RU2775244C1 - Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов - Google Patents

Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов Download PDF

Info

Publication number
RU2775244C1
RU2775244C1 RU2021135548A RU2021135548A RU2775244C1 RU 2775244 C1 RU2775244 C1 RU 2775244C1 RU 2021135548 A RU2021135548 A RU 2021135548A RU 2021135548 A RU2021135548 A RU 2021135548A RU 2775244 C1 RU2775244 C1 RU 2775244C1
Authority
RU
Russia
Prior art keywords
molybdenum
niobium
layer
bioinert
implants
Prior art date
Application number
RU2021135548A
Other languages
English (en)
Inventor
Денис Анатольевич Романов
Кирилл Валерьевич Соснин
Сергей Юрьевич Пронин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ"
Application granted granted Critical
Publication of RU2775244C1 publication Critical patent/RU2775244C1/ru

Links

Images

Abstract

Изобретение относится к способу электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов и может быть использовано в медицинской технике, в травматологии и ортопедии. Осуществляют электрический взрыв двухслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги с массой, равной 0,5-2,0 массы первого слоя. Формируют из продуктов взрыва импульсную многофазную плазменную струю. Оплавляют поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2. Осуществляют осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе молибдена и ниобия. В результате формируется поверхностный слой с высокой адгезией покрытия с подложкой из титанового сплава, низкой шероховатостью и гомогенизированной структурой, обладающий антибактериальным эффектом, что увеличивает срок службы имплантатов и расширяет область практического применения. 3 ил.

