладостойкости. Учитывая, что рассматриваемые трубопроводы имеют значительную протяженность, в связи с чем необходимо использовать значительные объемы труб, стоимость такой металлопродукции должна быть сравнительно низкой, что исключает возможность использования сталей, содержащих значительные количества дорогостоящих легирующих элементов.
Известна сталь для изготовления магистральных труб для перекачивания нефтепродуктов в условиях северных широт, содержащая следующие компоненты, мас.%:
Углерод 0,06-0,13
Кремний 0,15-0,40
Марганец 0,30-0,60
Хром 0,40-0,70
Молибден 0,08-0,15
Алюминий 0,01-0,07
Титан 0,005-0,09
Церий 0,002-0,05
Железо Остальное
при этом содержание церия, титана и алюминия соответствует условию:
[Се]>2,5·10-4/[Al]+0,8[Ti],
где [Се], [Аl], [Ti] - содержание церия, алюминия и титана соответственно.
Сталь обеспечивает стойкость труб к сульфидному коррозионному растрескиванию, хорошую свариваемость в условиях низких температур с одновременным обеспечением износостойкости (патент РФ № 2122045, МПК С 22 С 38/28, опубл. 20.11.1998). Однако стойкость такой стали против локальной коррозии в водных средах, содержащих ионы хлора, невысока. Кроме того, легирование такими элементами, как хром и молибден, приводит к увеличению стоимости стали и труб из нее.
Известны высокопрочные бесшовные трубы, выполненные из стали следующего состава, мас.%:
Углерод 0,1-0,5
Кремний 0,1-0,3
Марганец 0,2-0,8
Хром 1,0-4,0
Алюминий 0,005-0,1
Фосфор и сера в сумме Не более 0,005
Азот Не более 0,004
Молибден 0,2-1,0
Ниобий 0,01-0,1
Цирконий и/или титан 0,005-0,1
Железо Остальное
Сталь может дополнительно содержать хотя бы один из элементов - не более 0,1% ванадия, не более 0,005% бора.
Предел текучести готовой трубы или условный предел текучести при остаточной деформации 0,6% составляет 70-120 кгс/мм2. Трубы отличаются высокой стойкостью к сульфидной коррозии под напряжением и высокой пластичностью при низких температурах (Акцептованная заявка Японии №2-25969, МПК С 1 D 8/10, С 22 С 38/00, опубл. 06.06.1990). Однако такие трубы могут проявлять повышенную скорость локальной коррозии в водных хлорсодержащих и некоторых других средах. Кроме того, легирование хромом и необходимость использования технологических приемов, направленных на обеспечение чистоты по примесям, неизбежно приводит к повышенной стоимости труб.
Известны высокопрочные бесшовные трубы, имеющие высокую стойкость против коррозионного растрескивания под действием сульфидов, выполненные из стали следующего состава, мас.%:
Углерод 0,40-0,60
Кремний 0,20-0,35
Марганец 0,4-1,2
Хром 0,8-1,5
Молибден 0,6-1,0
Алюминий 0,005-0,1
Фосфор 0,009-0,020
Сера не более 0,010
по крайней мере, один из элементов: титан, ванадий и ниобий в сумме - не более 0,1,
Железо и неизбежные примеси Остальное
Предел прочности составляет 94-140 кгс/мм2, предел текучести - 83-119 кгс/мм2 (Европейский патент №0224591 В1, МПК С 21 D 8/10, С 22 С 38/22, опубл. 18.08.1993). Однако высокое содержание углерода приводит к снижению коррозионной стойкости во многих средах и к ухудшению свариваемости труб при монтаже трубопроводов.
Известна низколегированная сталь для изготовления высокопрочной свариваемой бесшовной трубы, содержащая, мас.%:
Углерод 0,24-0,28
Марганец 1,30-1,50
Кремний 0,15-0,35
Медь Не более 0,20
Хром 0,13-0,20
Молибден 0,15-0,60
Алюминий 0,007-0,05
Азот Не более 0,02
Титан 0,02-0,04
Бор 0,0007-0,0025
Ниобий 0,02-0,10
Серу Не более 0,01
Фосфор Не более 0,03
Железо Остальное
Минимальный предел текучести 94,5 кг/мм2, минимальное удлинение 15% (патент США №4784704, НКИ 148/334, МПК С 22 С 38/22, опубл. 15.11.1998). Несмотря на высокую прочность и удовлетворительную пластичность, коррозионная стойкость такой стали недостаточна.
Известна сталь с высокой коррозионной стойкостью для нефте- и газопроводных труб, содержащая, мас.%:
Кремний 0,01-1,2
Марганец 0,02-3,0
Хром 7,5-14,0
Алюминий 0,005-0,5
при ограничении содержания углерода, азота, фосфора и серы с добавками меди, никеля, кобальта, молибдена или вольфрама (патент США №5820707, опубл. 13.10.1998, НКИ 148/593). Высокая стоимость такой стали из-за повышенного содержания хрома и других легирующих элементов ограничивает ее использование для труб массового назначения.
Наиболее близким аналогом заявленного изобретения являются стали и трубы бесшовные сероводородостойкие из них с техническими характеристиками по ТУ 14-3-1963-95. Согласно этим техническим условиям сталь типа 20 содержит, мас.%:
Углерод 0,18-0,22
Марганец 0,35-0,65
Кремний 0,17-0,37
Серу Не более 0,010
Фосфор Не более 0,025
Алюминий 0,015-0,040
Хром Не более 0,25
Никель Не более 0,30
Медь Не более 0,020
Железо и неизбежные примеси Остальное
с размером зерна не крупнее 8 номера. Сталь и выполненные из нее бесшовные трубы имеют высокую прочность, вязкость, хладостойкость, а также стойкость против сероводородного растрескивания под напряжением и водородного растрескивания. Однако стойкость против общей и локальной коррозии в водных средах, содержащих ионы хлора, и в некоторых других недостаточно высока.
