RU2746598C1 - Хладостойкая высокопрочная сталь - Google Patents

Хладостойкая высокопрочная сталь Download PDF

Info

Publication number
RU2746598C1
RU2746598C1 RU2020116922A RU2020116922A RU2746598C1 RU 2746598 C1 RU2746598 C1 RU 2746598C1 RU 2020116922 A RU2020116922 A RU 2020116922A RU 2020116922 A RU2020116922 A RU 2020116922A RU 2746598 C1 RU2746598 C1 RU 2746598C1
Authority
RU
Russia
Prior art keywords
steel
strength
content
impurities
vanadium
Prior art date
Application number
RU2020116922A
Other languages
English (en)
Inventor
Генрих Сергеевич Мирзоян
Александр Сергеевич Орлов
Алексей Михайлович Володин
Александр Федорович Дегтярев
Original Assignee
Открытое Акционерное Общество "Тяжпрессмаш"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Тяжпрессмаш" filed Critical Открытое Акционерное Общество "Тяжпрессмаш"
Priority to RU2020116922A priority Critical patent/RU2746598C1/ru
Application granted granted Critical
Publication of RU2746598C1 publication Critical patent/RU2746598C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким сталям, используемым при производстве, сосудов высокого давления, применяемых для хранения и перевозки сжатых газов в широком диапазоне температур, в том числе эксплуатируемых при пониженных (до -60°С) температурах. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,22-0,28, кремний 0,15-0,30, марганец 0,30-0,60, хром 1,20-1,40, никель 2,85-3,50, медь 0,40-0,70, молибден 0,25-0,35, ниобий 0,02-0,05, цирконий и/или карбонитрид циркония 0,005-0,10 в сумме, церий 0,001-0,020, ванадий 0,05-0,08, алюминий 0,005-0,02, кальций 0,005-0,01, при необходимости по меньшей мере один элемент, выбранный из группы: титан 0,005-0,035, гадолиний 0,008-0,015, иттрий 0,001-0,02, азот 0,005-0,012 и барий 0,005-0,025, остальное - железо и примеси. Суммарное содержание ниобия, ванадия и титана составляет 0,15 или менее. Суммарное содержание легкоплавких примесей свинца, висмута, олова, сурьмы и мышьяка не превышает 0,05 мас.%, а содержание неизбежных примесей серы, фосфора и кислорода не превышает, мас.%: сера ≤0,008, фосфор ≤0,008 и кислород ≤0,005. Сталь обладает требуемым высоким уровнем и стабильностью рабочих характеристик, в том числе прочности, ударной вязкости и пластичности при температурах от плюс 60°С до минус 50°С. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к металлургии, в частности к высокопрочным хладостойким сталям, и может быть использовано при производстве, сосудов высокого давления, применяемых для хранения и перевозки сжатых газов в широком диапазоне температур, в том числе эксплуатируемых при температуре окружающей среды от минус 50°С до плюс 60°С.
В соответствии с требованиями ГОСТ 12247-80 для сосудов давления, в частности, для баллонов объемом 1000 л, с наружным диаметром 600 мм, длиной корпуса при рабочем давлении 31,4 МПа - 4850 мм, при рабочем давлении 39,2 МПа - 5050 мм и толщиной стенки 25,4 мм и 31,1 мм соответственно механические свойства стали должны соответствовать следующим данным: σв = 883 МПа (90 кгс/мм2), σ0,2 = 687 МПа (70 кгс/мм2), δ ≥ 12%, KCU+20 ≥ 49 Дж/см2, KCU-50 ≥ 29,4 Дж/см2, НВ = 269-341.
Известна хладостойкая сталь высокой прочности следующего химического состава, в масс. %: углерод 0,08-0,12, кремний 0,2-0,4, марганец 0,45-0,75, хром 1,05-1,30, медь 0,35-0,65, никель 1,05-2,20, молибден 0,10-0,18, алюминий 0,01-0,06, ванадий 0,04-0,06, ниобий 0,02-0,05, кальций 0,005-0,050, сера 0,001-0,005, железо - остальное, причем величина коэффициента трещиностойкости при сварке Рсм не должна быть выше 0,28%.
(RU 2269588, С22С 38/48, опубл. 10.02.2006).
Недостатком известной стали является пониженная прочность, особенно при содержании никеля на нижнем уровне.
Известна высокопрочная хладостойкая сталь следующего химического состава, в мас. %: углерод 0,08-0,11, кремний 0,20-0,40, марганец 0,65-0,85, хром 0,75-0,95, никель 2,10-2,30, медь 0,60-0,80, молибден 0,25-0,30, ниобий 0,02-0,05, алюминий 0,01-0,05, кальций 0,005-0,050, сера 0,001-0,005, фосфор 0,001-0,010, железо - остальное. Величина коэффициента трещиностойкости при сварке Рсм не превышает 0,30%.
(RU 2507295, C22C 38/48, опубл. 20.02.2014).
Недостатком стали является пониженный предел прочности, что не отвечает требованиям ГОСТ 12247-80.