Description

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на поверхности имплантатов из титановых сплавов, работающих в организме человека, покрытий на основе молибдена и ниобия, которые могут быть использованы в области медицины с целью получения биосовместимых низкомодульных сплавов.
Известно покрытие на имплантат из титана и его сплавов и способ его приготовления (RU 2502526, МПК A61L 27/06, A61L 27/02, А61Е 2/02, опубл. 27.12.2013). Покрытие на имплантат из титана и его сплавов состоит из двух слоев, первый слой состоит из оксидов титана, в основном ТiO2, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180 мкм при следующем соотношении компонентов, мас. %: оксид титана, в пересчете на ТiO2 - 10-30; гамма-оксид алюминия - 70-90. Способ получения покрытия включает механическую обработку поверхности имплантата, обезжиривание, термическую обработку для получения на поверхности имплантата оксидов титана, последующее нанесение второго слоя. Обезжиривание ведут в растворе щелочи - KОН, NaOH, термическую обработку осуществляют в интервале температур 700-800°С с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, при этом вначале наносят гидроксид алюминия в нагретом до 60-90°С растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°С для получения вторичного покрытия из оксида алюминия.
Недостатком способа является низкая адгезия вторичного биоинертного или биосовместимого покрытия.
Наиболее близким к заявляемому изобретению является способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты (RU №2686092, МПК A61L 27/04, A61F 2/02, С23С 4/00, C25D 11/26, опубл. 24.04.2019). Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты включает электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.
Недостатком способа является низкая антибактериальная активность биоинертных электровзрывных покрытий на основе циркония.
Технической проблемой, решаемой заявляемым изобретением является получение биоинертного или биосовместимого покрытия на основе молибдена и ниобия на поверхности различных имплантатов из титановых сплавов, обладающего антибактериальной активностью.
Существующая техническая проблема решается тем, что предложен способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов, включающий электрический взрыв двухслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги равной 0,5-2,0 массы первого слоя, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе молибдена и ниобия.
Технический результат, получаемый при осуществлении изобретения, заключается в том, что, при электрическом взрыве композиционного электрически взрываемого проводника, состоящего из молибденовой и ниобиевой фольг, продукты разрушения образуют плазменную струю, служащую инструментом формирования на поверхности имплантатов из титановых сплавов покрытия на основе молибдена и ниобия. Электровзрывное напыление приводит к формированию покрытия на основе молибдена и ниобия с высокой адгезией с имплантатом из титанового сплава. Использование недорогих металлов, обладающих антимикробной и антибактериальной эффективностью, приобретает все большую важность в последнее время. К таким металлам относятся молибден и ниобий. Формирование покрытия на основе молибдена и ниобия обеспечивает антимикробный и антибактериальный эффект. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из титанового сплава, низкой шероховатостью и гомогенизированной структурой, обладающего антибактериальным эффектом, что увеличивает срок службы имплантатов, и расширяет область практического применения.
Пролиферативную активность клеточных линий определяли методом непосредственного подсчета количества клеток после их контакта с образцами с нанесенными покрытиями с помощью оптического микроскопа. Исследования проводили на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). Линия получена из коллекции культур клеток ФГУН ГНЦ «Вектор». Количество клеток определяли методом непосредственного подсчета при помощи 4-х сеточной камеры Горяева и оптического инвертированного микроскопа Axio Observer (Zeiss). Для подсчета клеток использовали витальную окраску трипановым синим для одновременного определения количества живых и погибших клеток.
Клеточную линию культивировали в среде Игла MEM с добавлением 10% фетальной бычьей сыворотки (FBS) и 5% пенициллин-стрептомицина-глутамина в сосудах площадью 75 см2. Культивирование клеток проводили при температуре 37±1°С и 5% СO2 в течение 24 часов. Культуру клеток рассевали в культуральные 24-луночные планшеты (общий объем 2 мл) в количестве 50000 клеток на одну лунку. Образцы помещали на монослой клеток в каждую лунку. Клетки инкубировали с образцами в течение 24 часов. В ходе эксперимента за контроль принимали культуру, не контактировавшую с образцами. После инкубирования производили непосредственный подсчет клеток. В результате проведенных исследований было выявлено, что процент выживших клеток на поверхности биоинертных покрытий на основе молибдена и ниобия составляет 100%, что указывает на высокую пролиферативную активность фибробластов. При этом на образце без покрытия (титановый сплав ВТ6) процентное содержание выживших клеток составило 91%.
Проводили исследования на растровом электронном микроскопе образцов с биоинертными электровзрывными молибденовыми покрытиями. Для этого образцы с высаженными на их поверхность культурами клеток промывали и фиксировали в специальных растворах, а затем высушивали в гексане. По окончании процесса высушивания культуру извлекали из держателя и помещали в эксикатор с влагопоглотителем для временного хранения. На полученных изображениях проводили подсчет клеток фибробластов с помощью программного обеспечения «Photoshop». В результате статистического анализа полученных изображений было выявлено, что наибольшее количество клеток обнаружено на образцах с покрытием на основе молибдена и ниобия. На образцах без покрытия (титановый сплав ВТ6) среднее количество клеток было на 20% меньше.
