RU2641597C1 - Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата - Google Patents

Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата Download PDF

Info

Publication number
RU2641597C1
RU2641597C1 RU2016148348A RU2016148348A RU2641597C1 RU 2641597 C1 RU2641597 C1 RU 2641597C1 RU 2016148348 A RU2016148348 A RU 2016148348A RU 2016148348 A RU2016148348 A RU 2016148348A RU 2641597 C1 RU2641597 C1 RU 2641597C1
Authority
RU
Russia
Prior art keywords
spraying
plasma
electroplasma
tricalcium phosphate
magnesium
Prior art date
Application number
RU2016148348A
Other languages
English (en)
Inventor
Александра Владимировна Лясникова
Ольга Анатольевна Маркелова
Ирина Петровна Гришина
Олеся Александровна Дударева
Владимир Николаевич Лясников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority to RU2016148348A priority Critical patent/RU2641597C1/ru
Application granted granted Critical
Publication of RU2641597C1 publication Critical patent/RU2641597C1/ru

Links

Images

Abstract

Изобретение относится к области медицины, в частности, к стоматологии, и раскрывает способ нанесения керамических биосовместимых покрытий. Способ характеризуется тем, что включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием, далее проводят электроплазменное напыление подслоя из титана и биосовместимого слоя, ультразвуковое обезжиривание проводят в водном растворе ПАВ при температуре до 40°C в течение 5-7 мин, электроплазменное напыление подслоя титана производят с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 А, электроплазменное напыление порошка магнийсодержащего трикальцийфосфата производят с дистанции напыления 50-60 мм в течение 10-12 с, расход плазмообразующего газа составляет 20 л/мин, дисперсность составляет не более 90 мкм и ток дуги 350 А. Изобретение может быть использовано в челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов на титановой основе. 2 табл., 2 ил.