Известна сталь 30ХГСН2А ГОСТ 4543, содержащая, мас.%: углерод 0,27-0,34; марганец 1,00-1,30; кремний 0,90-1,20; сера <0,025; фосфор <0,025; хром 0,90-1,20; никель 1,40-1,80; медь <0,30 железо - остальное. Данная композиция легирующих элементов после закалки 900°С и отпуска при температуре 600°С обеспечивает хорошую пластичность относительное удлинение и относительное сужение более 20% и 55% соответственно, имеет прочность (σ0,2 = 900 МПа; σв = 1000 МПа), соответствующую требованиям ГОСТ 12247-80, но имеет невысокие показатели вязкости при пониженной температуре (-50°С) даже на образцах с круглым надрезом, что не гарантирует достаточного сопротивления материала сосудов давления хрупкому разрушению при эксплуатации в северных широтах.
По данным «Марочника сталей и сплавов» под редакцией Сорокина В.Г. (М., Машиностроение, 1989, 640 с.) повышение температуры отпуска до 650°С позволяет увеличить ударную вязкость (KCU) при температуре -60°С до 80 Дж/см2 с одновременным снижением прочностных характеристик до уровня, не отвечающего требованиям ГОСТ 12247-80.
Другим недостатком стали 30ХГСН2А является склонность к отпускной хрупкости в процессе отпуска.
Наиболее близкой по технической сущности и достигаемому результату является экономнолегированная высокопрочная хладостойкая сталь, которая содержит углерод, кремний марганец, хром, медь, никель, молибден, ванадий, серу, фосфор и железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит церий и бор, при следующем соотношении компонентов, мас. %: углерод 0,23-0,27, кремний ≤0,30, марганец 0,30-0,60, хром 0,90-1,15, никель 2,40-2,80, молибден 0,40-0,50, ванадий 0,12-0,16, церий 0,001-0,005, бор 0,0001-0,0010, сера ≤0,010, фосфор ≤0,012, медь ≤0,10, железо и неизбежные примеси - остальное. (RU 2680557, С22С 38/54, 22.02.2019)
Сталь после термической обработки имеет временное сопротивление σв в пределах 1128-1275 МПа, предел текучести σ0,2 981-1128 МПа при относительном удлинении не менее 13% и ударной вязкости при температуре минус 50°С не менее 39 Дж/см2 при испытании образцов с острым надрезом.
Основным недостатком стали при указанном легировании после отпуска на заданный уровень прочности сталь имеет повышенную склонность к хрупким разрушениям в процессе эксплуатации, что оценивается по критерию отношения предела текучести к пределу прочности. Согласно данным Гумерова А.Г., отношение предела текучести к пределу прочности для высокопрочных легированных сталей не должно превышать 0,90, а для стали прототипа оно выше 0,90.
(Гумеров А.Г. Капитальный ремонт подземных нефтепроводов. Формат PDF, 1999)
Указанный комплекс легирования для стали-прототипа не обладает достаточной сопротивляемостью хрупкому разрушению при низких температурах до минус 50°С, особенно, в процессе длительной эксплуатации.
Задачей и техническим результатом изобретения является разработка хладостойкой высокопрочной стали и высокой хладостойкости при температурах до минус 50°С, что позволяет использовать разработанную сталь для изготовления сосудов высокого давления, эксплуатируемых в диапазоне температур от 60 до минус 50°С.
Технический результат достигается тем, что хладостойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, молибден, алюминий, кальций, железо и примеси, дополнительно содержит церий, ванадий, цирконий и/или карбонитрид циркония с размером частиц 30-65 нм, при необходимости по меньшей мере, один элемент, выбранный из группы: титан, гадолиний, азот, иттрий и барий, при следующем соотношении компонентов, мас.%:
Углерод 0,22-0,28
Кремний 0,15-0,30
Марганец 0,30-0,60
Хром 1,20-1,40
Никель 2,85-3,50
Медь 0,40-0,70
Молибден 0,25-0,35
Ниобий 0,02-0,05
Цирконий и/или карбонитрид циркония 0,005-0,10 в сумме
Церий 0,001-0,020
Ванадий 0,05-0,08
Алюминий 0,005-0,02
Кальций 0,005-0,01
при необходимости по меньшей мере, один элемент, выбранный из группы:
Титан 0,005-0,035
Гадолиний 0,008-0,015
Азот 0,005-0,012
Иттрий 0,001-0,02 и
Барий 0,005-0,025
Железо и примеси остальное,
причем сумма Nb+V+Ti ≤0,15.
Технический результат также достигается тем, что суммарное содержание примесей легкоплавких металлов - свинца, висмута, олова, сурьмы и мышьяка, не превышает 0,05 мас.%, а содержание неизбежных примесей серы, фосфора и кислорода не превышает, мас.%: сера ≤0,008; фосфор ≤0,008 и кислород ≤0,005.
Технический результат также достигается тем, что критерий соотношения σ0,2в ≤ 0,90.