Задача, решаемая с помощью данного изобретения, заключается в обеспечении коррозионной стойкости, прочности, вязкости и хладостойкости стали и бесшовных выполненных из нее труб при их низкой стоимости.
Техническим результатом данного изобретения является повышение коррозионной стойкости стали и бесшовных труб при сохранении прочности, вязкости, хладостойкости и стоимостных показателей.
Технический результат достигается тем, что известная сталь, содержащая углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, железо и неизбежные примеси, с размером зерна не крупнее 8 номера, согласно изобретению дополнительно содержит кальций при следующем соотношении компонентов, мас.%:
Углерод 0,07-0,30
Марганец 0,35-1,50
Кремний 0,15-0,70
Хром 0,05-1,00
Никель 0,05-0,50
Медь 0,05-0,50
Алюминий 0,01-0,05
Серу Не более 0,010
Фосфор Не более 0,020
Кальций 0,0008-0,0020
Железо и неизбежные примеси,
в том числе кислород Остальное
причем содержание углерода, марганца и кремния соответствует условию:
Figure 00000001
где [С], [Мn] и [Si] - содержание углерода, марганца и кремния, соответственно выраженное в массовых процентах, при этом содержание алюминатов кальция в стали не превышает 3 включений в 1 мм3, содержание кислорода составляет не более 0,3 содержания алюминия, а балл сульфидов составляет не более 1,0, также тем, что сталь дополнительно содержит ниобий в количестве 0,01-0,06%, а также тем, что бесшовные трубы изготавливают из указанной стали, при этом полосчатость структуры труб не выше 2 балла.
Содержание углерода и марганца в предлагаемых пределах необходимо для получения требуемого уровня прочности стали без снижения ее коррозионной стойкости.
Содержание кремния и алюминия в предлагаемых пределах обеспечивает необходимую степень раскисленности стали при незначительном количестве оксидов, отрицательно влияющих на коррозионную стойкость стали.
Присутствие в стали хрома, никеля и меди в заявленных пределах положительно влияет на стойкость стали против общей коррозии и против питтинговой коррозии в некоторых средах.
Ограничение содержания фосфора и серы связано с необходимостью обеспечить определенный уровень вязкости и хладостойкости стали и труб.
Дополнительное введение кальция также приводит к повышению вязкости и хладостойкости стали, а также стойкости против некоторых видов коррозионного разрушения.
Дополнительное ограничение содержания углерода, марганца и кремния в соответствии с соотношением (1) объясняется тем, что содержание указанных элементов оказывает влияние на скорость общей коррозии стали в водных средах, содержащих ионы хлора, что подтверждено результатами натурных и электрохимических коррозионных испытаний. При выполнении условия (1) скорость общей коррозии углеродистых сталей не превышает 0,2 мм/год.
Ограничение содержание в стали алюминатов кальция - не более 3 включений в 1 мм3 связано с тем, что в водных хлорсодержащих средах именно присутствие в стали алюминатов кальция в большем количестве, чем указанное, приводит к существенному увеличению скорости локальной коррозии и преждевременному выходу из строя трубопроводов по причине локальных сквозных коррозионных повреждений.
Ограничение содержания в стали кислорода - не более 0,3 содержания алюминия связано с тем, что присутствие в стали значительного количества кислорода, не связанного алюминием, приводит к существенному ускорению процессов как общей, так и локальной коррозии, протекающей по электрохимическому механизму, из-за участия этого кислорода в катодной реакции.
Дополнительно повысить коррозионную стойкость, в частности стойкость против питтинговой коррозии, а также характеристики вязкости и хладостойкости позволяет ограничение балла сульфидов в стали - не более 1,0, определяемого по ГОСТ 17788.
Введение в сталь ниобия позволяет дополнительно повысить характеристики вязкости стали и труб.
Ограничение балла полосчатости структуры не более 2 по ГОСТ 5640 приводит к повышению однородности структуры стальных труб, что положительно сказывается на их коррозионной стойкости.
Было выплавлено пять вариантов сталей - 3 углеродистые и 2 низколегированные в 150-тонной электропечи ОАО “Волжский трубный завод”, разлиты в трубные заготовки диаметром 196 мм, которые затем прокатывали на бесшовные трубы размерами 114×11 мм. Трубы подвергали нормализации при температуре 900-930°С. Были опробованы следующие варианты:
вариант 1 - углеродистая сталь, содержащая 0,18% углерода; 0,26% кремния; 0,58% марганца; 0,011% фосфора; 0,008% серы; 0,14% хрома; 0,15% никеля; 0,20% меди, 0,04% алюминия, 0,001% кальция при значении 2[С]+0,1[Mn]+0,4[Si]=0,52, содержании алюминатов кальция - 1 включение в 1 мм3, содержании кислорода 0,005% (то есть меньше чем 0,3 содержания алюминия, равных в данном случае 0,012%), имеющая феррито-перлитную структуру с номером зерна феррита - 9 (ГОСТ 5639) и с баллом сульфидов 0,5 (ГОСТ 1778) (соответствует пп.1 и 3 формулы изобретения),