Description

Изобретение относится к способам нанесения керамических биосовместимых покрытий и может быть использовано в медицине, а именно к челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов на титановой основе.
Известен способ получения биологически активного керамического покрытия на основе гидроксиапатита методом погружения (патент US на изобретение №6569489 B1, опубл. 27.05.2003), включающий несколько стадий. Сначала подготавливают подложку и получают водный раствор, имеющий уровень рН=6,0-7,5, температуру ниже или равную 100°C и содержащий ионы кальция, фосфата и карбонат-ионы. Затем погружают заготовку изделия в раствор и выдерживают в течение времени, достаточного для формирования керамического покрытия при pH раствора <8.0.
Однако в описанном выше способе не решена проблема формирования покрытия с развитой морфологией и высокими значениями адгезии.
Известен также способ изготовления внутрикостных имплантатов (патент РФ на изобретение №2443434, МПК A61L 27/02, A61L 27/06, A61L 27/12, A61F 2/28, В82B 3/00, опубл. 27.02.2012 г.), заключающийся в послойном напылении, при этом первым слоем напыляют титан дисперсностью 3÷5 мкм, дистанцией напыления 70÷80 мм и толщиной 5÷10 мкм, вторым слоем напыляют титан дисперсностью 50÷100 мкм, дистанцией напыления 100 мм, толщиной 50÷115 мкм, третьим слоем наносят механическую смесь титана дисперсностью 40÷70 мкм и гидроксиапатита дисперсностью 5÷10 мкм с соотношением 60÷80 и 20÷40 мас. % соответственно, дистанцией напыления 80 мм и толщиной слоя 15÷20 мкм, четвертый слой наносят дистанцией напыления 70 мм, толщиной 20÷30 мкм, а при приготовлении четвертого слоя смешивают порошки оксида алюминия или гидроксиапатита дисперсностью 40÷90 мкм с порошком гидроксиапатита дисперсностью менее 40 мкм или порошком оксида алюминия дисперсностью 1÷3 мкм в количестве 70÷95 мас. % и 5÷30 мас. % соответственно, смесь перемешивают, отжигают в течение 1,5÷3 ч и перетирают.
Однако данный способ не позволяет получить биосовместимое покрытие с развитой морфологией поверхности.
Наиболее близким к предлагаемому решению является способ электроплазменного напыления биокомпозиционных покрытий на основе β-трикальцийфосфата (Повышение остеоинтегративных свойств дентальных имплантатов путем электроплазменного напыления биокомпозиционных покрытий на основе β-трикальцийфосфата / Лясникова А.В., Воложин Г.А. // Стоматология, №8. - 2006. - С. 366-376). В состав процесса напыления входят несколько технологических операций, включающих подготовку поверхности имплантатов перед напылением, электроплазменное напыление биокомпозиционного покрытия, его окончательную обработку и контроль качества. Электроплазменное напыление трикальцийфосфатных покрытий осуществляется по технологии, включающей напыление подслоя порошка титана ПТС, затем смеси порошков титана и трикальцийфосфата в соотношении 3:1 и последующее финишное напыление трикальцийфосфата. Окончательная обработка имплантатов после напыления состоит в отжиге при температуре 250…300°C в течение 1 часа для снятия внутренних напряжений и стерилизации имплантатов. Заключительной операцией изготовления имплантатов является размерная обработка нанесенного покрытия в ультразвуковом поле.
К недостаткам данного способа напыления можно отнести необходимость использования дополнительного оборудования с целью формирования равномерного покрытия. Кроме того, в данном способе не решена проблема формирования покрытия с улучшенными функциональными характеристиками, такими как прочность.
Известно, что в костной ткани, дентине и эмали присутствует Mg2+ в виде примесных элементов, оказывая влияние на физиологию тканей. Магний в составе керамических порошков, в том числе предназначенных для компонентов биосовместимых покрытий, способствует повышению прочностных характеристик и оказывает благоприятное действие на протекание процесса остеоинтеграции.
Задача заявляемого способа заключается в получении методом электроплазменного напыления магнийсодержащего покрытия на основе трикальцийфосфата с развитым микрорельефом.
Технический результат заключается в получении покрытия с повышенными значениями адгезии и биосовместимости за счет применения магнийсодержащего трикальцийфосфата (Mg-ТКФ), используемого в качестве компонента, входящего в состав плазмонапыленного покрытия.
Поставленная задача решается тем, что при осуществлении способа электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата, заключающегося в предварительной подготовке поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием и последующем электроплазменном напылении подслоя из титана и биосовместимого слоя, согласно заявляемому техническому решению ультразвуковое обезжиривание проводят в водном растворе ПАВ при температуре до 40°C в течение 5-7 мин, электроплазменное напыление подслоя титана производят с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 А, электроплазменное напыление порошка магнийсодержащего трикальцийфосфата производят с дистанции напыления 50-60 мм в течение 10-12 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 90 мкм и токе дуги 350 А.
Изобретение поясняется с помощью чертежа - СЭМ (сканирующая электронная микроскопия) покрытия на основе Mg-ТКФ.
Способ осуществляют следующим образом.
Порошок на основе Mg-ТКФ получали в соответствии с разработанной ранее методикой. При проведении исследований полученного порошка было установлено, что порошок состоит из частиц правильной формы с плоскими гранями, что, несомненно, является положительным показателем при формировании биосовместимых покрытий плазменным напылением.
Предварительную подготовку имплантата осуществляют ультразвуковым обезжириванием в УЗ-ванне ПСБ-ГАЛС при частоте 18 кГц в водном растворе ПАВ при температуре до 40°C в течение 5-7 мин и последующей воздушно-абразивной обработке на аппарате АСОЗ 1.2 МЕГА порошком электрокорунда Белэкт №25 (ТУ 9391-094-45814830-2003) дисперсностью до 300 мкм в течение 10 мин.
Водный раствор ПАВ способствует равномерному очищению и обезжириванию загрязненной поверхности имплантата после механической обработки. Температура 40°C является оптимальной для процесса ультразвукового обезжиривания ввиду того, что температура ниже 40°C не способствует очищению поверхности имплантата от масляных загрязнений после механической обработки, а проведение процесса обезжиривания при температуре выше 40°C является нецелесообразным. Время проведения ультразвукового обезжиривания менее 5 мин не обеспечивает очистку поверхности имплантата от органических и неорганических загрязнений, а время обезжиривания более 7 мин является также нецелесообразным.