Содержание углерода в выбранных пределах (0,22-0,28 мас.%) обеспечивает требуемый уровень прочности, при этом достигается повышение свариваемости и хладостойкости. Увеличение содержания углерода выше 0,28 мас.% вызывает значительное повышение прочности, что негативно отразится на снижении ударной вязкости и пластичности.
Кремний используется как раскислитель, а также присутствует в качестве неизбежной примеси в исходной шихте. Содержание кремния 0,15-0,30 мас.% является оптимальным. Содержание выше 0,30 мас.% отрицательно влияет на вязкопластические свойства хладостойкой стали.
Марганец упрочняет хладостойкую сталь, увеличивает прокаливаемость и может способствовать уменьшению содержания никеля. При содержании марганца более 0,60 мас.% снижается комплекс вязкопластических свойств стали. Для данной стали содержание марганца 0,30-0,60 мас.% является оптимальным.
Хром в принятых пределах, необходимых для обеспечения прокаливаемости стали в сечениях до 70 мм и некоторого упрочнении стали за счет твердорастворного упрочнения. При этом не ухудшаются характеристики хладостойкости.
Добавки хрома 1,20-1,40 мас.% в хладостойкую сталь, содержащую никель при термической обработке из межкритического интервала стабилизируют аустенит обратного превращения до низких температур, что улучшает пластичность и ударную вязкость при низких температурах.
Никель является одним из немногих элементов, который одновременно улучшает как прочностные, так и вязкопластические свойства хладостойкой стали. Минимальное содержание никеля 2,85 мас.% установлено исходя из надежной работы деталей из хладостойкой стали при рабочей температуре -50°С, а максимальное содержание никеля 3,50 мас.% надежно обеспечивает температуру эксплуатации стали для всех диапазонов толщин трубных заготовок.
Совместное легирование молибденом, ванадием и ниобием в заявленных пределах наиболее эффективно способствует упрочнению стали за счет твердорастворного и дисперсионного упрочнения, а также улучшения прокаливаемости. При повышении содержания молибдена до 0,35 мас.% растут и вязкопластические свойства стали. Молибден предотвращает развитие отпускной хрупкости стали. Дальнейшее увеличение содержания молибдена для хладостойких сталей экономически нецелесообразно.
Ванадий в хладостойких сталях, содержащих никель, является эффективным дисперсионным упрочнителем, однако это реализуется лишь при полноценной термообработке.
Температура растворения карбидов ниобия в аустените выше на 50-70°С, чем карбидов ванадия, в результате чего карбиды ниобия ограничивают рост аустенитного зерна, а карбиды ванадия, выделяющиеся при отпуске, способствуют упрочнению стали. Таким образом, одновременно обеспечивается твердорастворное, зернограничное и дисперсионное упрочнение и измельчение зерна за счет введения ниобия. Все это является эффективным путем одновременного повышения прочности, низкотемпературной вязкости и пластичности стали.
Дополнительное введение титана 0,005-0,035 способствует повышению прочности и ударной вязкости за счет измельчения зерна. При содержании титана менее 0,005 мас.% прочность стали снижается ниже требуемого уровня, а увеличение его содержания более 0,035 мас.% приводит к перерасходу легирующих элементов. Титан, так же, как и ниобий, способствует получению ячеистой дислокационной микроструктуры стали, что обеспечивает сочетание высоких прочностных свойств металла и высокой ударной вязкости при пониженных температурах
Для получения высокого комплекса прочностных и вязкопластичных свойств суммарное содержание ниобия, ванадия и титана не должно превышать 0,15 мас.%, при этом индивидуальное содержание этих легирующих элементов может быть выбрано в пределах их допустимых содержаний.
Медь эффективно улучшает прочностные свойства и прокаливаемость стали, при содержании в выбранных пределах не оказывает негативного влияния на вязкость и пластичность, а также медь эффективно улучшает атмосферостойкость и коррозионную стойкость стали.
Введение в состав стали циркония и мелкодисперсных карбонитридов циркония с наноразмерной дисперсностью с размером 30-65 нм позволяет образовать большое количество центров кристаллизации, равномерно распределенных в объеме металла. Наличие в составе циркония усиливает воздействие карбонитридов на свойства стали.
В процессе затвердевания стали химически стойкие частицы карбонитрида циркония, находясь в расплаве, обладают повышенной устойчивостью к диссоциации и будут являться центрами кристаллизации аустенитных зерен, что существенно измельчит первичное аустенитное зерно, увеличит площадь границ аустенитных зерен, существенно увеличит дисперсность карбидов и нитридов ванадия и ниобия, выпадающих по границам аустенитных зерен, что обеспечит увеличение прочностных свойств и одновременно показателей пластичности и вязкости.
