RU2686092C1 - Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты - Google Patents
Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты Download PDFInfo
- Publication number
- RU2686092C1 RU2686092C1 RU2018123886A RU2018123886A RU2686092C1 RU 2686092 C1 RU2686092 C1 RU 2686092C1 RU 2018123886 A RU2018123886 A RU 2018123886A RU 2018123886 A RU2018123886 A RU 2018123886A RU 2686092 C1 RU2686092 C1 RU 2686092C1
- Authority
- RU
- Russia
- Prior art keywords
- zirconium
- titanium
- coating
- coatings
- bioinert
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 49
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 27
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 27
- 239000010936 titanium Substances 0.000 title claims abstract description 27
- 239000007943 implant Substances 0.000 title claims abstract description 21
- 229910052726 zirconium Inorganic materials 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000011248 coating agent Substances 0.000 claims abstract description 36
- 238000004880 explosion Methods 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 230000008021 deposition Effects 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 3
- 238000002844 melting Methods 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 10
- 239000002344 surface layer Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000000399 orthopedic effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 239000004053 dental implant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 102220615837 40S ribosomal protein S19_A61E_mutation Human genes 0.000 description 1
- -1 TiO 2 Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии инаправлено на формирование на титановых имплантатах покрытий на основе циркония. Способ включает электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония. Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы имплантатов, расширяет область практического применения. Способ может быть использован в медицинской технике, в травматологии и ортопедии для нанесения биоинертных покрытий на основе циркония с высокой адгезией. 3 ил., 2 пр.
Description
Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на поверхности титановых имплантатов, работающих в организме человека, покрытий на основе циркония, которые могут быть использованы в области медицины с целью получения биосовместимых низкомодульных сплавов системы Ti-Zr.
Известно покрытие на имплантат из титана и его сплавов и способ его нанесения (RU №2154463, МПК А61К 6/033, A61N 1/32, опубл. 20.08.2000), которое содержит оксид титана и дополнительно содержит кальций-фосфатные соединения, взятые в определенном количественном соотношении. Способ его нанесения заключается в анодировании титана и его сплавов импульсным током в условиях искрового разряда, при этом процесс ведут в насыщенном растворе гидроксиапатита в фосфорной кислоте концентрацией 5-20% или 3-5% суспензии гидроксиапатита дисперсностью менее 100 мкм в этом насыщенном растворе.
Недостатком данного способа является то, что его реализация не позволяет получать сплошные и прочные покрытия, а также покрытия толщиной более 30 мкм.
Наиболее близким к заявляемому изобретению является покрытие на имплантат из титана и его сплавов и способ его приготовления (RU 2502526, МПК A61L 27/06, A61L 27/02, А61Е 2/02, опубл. 27.12.2013). Покрытие на имплант из титана и его сплавов состоит из двух слоев, первый слой состоит из оксидов титана, в основном TiO2, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180 мкм при следующем соотношении компонентов, мас. %: оксид титана, в пересчете на TiO2 - 10-30; гамма-оксид алюминия - 70-90. Способ получения покрытия включает механическую обработку поверхности импланта, обезжиривание, термическую обработку для получения на поверхности импланта оксидов титана, последующее нанесение второго слоя. Обезжиривание ведут в растворе щелочи - KOH, NaOH, термическую обработку осуществляют в интервале температур 700-800°С с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, при этом вначале наносят гидроксид алюминия в нагретом до 60-90°С растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°С для получения вторичного покрытия из оксида алюминия.
Недостатком способа является низкая адгезия вторичного биоинертного или биосовместимого покрытия.
Технической проблемой, решаемой заявляемым изобретением является получение биоинертного или биосовместимого покрытия на основе циркония на поверхности различных титановых имплантатов с высокой адгезией.
Существующая техническая проблема решается тем, что предложен способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты, включающий электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.
Технический результат, получаемый при осуществлении изобретения, заключается в том, что, при электрическом взрыве циркониевой фольги продукты разрушения образуют плазменную струю, служащую инструментом формирования на поверхности титановых имплантатов покрытия на основе циркония. Электровзрывное напыление приводит к формированию в покрытии высокодисперсной и однородной структуры. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы имплантатов, и расширяет область практического применения.
Исследования методом сканирующей электронной микроскопии показали, что при электровзрывном напылении на титановых имплантатах путем электрического взрыва циркониевой фольги при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 происходит формирование покрытия на основе циркония (фиг. 3). Указанный режим, при котором поглощаемая плотность мощности составляет 1,5-1,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 1,5 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из титана, вследствие чего возможно отслаивание покрытия, а выше 1,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы алюминиевой фольги менее 50 мг покрытие неоднородно распределяется на поверхности титанового имплантата. При значении массе циркониевой фольги более 500 мг покрытие на основе циркония на поверхностях титановых имплантатов обладает большим количеством дефектов. Граница электровзрывного покрытия с подложкой не является ровной, что позволяет увеличить адгезию покрытия с подложкой.