Далее осуществляют электроплазменное напыление подслоя из порошка титана, например, на полуавтоматической установке УПН-28 на предварительно обработанную титановую основу изделия с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 А.
Формирование биосовместимого слоя производят электроплазменным напылением порошка Mg-ТКФ с дистанции напыления 50-60 мм в течение 10-12 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 90 мкм и токе дуги 350 А.
В качестве плазмообразующего и транспортирующего газа для формирования биосовместимого покрытия используют аргон.
Ток дуги при электроплазменном напылении, время напыления, дистанция напыления, дисперсность порошка и расход плазмообразующего газа были получены экспериментальным путем, результаты которого представлены в таблице 1.
Figure 00000001
Выбранные технологические режимы электроплазменного напыления объясняются следующим образом.
Увеличение тока дуги (выше 350 А) значительно повышает энтальпию и температуру плазменной струи, а также температуру, скорость и дисперсность напыляемых частиц, что обусловливает рост плотности покрытия, производительности напыления и коэффициент использования материала, что может негативно отразиться на качестве покрытия. Наиболее рациональное регулирование тока дуги, параметров напыления и качества получаемого покрытия, в частности повышения прочностных характеристик, обеспечивается при токе дуги 350 А. При меньших значениях тока напыления (менее 350 А) не происходит достаточного проплавления частиц напыляемого порошка, что приведет к снижению адгезионно-когезионных характеристик.
Время напыления было определено экспериментальным путем в зависимости от типа используемого материала. Для небольшой длительности (менее 10-12 с) электроплазменного напыления характерен недостаточный прогрев частиц порошка и тонкий неравномерный слой покрытия, а при использовании большего времени (более 15-17 с) напыления, наоборот, - слишком толстый слой покрытия, что негативно сказывается на прочности сцепления покрытия с основой. Поэтому при электроплазменном напылении титанового подслоя в данном случае целесообразно использование времени, равного 12-15 сек.
Слишком малые (менее 50 мм) дистанции не обеспечивают необходимого прогрева частиц, а также значения их скорости создают опасность перегрева напыляемой поверхности и всего изделия, что может привести к их фазовому изменению, а чрезмерно большая дистанция (более 60 мм) вызывает падение температуры и скорости плазменного потока в зоне формирования покрытия. Поэтому оптимальной для заявляемого способа является дистанция напыления 50-60 мм.
Дисперсность частиц порошка титана выбирается из условия необходимости их быстрого нагрева до температуры плавления и распыления, поэтому наиболее рациональным является использование порошка титана с дисперсностью до 150 мкм.
Повышение расхода плазмообразующего газа снижает теплофизические характеристики потока частиц, плотность покрытия и эффективность напыления, увеличивая при этом дисперсность и скорость частиц. В зависимости от требуемых показателей дисперсности частиц и плотности покрытия следует устанавливать наименьший возможный расход плазмообразующего газа, в заявляемом способе он определен экспериментально и составляет 20 л/мин.
Электроплазменное напыление слоя Mg-ТКФ производят в течение 10-12 с при токе дуги 350 А, дистанции напыления до 50 мм, дисперсности до 90 мкм и расходе плазмообразующего газа 20 л/мин. Технологические режимы электроплазменного напыления порошка Mg-ТКФ выбираются из соображений, описанных выше.
Для полученного в соответствии с заявляемым способом плазмонапыленного покрытия была определена адгезия методом сдвига (ГОСТ 14759-69) на универсальной испытательной машине ИР 5082-100 (ООО «ИМПУЛЬС», г. Иваново) при скорости перемещения рабочей траверсы 0,5 мм/мин.
По методу нормального отрыва сдвига образцы попарно склеивали поверхностями с напыленным покрытием. В качестве клея использовали эпоксидную смолу ЭД-20 (ТУ 2252-003-62517430-01) с полиэтиленполиаминовым отвердителем. Чтобы склеивание получилось качественным, образцы прижимали друг к другу с помощью грузов и выдерживали при комнатной температуре в течение 24 часов.
Адгезия определяется как среднее отношение усилия отрыва склеенных образцов к площади участка отрыва (ГОСТ 27890-88). Максимальное усилие, при котором произошел отрыв плазмонапыленного покрытия, составило 5.4 кН. Адгезия плазмонапыленного Mg-ТКФ покрытия составила 13-13,5 МПа, что превышает средние значения для немодифицированных порошков трикальцийфосфатов. Увеличение адгезии связано с получением более равномерной структуры плазмонапыленного Mg-ТКФ покрытия и присутствием в покрытии β-трикальцийфосфата (Таблица 2).
Таким образом, выбранные технологические режимы электроплазменного напыления (подслой Ti: дисперсность до 150 мкм, время напыления - 12-15 с, ток дуги - 350 А, дистанция напыления - 100-150 мм, расход плазмообразующего газа - 20 л/мин; слой Mg-ТКФ: дисперсность - до 90 мкм; время напыления - 10-12 с, ток дуги - 350 А, дистанция напыления - 50-60 мм, расход плазмообразующего газа - 20 л/мин) обеспечивают получение плазмонапыленного покрытия на основе порошка Mg-ТКФ с повышенными адгезионными характеристиками.
Микрофотографии поверхности и элементный анализ покрытия получали на автоэмиссионном сканирующем электронном микроскопе MIRA 2 LMU, производство фирмы Tescan, оснащенном системой энергодисперсионного микроанализа INСА Energy 350.
Плазмонапыленное покрытие представлено плотноупакованными частицами преимущественно округлой формы размерами 10-20 мкм, а также проплавленными плоскими частицами размером 30-90 мкм (Фиг., а). На поверхности крупных частиц располагаются наночастицы размером 20-100 нм (Фиг., b).
Элементный состав покрытия исследовался не менее чем в пяти точках поверхности образцов и показал наличие частиц магния во всех взятых пробах, максимальное содержание магния - 21,95 весовых % (таблица 2). В целом полученное покрытие имеет развитый микрорельеф и равномерную микроструктуру.
Figure 00000002
Таким образом, разработан способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата, которое обладает повышенными значениями адгезионных характеристик в среднем на 20%, что позволит использовать данные покрытия в изделиях, подверженных механическим нагрузкам. Кроме того, полученные покрытия обладают повышенной биосовместимостью за счет введения в структуру покрытия частиц магния, что оказывает благоприятное действие на протекание процесса остеоинтеграции