Введение карбонитридов циркония в количестве 0,05-0,1 мас.% является оптимальным. При содержании карбонитрида циркония в количестве менее 0,05 мас.% не обеспечивается увеличения прочностных свойств, так как не обеспечивается достаточное измельчение зерна и стабилизация границ зерен.
При содержании карбонитридов циркония в количестве более 0,10 мас.% происходит снижение характеристик пластичности и вязкости, так как карбонитрид циркония начинают выделяться в избыточном состоянии.
Введение в состав стали алюминия в 0,005-0,02 мас.% в сочетании с химически активными элементами кальцием и церием благоприятно изменяет форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает и упрочняет границы зерен и измельчает структуру стали, что приводит к повышению прочности, пластичности и ударной вязкости. Кальций и церий благоприятно воздействуют и на характер нитридных включений, способствуют переходу пленочных включений нитридов алюминия в глобулярные комплексы оксисульфонитридных образований.
Совместное воздействие алюминия, кальция, бария и церия (иттрия) открывает дополнительные возможности в управлении структурой и свойствами стали.
Добавка кальция в количестве 0,005-0,01 мас.% затрудняет выделение избыточных фаз по границам зерен и способствует повышению пластичности и ударной вязкости. Совместное введение в сталь кальция и бария значительно улучшает кинетику процесса взаимодействия кальция с примесями. Барий в большей степени глобуляризует включения, чем кальций. Значительная часть включений приобретает округлую форму. Присадки бария способствуют (по сравнению с кальцием и церием) образованию более мелких глобулей. Модифицирование кальцием и барием измельчает сульфиды и приводит к перераспределению включений в дендритной структуре в результате увеличения сульфидных включений в осях.
Необходимость совместного введения церия (иттрия) и кальция обусловлена характером их воздействия на свойства стали. Церий улучшает форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает границы зерен и измельчает структуру, что повышает прочность стали и увеличивает ударную вязкость. Дополнительными факторами повышения вязкости являются дальнейшее измельчение первичной структуры, уменьшение в растворе содержания кислорода и повышение прочностных и пластических свойств в рабочем интервале температур.
Таким образом, совместное введение церия и кальция обеспечивает повышение эксплуатационной стойкости за счет высокой прочности при рабочих (минус 50°С) температурах, пластичности и ударной вязкости. Кроме того, введение молибдена в выбранных пределах снижает склонность к образованию флокенов.
При содержании церия и кальция ниже нижнего предела их воздействие на прочность, пластичность и ударную вязкость стали не эффективно, а при содержании их выше верхнего предела снижается пластичность, ударная вязкость и прочность стали, что связано с избыточным обогащением бывших границ зерен крупными неметаллическими включениями.
Дополнительное введение гадолиния в количестве 0,008-0,015 мас.% обеспечивает химическую активность к кислороду, азоту и водороду, сере и другим вредным примесям в сплаве. Являясь мощным раскислителем, дегазатором и десульфуратором, гадолиний повышает плотность сплава и понижает содержание серы. Упрочняет границы зерен, увеличивает пластичность, ударную вязкость и коррозионную стойкость сплава.
Сера, фосфор и кислород являются вредными элементами, снижающими комплекс свойств хладостойкой стали, поэтому их содержание должно быть минимальным и не превышать, мас.%: сера ≤0,008; фосфор ≤0,008 и кислород ≤0,005. Кислород неизбежно присутствует в стали, в основном в виде неметаллических включений.
Фосфор обуславливает повышенную склонность к хрупкому разрушению при понижении температуры испытаний и отпускной хрупкости за счет обогащения границ зерен. Ограничение содержания фосфора в указанных пределах в сочетании с присутствием молибдена в выбранных пределах позволяет исключить отпускную хрупкость. Такое содержание примесей можно получить современными методами выплавки стали, что позволяет сохранить прочность, пластичность и ударную вязкость на требуемом уровне.