Микротвердость измеряли на микротвердомере HVS-1000A. Значения микротвердости сформированных покрытий находятся в интервале 64-70 кгс/мм2. Нанотвердость измеряли с использованием системы Agilent U9820A Nano Indenter G200. Значения нанотвердости сформированных покрытий составляет 66 кгс/мм2. Модуль упругости сформированных покрытий составил 9700 кгс/мм2, предел прочности при растяжении 25,0 кгс/мм2. Биологическая аттестация in vitro показала, что электровзрывные покрытия на основе циркония покрытия на титановых подложках не оказывают цитотоксического действия, обладают высокой биоактивностью и проявляют антибактериальный эффект, что позволяет их рекомендовать для нанесения на имплантаты из биоинертных сплавов для остеосинтеза.
Способ поясняется рисунками, где:
на фиг. 1 представлена структура поперечного сечения поверхностного слоя электровзрывного покрытия на основе циркония на титане марки ВТ1-0;
на фиг. 2 - структура поперечного сечения границы между покрытием на основе циркония и титановой подложкой;
на фиг. 3 - структура покрытия на основе циркония.
Примеры конкретного осуществления способа:
Пример 1.
Обработке подвергали титановый штифт (ввинчивается в челюстную кость) дентального имплантата площадью 1 см2. Использовали циркониевую фольгу массой 50 мг. Сформированной плазменной струей оплавляли поверхность титанового штифта дентального имплантата при поглощаемой плотности мощности 1,5 ГВт/м2 и формировали на ней электровзрывное покрытие на основе циркония.
Получили биоинертное покрытие на основе циркония с высокой адгезией покрытия с подложкой на уровне когезии.
Пример 2.
Обработке подвергали титановую пластину Т-образную косую площадью 15 см2, применяемую для остеосинтеза дистального метаэпифиза лучевой кости. Использовали циркониевую фольгу массой 500 мг. Сформированной плазменной струей оплавляли поверхность Т-образной косой пластины при поглощаемой плотности мощности 1,8 ГВт/м2 и формировали на ней электровзрывное покрытие на основе циркония.
Получили биоинертное покрытие на основе циркония с высокой адгезией покрытия с подложкой на уровне когезии.
Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы имплантатов, и расширяет область практического применения.
Claims (1)
- Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты, включающий электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018123886A RU2686092C1 (ru) | 2018-06-29 | 2018-06-29 | Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018123886A RU2686092C1 (ru) | 2018-06-29 | 2018-06-29 | Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2686092C1 true RU2686092C1 (ru) | 2019-04-24 |
Family
ID=66314801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018123886A RU2686092C1 (ru) | 2018-06-29 | 2018-06-29 | Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2686092C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2737912C1 (ru) * | 2020-03-18 | 2020-12-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения биоинертных танталовых покрытий, модифицированных ионами азота, на титановые имплантаты |
RU2737938C1 (ru) * | 2020-03-18 | 2020-12-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" ФГБОУ ВО "СибГИУ" | Способ нанесения биоинертных гафниевых покрытий, модифицированных ионами азота, на титановые имплантаты |
RU2775244C1 (ru) * | 2021-12-02 | 2022-06-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009013714A1 (en) * | 2007-07-23 | 2009-01-29 | Element Six Limited | Air brazeable material |
RU2422555C1 (ru) * | 2009-12-14 | 2011-06-27 | Евгений Александрович Будовских | Способ электровзрывного нанесения металлических покрытий на контактные поверхности |
RU2456369C1 (ru) * | 2010-11-08 | 2012-07-20 | Государственное образовательное учреждение высшего профессионального образованя "Сибирский государственный индустриальный университет" | Способ формирования титан-бор-медных покрытий на медных контактных поверхностях |
RU2470089C1 (ru) * | 2011-08-31 | 2012-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Способ формирования молибден-углерод-медных покрытий на медных контактных поверхностях |
RU2547974C2 (ru) * | 2013-07-16 | 2015-04-10 | Денис Анатольевич Романов | СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiB2-MO НА ПОВЕРХНОСТИ ТРЕНИЯ |
-
2018
- 2018-06-29 RU RU2018123886A patent/RU2686092C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009013714A1 (en) * | 2007-07-23 | 2009-01-29 | Element Six Limited | Air brazeable material |
RU2422555C1 (ru) * | 2009-12-14 | 2011-06-27 | Евгений Александрович Будовских | Способ электровзрывного нанесения металлических покрытий на контактные поверхности |