вариант 2 - углеродистая сталь, содержащая 0,22% углерода; 0,37% кремния, 0,65% марганца, 0,010% фосфора; 0,010% серы; 0,07% хрома; 0,08% никеля; 0,10% меди, 0,015% алюминия, не содержащая кальция и алюминатов кальция, при значении 2[С]+0,1[Mn]+0,4[Si]=0,65, содержании кислорода 0,006% (то есть больше чем 0,3 содержания алюминия, равных в данном случае 0,0045%), имеющая феррито-перлитную структуру с номером зерна феррита 8 (ГОСТ 5639) и с баллом сульфидов 1 (ГОСТ 1778) (не соответствует формуле изобретения по содержанию кальция, значению суммы 2[С]+0,1[Mn]+0,45[Si], содержанию кислорода);
вариант 3 - углеродистая сталь, содержащая 0,17% углерода, 0,28% кремния, 0,54% марганца, 0,014% фосфора, 0,007% серы, 0,10% хрома, 0,10% никеля, 0,20% меди, 0,05% алюминия, 0,001% кальция, 0,04% ниобия при значении 2[С]+0,1[Мn]+0,4[Si]=0,51, содержании алюминатов кальция 1,5 включения в 1 мм3, содержании кислорода 0,003% (то есть меньше чем 0,3 содержания алюминия, равных в этом случае 0,015%), имеющая феррито-перлитную структуру с номером зерна феррита 8 (ГОСТ 5639) и с баллом сульфидов 0,5 (ГОСТ 1778) (соответствует формуле изобретения п.2 и п.3);
вариант 4 - низколегированная сталь, содержащая 0,10% углерода, 0,65% кремния, 1,46% марганца, 0,015% фосфора, 0,005% серы, 0,10% хрома, 0,08% никеля, 0,09% меди, 0,03% алюминия, 0,002% кальция, при значении 2[С]+0,1[Мn]+0,4[Si]=0,61, содержании алюминатов кальция - менее 1 включения в 1 мм3, содержании кислорода - 0,005% (то есть меньше чем 0,3 содержания алюминия, равных в данном случае 0,009%), имеющая феррито-перлитную структуру с номером зерна феррита 9 (ГОСТ 5639) и с баллом сульфидов 0,5 (ГОСТ1778) (соответствует формуле изобретения п.1 и п.3);
вариант 5 - низколегированная сталь, содержащая 0,11% углерода, 0,60% кремния, 1,40% марганца, 0,012% фосфора, 0,007% серы, 0,11% хрома, 0,10% никеля, 0,05% меди, 0,02% алюминия, 0,002% кальция, при значении 2[С]+0,1[Мn]+0,4[Si]=0,60, содержании алюминатов кальция - 5 включений в 1 мм, содержании кислорода - 0,007% (то есть больше чем 0,3 содержания алюминия, равных в данном случае 0,006%), имеющая феррито-перлитную структуру с номером зерна феррита 8 (ГОСТ 5639) и с баллом сульфидов 0,5 (ГОСТ 1778) (не соответствует формуле изобретения по содержанию алюминатов кальция и содержанию кислорода).
На трубах после нормализации определяли полосчатость структуры по ГОСТ 5640, а также отбирали образцы для проведения комплексных механических и коррозионных испытаний - на растяжение по ГОСТ 10006, на ударную вязкость при температуре - минус 20°С на образцах с острым надрезом (тип “Шарпи”) и при минус 60°С на образцах с круглым надрезом (тип “Менаже”) по ГОСТ 9454, а также специальные коррозионные испытания по методикам, разработанным НИФХИ им. Л.Я. Карпова:
методика №1 - определяли скорость развития питтингов в горячей воде (паре) при температуре 135±15°С, содержащей 50 мг/л хлор-иона, 50 мг/л сульфат-иона и 20 мг/л кислорода, рН 8,5-9,5, длительность натурных испытаний - 10 месяцев (использовали методику определения скорости локальной коррозии, предложенную в работе Липовских В.М., Кашинского В.И., Реформатской И.И., Флорианович Г.М., Подобаева А.Н. и Ащеуловой И.И. Зависимость коррозионной стойкости теплопроводов из углеродистой стали от водного режима теплосети. Защита металлов. 1999, т.35, №6, с.653-655);
методика №2 - определяли потери массы образцов в результате коррозионных натурных испытаний в водной среде, содержащей 0,17 моль/л NaCl, 0,13 моль/л КСl, 8 ммоль/л КаНСО3 и 0,8 ммоль/л Na2SO4, в течение 90 суток.
Полосчатость структуры для вариантов 1, 3-5 имела 2 балл, для варианта 2-3 балл. Результаты определения предела текучести, временного сопротивления, ударной вязкости при минус 20 и минус 60°С, а также скорости локальной и общей коррозии (методики 1 и 2 соответственно) для рассмотренных пяти вариантов сталей представлены в таблице.
Видно, что варианты 1, 3 и 4, соответствующие формуле изобретения, обеспечивают высокие механические характеристики и коррозионную стойкость стального проката и труб: скорость общей коррозии - не более 0,20 гм2/час, скорость локальной коррозии - не более 0,5 мм/год.
При повышенном значении 2[С]+0,1[Mn]+0,4[Si] для варианта 2 возрастает скорость общей коррозии, из-за высокого содержания в стали кислорода и повышенной полосчатости возрастает скорость локальной коррозии. Кроме того, отсутствие в стали варианта 2 кальция снижает характеристики вязкости при отрицательных температурах.
Из-за повышенного содержания в стали варианта 5 алюминатов кальция и высокого содержания кислорода существенно возрастает скорость локальной коррозии - примерно в 3 раза по сравнению с вариантами 1, 3 и 4, соответствующими формуле изобретения.
Пониженная коррозионная стойкость стали в присутствии алюминатов кальция и повышенного содержания кислорода, не связанного алюминием, является одной из основных причин досрочных выходов из строя трубопроводов систем нефтесбора и теплотрасс.
Таким образом, использование настоящего предложения существенно повышает коррозионную стойкость углеродистых и низколегированных сталей при сохранении их прочности, вязкости, хладостойкости и стоимости. В конечном итоге это приведет к значительному повышению срока безаварийной эксплуатации трубопроводов.
Figure 00000002