Содержание примесей легкоплавких металлов - свинца, висмута, олова, сурьмы и мышьяка негативно влияют на вязкость и пластичность хладостойких сталей. Их суммарное содержание целесообразно ограничить величиной 0,05 мас.%.
Азот является также неизбежной примесью в стали, которая присутствует в виде нитридов и карбонитридов, которые при содержании 0,012 мас.% могут оказывать неблагоприятное влияние на комплекс свойств.
Отношение предела текучести к пределу прочности является важным показателем, характеризующим запас пластичности стали Отношение предела текучести к пределу прочности более 0.90 для высокопрочной стали показывает склонность к охрупчиванию металла. При длительном нагружении под действием постоянно действующих нагрузок предел текучести возрастает быстрее, чем предел прочности, что способствует охрупчиванию стали.
Технология изготовления сосудов высокого давления предусматривает получение в литейной центробежной машине крупногабаритной толстостенной полой заготовки, отношение наружного диаметра к толщине стенки которой составляет 4,0-10. Поверхности заготовки очищают и направляют ее на ковку гидравлическим прессом с четырехбойковым ковочным устройством с последующей протяжкой и калибровкой (см. патент RU 2714355).
Для подтверждения достижения технического результата были выплавлены центробежнолитые заготовки 3 составов по изобретению, проведена их ковка, а также термическая обработка по различным режимам, как с одинарной закалкой и отпуском, так и с двойной закалкой (вторая закалка из межкритического интервала) с отпуском.
Механические свойства определяли на образцах, вырезанных из металла опытной партии. Испытание на растяжение выполняли по ГОСТ 1497 на цилиндрических образцах типа III №6. Испытания на ударный изгиб выполняли по ГОСТ 9454 на образцах с V-образным надрезом тип 11 при температурах минус 60°С и 20°С. Химические состав испытанных образцов представлен в таблице 1.
Установлено, что сталь согласно изобретению после термической обработки (закалка от температуры 870-890°С и отпуск при температуре 580-600°С) обеспечивает требуемый высокий уровень и стабильность рабочих характеристик, в том числе прочность, ударную вязкость и пластичность в соответствии с рекомендациями ГОСТ 12247-80. Особенно эффективно проведение двойной закалки с отпуском (закалка от температуры 870-890°С, вторая закалка от температуры 800°С и отпуск при температуре 580-600°С) обеспечивает повышение характеристик прочности, ударной вязкости и пластичности на 25%.
Так, в зависимости от состава и термообработки обеспечивается предел текучести не ниже 750 МПа, предел прочности не ниже 950 МПа.
Ударная вязкость KCV при минус 50°С не менее 95 Дж/см2. таким образом сталь согласно изобретению надежно обеспечивает требуемый комплекс свойств для баллонов хранения и перевозки сжатых газов в соответствии с ГОСТ 12247-80.
Соотношение σ0,2в = 750/950 = 0,789 ≤ 0,90,
а стали прототипа согласно данным таблицы 2 (RU 2680557) σ0,2в = 1081/1159 = 0,932
σ0,2в = 1134/1204 = 0,941, что превышает рекомендованное значение соотношения ≤0,90 для высокопрочных легированных сталей.
При длительном нагружении предел текучести возрастает быстрее, чем предел прочности, и соотношение также будет увеличиваться, что может привести к охрупчиванию стали и сокращения срока эксплуатации сосуда.
Таким образом, разработанную хладостойкую высокопрочную сталь по изобретению, можно использовать для изготовления сосудов давления, предназначенных для перевозки и хранения сжатых газов в большом диапазоне температур, в том числе для районов Сибири и Крайнего севера. Указанный комплекс легирования обладает высокой сопротивляемостью хрупкому разрушению при низких температурах до минус 50°.
Таблица 1. Химический состав предлагаемой стали.
Содержание компонентов, мас.% Номер плавки
1 2 3
Углерод 0,22 0,25 0,28
Кремний 0,15 0,25 0,30
Марганец 0,30 0,50 0,60
Хром 1,20 1,30 1,40
Никель 2,85 3,00 3,50
Цирконий + карбонитрид циркония в сумме 0,05 - 0,10
Карбонитрид циркония - 0,008 -
Кальций 0,005 0,008 0,01
Барий 0,005 0,008 0,02
Церий 0,001 0,008 0,01
Алюминий 0,005 0,008 0,02
Молибден 0,25 0,30 0,35
Медь 0,40 0,50 0,70
Ниобий 0,008 0,03 0,05
Титан 0,005 - -
Ванадий 0,05 0,09 0,08
Сумма Nb+V+Ti 0,053 0,12 0,13
Азот 0,008 0,010 0,012
Гадолиний 0,008 - 0,015
Сера 0,003 0,005 0,008
Фосфор 0,004 0,006 0,008
Кислород 0,003 0,0035 0,005
Железо и примеси остальное