RU2456369C1 (ru) * | 2010-11-08 | 2012-07-20 | Государственное образовательное учреждение высшего профессионального образованя "Сибирский государственный индустриальный университет" | Способ формирования титан-бор-медных покрытий на медных контактных поверхностях |
RU2470089C1 (ru) * | 2011-08-31 | 2012-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Способ формирования молибден-углерод-медных покрытий на медных контактных поверхностях |
RU2547974C2 (ru) * | 2013-07-16 | 2015-04-10 | Денис Анатольевич Романов | СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiB2-MO НА ПОВЕРХНОСТИ ТРЕНИЯ |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2737912C1 (ru) * | 2020-03-18 | 2020-12-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения биоинертных танталовых покрытий, модифицированных ионами азота, на титановые имплантаты |
RU2737938C1 (ru) * | 2020-03-18 | 2020-12-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" ФГБОУ ВО "СибГИУ" | Способ нанесения биоинертных гафниевых покрытий, модифицированных ионами азота, на титановые имплантаты |
RU2775244C1 (ru) * | 2021-12-02 | 2022-06-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов |
RU2780721C1 (ru) * | 2021-12-02 | 2022-09-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" ФГБОУ ВО "СибГИУ" | Способ электровзрывного напыления биоинертных молибденовых покрытий на имплантаты из титановых сплавов |
RU2792909C1 (ru) * | 2022-10-28 | 2023-03-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" ФГБОУ ВО "СибГИУ" | Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония и азота на титановые имплантаты |
RU2792905C1 (ru) * | 2022-11-02 | 2023-03-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановые имплантаты |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications | |
Chen et al. | Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent | |
Wang et al. | Preparation and properties of titanium oxide film on NiTi alloy by micro-arc oxidation | |
RU2686092C1 (ru) | Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты | |
Ahounbar et al. | Characteristics of in-situ synthesized Hydroxyapatite on TiO2 ceramic via plasma electrolytic oxidation | |
Durdu et al. | Characterization and bioactivity of hydroxyapatite-based coatings formed on steel by electro-spark deposition and micro-arc oxidation | |
Yigit et al. | Plasma electrolytic oxidation of Ti-6Al-4V alloys in nHA/GNS containing electrolytes for biomedical applications: The combined effect of the deposition frequency and GNS weight percentage | |
Cunha et al. | Osseointegration of atmospheric plasma‐sprayed titanium implants: Influence of the native oxide layer | |
WO2020050579A1 (ko) | 레이저를 이용한 아파타이트 피막 형성방법 | |
Mousa et al. | Surface modification of magnesium and its alloys using anodization for orthopedic implant application | |
RU2686093C1 (ru) | Способ нанесения биоинертных покрытий на основе ниобия на титановые имплантаты | |
Huang et al. | Surface modification of titanium implant by microarc oxidation and hydrothermal treatment | |
Strnad et al. | Corrosion rate of sand blasted and acid etched Ti6Al4V for dental implants | |
Jafarzadeh et al. | Synthesis, corrosion and bioactivity evaluation of gelatin/silicon and magnesium Co-doped fluorapatite nanocomposite coating applied on AZ31 Mg alloy | |
Kalita et al. | 3D bioactive coatings with a new type of porous ridge/cavity structure | |
Bhattacharya et al. | Techniques for Deposition of Coatings with Enhanced Adhesion to Bio‐Implants | |
Nyan et al. | Synthesis of novel oxide layers on titanium by combination of sputter deposition and micro-arc oxidation techniques | |
JP2003190272A (ja) | 生体親和性に優れた骨代替材料およびその製造方法 | |
RU145527U1 (ru) | Имплантируемое медицинское изделие | |
Perez-Diaz et al. | Evaluation of Fibroblasts cells viability and adhesion on six different titanium surfaces: An in vitro experimental study | |
RU2641597C1 (ru) | Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата | |
Russu et al. | Electrochemical synthesis of nanostructured oxide layers on threaded surfaces of medical implants | |
Sharkeev et al. | Bioactive Micro‐arc Calcium Phosphate Coatings on Nanostructured and Ultrafine‐Grained Bioinert Metals and Alloys | |
Gomez Sanchez et al. | Evaluation of annealed titanium oxide nanotubes on titanium: From surface characterization to in vivo assays | |
Chebodaeva et al. | Modification of calcium phosphate microarc coatings surface by boehmite nanoparticles |