Claims (3)

1. Сталь повышенной коррозионной стойкости, содержащая углерод, марганец, кремний, хром, никель, медь, алюминий, фосфор, серу, железо и неизбежные примеси с размером зерна не крупнее 8-го номера, отличающаяся тем, что она дополнительно содержит кальций при следующем соотношении компонентов, мас.%:
Углерод 0,07-0,30
Марганец 0,35-1,50
Кремний 0,15-0,70
Хром 0,05-1,00
Никель 0,05-0,50
Медь 0,05-0,50
Алюминий 0,01-0,05
Серу Не более 0,010
Фосфор Не более 0,020
Кальций 0,0008-0,0020
железо и неизбежные примеси, в том числе кислород Остальное
причем содержание углерода, марганца и кремния соответствует условию
2[C]+0,1[Mn]+0,4[Si]<0,63,
где [С], [Мn] и [Si] - содержание углерода, марганца и кремния соответственно, мас.%,
при этом содержание алюминатов кальция в стали не превышает 3 включений в 1 мм3, содержание кислорода составляет не более 0,3 содержания алюминия, а балл сульфидов составляет не более 1,0.
2. Сталь по п.1, отличающаяся тем, что она дополнительно содержит ниобий в количестве 0,01-0,06%.
3. Бесшовные трубы, выполненные из стали повышенной коррозионной стойкости, отличающиеся тем, что они выполнены из стали по п.1 или 2, имеющей полосчатость структуры не выше 2 баллов.
RU2002132331/02A 2002-12-02 2002-12-02 Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее RU2243284C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002132331/02A RU2243284C2 (ru) 2002-12-02 2002-12-02 Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002132331/02A RU2243284C2 (ru) 2002-12-02 2002-12-02 Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее

Publications (2)

Publication Number Publication Date
RU2002132331A RU2002132331A (ru) 2004-06-20
RU2243284C2 true RU2243284C2 (ru) 2004-12-27

Family

ID=34387329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002132331/02A RU2243284C2 (ru) 2002-12-02 2002-12-02 Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее

Country Status (1)

Country Link
RU (1) RU2243284C2 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670547B2 (en) 2005-07-08 2010-03-02 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
RU2447187C1 (ru) * 2010-11-10 2012-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Сталь повышенной коррозионной стойкости и хладостойкости
RU2482211C2 (ru) * 2008-02-20 2013-05-20 Ф Унд М Дойчланд Гмбх Стальной сплав для низколегированной стали для производства высокопрочных бесшовных стальных труб
RU2507295C1 (ru) * 2012-09-17 2014-02-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Высокопрочная хладостойкая arc-сталь
RU2507296C1 (ru) * 2012-09-17 2014-02-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Хладостойкая arc-сталь высокой прочности
RU2520170C1 (ru) * 2013-01-09 2014-06-20 Открытое Акционерное Общество "Выксунский Металлургический Завод" Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
RU2564191C2 (ru) * 2013-12-27 2015-09-27 Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") Труба из стали, стойкой к коррозии в среде углеводорода и углекислого газа
RU2679679C1 (ru) * 2018-05-31 2019-02-12 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Литая хладостойкая сталь
RU2680557C1 (ru) * 2017-11-28 2019-02-22 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Экономнолегированная хладостойкая высокопрочная сталь
RU2681588C1 (ru) * 2018-05-11 2019-03-11 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
RU2687360C1 (ru) * 2018-07-19 2019-05-13 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него
RU2719212C1 (ru) * 2019-12-04 2020-04-17 Акционерное общество "Первоуральский новотрубный завод" (АО "ПНТЗ") Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения
RU2746598C1 (ru) * 2020-05-12 2021-04-16 Открытое Акционерное Общество "Тяжпрессмаш" Хладостойкая высокопрочная сталь
RU2785314C2 (ru) * 2018-02-23 2022-12-06 Валлурек Дойчланд Гмбх Стали с высокой прочностью при растяжении и высокой ударной вязкостью