Claims (1)

  1. Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата, заключающийся в предварительной подготовке поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием и последующем электроплазменном напылении подслоя из титана и биосовместимого слоя, отличающийся тем, что ультразвуковое обезжиривание проводят в водном растворе ПАВ при температуре до 40°С в течение 5-7 мин, электроплазменное напыление подслоя титана производят с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 А, электроплазменное напыление порошка магнийсодержащего трикальцийфосфата производят с дистанции напыления 50-60 мм в течение 10-12 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 90 мкм и токе дуги 350 А.
RU2016148348A 2016-12-08 2016-12-08 Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата RU2641597C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016148348A RU2641597C1 (ru) 2016-12-08 2016-12-08 Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148348A RU2641597C1 (ru) 2016-12-08 2016-12-08 Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата

Publications (1)

Publication Number Publication Date
RU2641597C1 true RU2641597C1 (ru) 2018-01-18

Family

ID=68235510

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148348A RU2641597C1 (ru) 2016-12-08 2016-12-08 Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата

Country Status (1)

Country Link
RU (1) RU2641597C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU204947U1 (ru) * 2021-04-01 2021-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный медицинский университет» Министерства здравоохранения Российской Федерации Устройство для подготовки костных опилов к цементной фиксации при эндопротезировании коленного сустава
RU2754129C1 (ru) * 2020-11-13 2021-08-27 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ плазменного напыления биосовместимых покрытий на основе трикальцийфосфата с дополнительным легирующим элементом