Claims (7)

1. Хладостойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, молибден, алюминий, кальций, железо и примеси, отличающаяся тем, что она дополнительно содержит церий, цирконий и/или карбонитрид циркония с размером частиц 30-65 нм, ванадий и при необходимости по меньшей мере один элемент, выбранный из группы: титан, гадолиний, иттрий, азот и барий, при следующем соотношении компонентов, мас.%:
углерод 0,22-0,28 кремний 0,15-0,30 марганец 0,30-0,60 хром 1,20-1,40 никель 2,85-3,50 медь 0,40-0,70 молибден 0,25-0,35 ниобий 0,02-0,05 цирконий и/или карбонитрид циркония 0,005-0,10 в сумме церий 0,001-0,020 ванадий 0,05-0,08 алюминий 0,005-0,02 кальций 0,005-0,01,
при необходимости по меньшей мере один элемент, выбранный из группы:
титан 0,005-0,035 гадолиний 0,008-0,015 иттрий 0,001-0,02 азот 0,005-0,012 и барий 0,005-0,025 железо и примеси остальное,
причем суммарное содержание ниобия, ванадия и титана составляет 0,15 или менее.
2. Сталь по п. 1, отличающаяся тем, что суммарное содержание легкоплавких примесей свинца, висмута, олова, сурьмы и мышьяка не превышает 0,05 мас.%, а содержание неизбежных примесей серы, фосфора и кислорода не превышает, мас.%: сера ≤0,008, фосфор ≤0,008 и кислород ≤0,005.
3. Сталь по п. 1, отличающаяся тем, что критерий соотношения σ0,2в составляет ≤0,90.
RU2020116922A 2020-05-12 2020-05-12 Хладостойкая высокопрочная сталь RU2746598C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020116922A RU2746598C1 (ru) 2020-05-12 2020-05-12 Хладостойкая высокопрочная сталь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020116922A RU2746598C1 (ru) 2020-05-12 2020-05-12 Хладостойкая высокопрочная сталь