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ТУ 14-3-1963-95, 1995. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670547B2 (en) 2005-07-08 2010-03-02 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
RU2482211C2 (ru) * 2008-02-20 2013-05-20 Ф Унд М Дойчланд Гмбх Стальной сплав для низколегированной стали для производства высокопрочных бесшовных стальных труб
RU2447187C1 (ru) * 2010-11-10 2012-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Сталь повышенной коррозионной стойкости и хладостойкости
RU2507295C1 (ru) * 2012-09-17 2014-02-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Высокопрочная хладостойкая arc-сталь
RU2507296C1 (ru) * 2012-09-17 2014-02-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Хладостойкая arc-сталь высокой прочности
RU2520170C1 (ru) * 2013-01-09 2014-06-20 Открытое Акционерное Общество "Выксунский Металлургический Завод" Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
RU2564191C2 (ru) * 2013-12-27 2015-09-27 Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") Труба из стали, стойкой к коррозии в среде углеводорода и углекислого газа
RU2680557C1 (ru) * 2017-11-28 2019-02-22 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Экономнолегированная хладостойкая высокопрочная сталь
RU2785314C2 (ru) * 2018-02-23 2022-12-06 Валлурек Дойчланд Гмбх Стали с высокой прочностью при растяжении и высокой ударной вязкостью
RU2681588C1 (ru) * 2018-05-11 2019-03-11 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
RU2679679C1 (ru) * 2018-05-31 2019-02-12 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Литая хладостойкая сталь
RU2687360C1 (ru) * 2018-07-19 2019-05-13 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него
RU2719212C1 (ru) * 2019-12-04 2020-04-17 Акционерное общество "Первоуральский новотрубный завод" (АО "ПНТЗ") Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения
RU2746598C1 (ru) * 2020-05-12 2021-04-16 Открытое Акционерное Общество "Тяжпрессмаш" Хладостойкая высокопрочная сталь

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
EP3456852B1 (en) High-strength seamless stainless steel pipe for oil country tubular goods and method for producing the same
RU2335570C2 (ru) Мартенситная нержавеющая сталь
EP3533892B1 (en) Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe
JP5487689B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
WO2010050519A1 (ja) 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
RU2243284C2 (ru) Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее
JP6680409B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
EP3690072A1 (en) Oil well pipe martensitic stainless seamless steel pipe and production method for same
CA2830155A1 (en) Carburization resistant metal material
EP3845680B1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO1999041422A1 (fr) Acier resistant a la corrosion et tuyau de puits de petrole resistant a la corrosion presentant une haute resistance a la corrosion par le dioxyde de carbone gazeux
JP6540920B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
EP2803741B1 (en) Method of post weld heat treatment of a low alloy steel pipe
CN115349024A (zh) 不锈钢无缝钢管和不锈钢无缝钢管的制造方法
US11773461B2 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP3752857B2 (ja) 油井用Cr含有継目無鋼管
RU2409697C1 (ru) Коррозионно-стойкая сталь
JP7207557B2 (ja) 油井管用ステンレス継目無鋼管およびその製造方法
RU2433198C2 (ru) Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
CN100507056C (zh) 110钢级耐co2及微量硫化氢腐蚀不锈钢油井管用钢
RU2344194C2 (ru) Сталь повышенной коррозионной стойкости
CN114450430A (zh) 不锈钢无缝钢管及其制造方法
JP5793562B2 (ja) 高耐食マルテンサイト系ステンレス鋼

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20061203