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2146535C1 (ru) * 1998-07-20 2000-03-20 Консультативная стоматологическая поликлиника при СГМУ Способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием
US20050079200A1 (en) * 2003-05-16 2005-04-14 Jorg Rathenow Biocompatibly coated medical implants
RU2417107C1 (ru) * 2009-12-08 2011-04-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ нанесения гидроксиапатитового покрытия на имплантаты
US8323722B2 (en) * 2008-07-18 2012-12-04 North Carolina State University Processing of biocompatible coating on polymeric implants
RU2604134C1 (ru) * 2015-11-20 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2146535C1 (ru) * 1998-07-20 2000-03-20 Консультативная стоматологическая поликлиника при СГМУ Способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием
US20050079200A1 (en) * 2003-05-16 2005-04-14 Jorg Rathenow Biocompatibly coated medical implants
US8323722B2 (en) * 2008-07-18 2012-12-04 North Carolina State University Processing of biocompatible coating on polymeric implants
RU2417107C1 (ru) * 2009-12-08 2011-04-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ нанесения гидроксиапатитового покрытия на имплантаты
RU2604134C1 (ru) * 2015-11-20 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Алимпиев С.С. и др. Биосовместимые покрытия для металлических имплантатов, получаемых лазерным напылением. Стоматология. 1996. N5. с.64-67. *
Лясникова А.В. и др. Повышение остеоинтегративных свойств дентальных имплантатов путем электроплазменного напыления биокомпозиционных покрытий на основе β -трикальцийфосфата. Стоматология. N8, 2006, с.366-376. *
Лясникова А.В. и др. Повышение остеоинтегративных свойств дентальных имплантатов путем электроплазменного напыления биокомпозиционных покрытий на основе β -трикальцийфосфата. Стоматология. N8, 2006, с.366-376. Алимпиев С.С. и др. Биосовместимые покрытия для металлических имплантатов, получаемых лазерным напылением. Стоматология. 1996. N5. с.64-67. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754129C1 (ru) * 2020-11-13 2021-08-27 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ плазменного напыления биосовместимых покрытий на основе трикальцийфосфата с дополнительным легирующим элементом
RU204947U1 (ru) * 2021-04-01 2021-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный медицинский университет» Министерства здравоохранения Российской Федерации Устройство для подготовки костных опилов к цементной фиксации при эндопротезировании коленного сустава

Similar Documents

Publication Publication Date Title
Jemat et al. Surface modifications and their effects on titanium dental implants
Qaid et al. Micro-arc oxidation of bioceramic coatings containing eggshell-derived hydroxyapatite on titanium substrate
US9237989B2 (en) Coating method
Kang et al. State of the art of bioimplants manufacturing: part II
Saleh et al. Biodegradable/biocompatible coated metal implants for orthopedic applications
KR100751505B1 (ko) 생체적합성이 우수한 수산화인회석 코팅층 및 그 제조 방법
Faria et al. Ti6Al4V laser surface preparation and functionalization using hydroxyapatite for biomedical applications
JP4635177B2 (ja) 生体親和性インプラント材及びその製造方法
RU2641597C1 (ru) Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата
KR20150131863A (ko) Rf 마그네트론 스퍼터링을 이용한 수산화아파타이트 코팅막이 형성된 임플란트와 이의 제조방법
Costa et al. Corrosion behaviour of PEEK or β-TCP-impregnated Ti6Al4V SLM structures targeting biomedical applications
Majkowska-Marzec et al. Microstructure and mechanical properties of laser surface-treated ti13nb13zr alloy with MWCNTs coatings
Suntharavel Muthaiah et al. Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V
RU2417107C1 (ru) Способ нанесения гидроксиапатитового покрытия на имплантаты
Yabutsuka et al. Fabrication of bioactive titanium and its alloys by combination of doubled sandblasting process and alkaline simulated body fluid treatment
Oktar et al. Bond-coating in plasma-sprayed calcium-phosphate coatings
RU2530573C1 (ru) Способ изготовления внутрикостных имплантатов с биоактивным покрытием
Juliadmi et al. The effect of sintering temperature on bilayers hydroxyapatite coating of Titanium (Ti-6Al-4V) ELI by electrophoretic deposition for improving osseointegration
Voinarovych et al. Fabrication and characterization of Zr microplasma sprayed coatings for medical applications
Rattan et al. An overview of hydroxyapatite coated titanium implants
Hsu et al. Effect of different post-treatments on the bioactivity of alkali-treated Ti–5Si alloy
RU2679604C1 (ru) Способ создания микро- и нанорельефной биоинертной поверхности на имплантатах из титана и титановых сплавов
RU2604134C1 (ru) Способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита
RU2686093C1 (ru) Способ нанесения биоинертных покрытий на основе ниобия на титановые имплантаты
Sharkeev et al. Bioactive Micro‐arc Calcium Phosphate Coatings on Nanostructured and Ultrafine‐Grained Bioinert Metals and Alloys