Publications (1)

Publication Number Publication Date
RU2746598C1 true RU2746598C1 (ru) 2021-04-16

Family

ID=75521080

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020116922A RU2746598C1 (ru) 2020-05-12 2020-05-12 Хладостойкая высокопрочная сталь

Country Status (1)

Country Link
RU (1) RU2746598C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2241779C1 (ru) * 2003-08-04 2004-12-10 Общество с ограниченной ответственностью "Рельсы Кузнецкого металлургического комбината" Рельсовая сталь
RU2243284C2 (ru) * 2002-12-02 2004-12-27 Открытое акционерное общество "Волжский трубный завод" Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее
RU2437954C1 (ru) * 2010-08-11 2011-12-27 Открытое акционерное общество "Первоуральский новотрубный завод" Коррозионно-стойкая сталь для нефтегазодобывающего оборудования
RU2496907C2 (ru) * 2008-03-18 2013-10-27 Уддехолмс АБ Сталь, способ изготовления стальной заготовки и способ изготовления детали из этой стали
RU2679679C1 (ru) * 2018-05-31 2019-02-12 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Литая хладостойкая сталь
RU2680557C1 (ru) * 2017-11-28 2019-02-22 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Экономнолегированная хладостойкая высокопрочная сталь
US10633726B2 (en) * 2017-08-16 2020-04-28 The United States Of America As Represented By The Secretary Of The Army Methods, compositions and structures for advanced design low alloy nitrogen steels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2243284C2 (ru) * 2002-12-02 2004-12-27 Открытое акционерное общество "Волжский трубный завод" Сталь повышенной коррозионной стойкости и бесшовные трубы, выполненные из нее
RU2241779C1 (ru) * 2003-08-04 2004-12-10 Общество с ограниченной ответственностью "Рельсы Кузнецкого металлургического комбината" Рельсовая сталь
RU2496907C2 (ru) * 2008-03-18 2013-10-27 Уддехолмс АБ Сталь, способ изготовления стальной заготовки и способ изготовления детали из этой стали
RU2437954C1 (ru) * 2010-08-11 2011-12-27 Открытое акционерное общество "Первоуральский новотрубный завод" Коррозионно-стойкая сталь для нефтегазодобывающего оборудования
US10633726B2 (en) * 2017-08-16 2020-04-28 The United States Of America As Represented By The Secretary Of The Army Methods, compositions and structures for advanced design low alloy nitrogen steels
RU2680557C1 (ru) * 2017-11-28 2019-02-22 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Экономнолегированная хладостойкая высокопрочная сталь
RU2679679C1 (ru) * 2018-05-31 2019-02-12 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Литая хладостойкая сталь

Similar Documents

Publication Publication Date Title
CA2574025C (en) Steel for steel pipe
US8007603B2 (en) High-strength steel for seamless, weldable steel pipes
KR102309644B1 (ko) 고 Mn 강판 및 그 제조 방법
EP1736562A1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
CN111465711B (zh) 拉伸强度和低温冲击韧性优异的用于压力容器的钢板及其制造方法
EP0787813B1 (en) A low mn-low Cr ferritic heat resistant steel excellent in strength at elevated temperatures
JP7147960B2 (ja) 鋼板およびその製造方法
KR102628769B1 (ko) 고Mn강 및 그의 제조 방법
KR20070095373A (ko) 내지연파괴특성이 우수한 고장력 강재 및 그 제조방법
JP6856129B2 (ja) 高Mn鋼の製造方法
RU2683173C1 (ru) Высокопрочная немагнитная коррозионно-стойкая сталь
KR102405388B1 (ko) 고 Mn 강 및 그 제조 방법
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
KR20220131996A (ko) 강재 및 그의 제조 방법, 그리고 탱크
RU2731223C1 (ru) Высокопрочная свариваемая хладостойкая сталь и изделие, выполненное из нее
CN111788325B (zh) 高Mn钢及其制造方法
RU2746598C1 (ru) Хладостойкая высокопрочная сталь
RU2665854C1 (ru) Толстолистовая хладостойкая сталь
RU2746599C1 (ru) Экономнолегированная хладостойкая высокопрочная сталь
KR102387364B1 (ko) 고Mn강 및 그의 제조 방법
KR20210035867A (ko) 강판 및 그 제조 방법
US20240093323A1 (en) Steel composition, wrought article and manufacturing method of a seamless pressure vessel for compressed gas
RU2690398C1 (ru) Способ производства низколегированного хладостойкого свариваемого листового проката
KR102524703B1 (ko) 강판 및 그 제조 방법
RU2653748C1 (ru) Хладостойкая свариваемая сталь и изделие, выполненное из нее (варианты)