Противомикробная активность образцов была проверена методом подсчетов жизнеспособных бактерий. В этом методе in vitro динамика уничтожения бактерий в образце измерялась путем подсчета остаточных бактерий по сравнению с контролем. Культуры микроорганизмов Staphylococcus aureus (MRSA) культивировали в течение 24 часов при температуре 37±1°С, затем готовили взвесь микроорганизмов в концентрации 105 КОЕ/мл. Staphylococcus aureus 209 - грамположительные шаровидные клетки диаметром 0,5-1,5 мкм. Измерение эффективности сорбции поводили на бактериях Staphylococcus aureus согласно рекомендациям (Ворошилова А.А. Окисляющие нефть бактерии показатели интенсивности биологического окисления нефти в природных условиях / А.А. Ворошилова, Е.Д. Дианова // Микробиология. - 1952. - Т. 21. - С. 408-415.). Для определения эффективности сорбции, образцы стерилизованного в автоклаве продукта с массой 100 мг помещали в стерильные колбы и добавляли 30 мл бактериальной суспензии с концентрацией 1,0×10 КОЕ/мл. Адсорбцию микроорганизмов на образцах проводили при постоянном перемешивании суспензии в течение 30 мин на магнитной мешалке РЕ-6600 (Ecroskhim, Россия) со скоростью 500 об/мин. Далее пробы центрифугировали в течение 3 минут при скорости вращения 1300 об/мин и осуществляли посев 1 мл надосадочной жидкости на МПА. Посевы инкубировали в термостате при температуре 37±1°С в течение 24 ч. Через сутки после инкубирования проводили подсчет колоний. Остаточные жизнеспособные бактерии (КОЕ/мл) подсчитывали после 3 и 6 ч инкубации при 37°С. Микроорганизмы в PBS использовали только в качестве контролей. Для каждого образца были проведены два независимых эксперимента с пятью повторениями на образец на один эксперимент. Статистический анализ проводили с помощью непарного t-теста Стьюдента, а р<0,05 считали статистически значимым. Биоинертное покрытие на основе молибдена и ниобия обладает антибактериальным эффектом. Количество КОЕ уменьшается после 6 часов культивирования до 7 523 с имплантатом из титанового сплава без покрытия (титановый сплав ВТ6) - 10 225.
Цитотоксическое действие образцов с биоинертными молибденовыми покрытиями определяли при помощи МТТ-теста на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). (ФБУН ГНЦ ВБ «Вектор», Россия). Конечная концентрация клеток составила 0,5⋅104 клеток/100 мкл в лунке 96-луночного микропланшета. Клетки культивировали в виде монослоя в среде Игла MEM (Lonza, Швейцария) с добавлением 10% FCS, 2 mМ L-глутамина и 5% пенициллин/стрептомицина/глутамина. Культивирование клеток проводили при температуре 37±1°С и 5% СO2 в течение 24 часов. После инкубирования питательную среду осторожно удаляли и два раза промывали клетки раствором DPBS. Клетки с образцами инкубировали при температуре 37±1°С и 5% СO2 в течение 24, 48 и 72 часов. Затем в каждую лунку добавляли по 100 мкл питательной среды и по 10 мкл раствора МТТ (3-4,5-диметилтиазол-2,5 дифенил тетразилия бромида). Инкубирование с раствором МТТ проводили в течение 2 часов при температуре 37±1°С и 5% СO2. По окончании инкубирования питательную среду осторожно удаляли и добавляли в каждую лунку по 100 мкл диметилсульфоксида для растворения кристаллов формазана. Через 15 минут определяли оптическую плотность на микропланшетном спектрофотометре Multiscan FC при длине волны 620 нм. Далее вычисляли процент живых клеток (CL) по формуле CL=(As/Ac)⋅100%, где As - оптическая плотность исследуемого образца, Ас - оптическая плотность контрольного образца. Контрольной группой служили клетки без добавления образца с покрытиями. Для статистической обработки данных использовались параметрические методы с уровнем достоверности р≤0,05. Образцы с покрытиями на основе молибдена и ниобия не являются токсичными, что подтверждают исследования цитотоксичности. При этом, количество выживших клеток после контакта с образцом с покрытиями на основе молибдена и ниобия на 3% выше, чем у образца без покрытия (титановый сплав ВТ6).
Исследования методом сканирующей электронной микроскопии показали, что при электровзрывном напылении на имплантатах из титановых сплавов путем электрического взрыва композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги равной 0,5-2,0 массы первого слоя при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 происходит формирование покрытия на основе молибдена и ниобия. Указанный режим, при котором поглощаемая плотность мощности составляет 1,5-1,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 1,5 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из титанового сплава, вследствие чего возможно отслаивание покрытия, а выше 1,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы молибденовой фольги менее 50 мг становится невозможным изготовление из нее двухслойного композиционного электрически взрываемого проводника. При значении массы молибденовой фольги более 500 мг покрытие на основе молибдена и ниобия на поверхности имплантатов из титановых сплавов обладает большим количеством дефектов. При значении массы ниобия менее 0,5 или более 2,0 массы фольги покрытие на основе молибдена и ниобия на поверхности имплантатов из титановых сплавов также обладает дефектной структурой. Граница электровзрывного покрытия с подложкой не является ровной, что позволяет увеличить адгезию покрытия с подложкой.
Микротвердость измеряли на микротвердомере HVS-1000A. Значение микротвердости по Виккерсу сформированных покрытий составляет 1,1-1,25 ГПа. Модуль упругости сформированных покрытий составил 200-250 Гн/м2, предел прочности при растяжении 750-780 Мн/м2.
Способ поясняется рисунками, где:
на фиг. 1 представлена структура поперечного сечения поверхностного слоя биоинертного покрытия на основе молибдена и ниобия - покрытие получено на титановом сплаве марки ВТ6;
на фиг. 2 - структура поперечного сечения поверхностного слоя биоинертного покрытия на основе молибдена и ниобия и подложкой (титановый сплав ВТ6);
на фиг. 3 - увеличенное изображение структуры биоинертного покрытия на основе молибдена и ниобия.
Примеры конкретного осуществления способа:
Пример 1.
Обработке подвергали штифт (ввинчивается в челюстную кость) дентального имплантата (титановый сплав марки ВТ6, химический состав %: Ti 90,04, Fe 0,5, С 0,1, Si 0,1, V 3,5, N 0,05, Al 5,3, Zr 0,2, О 0,2, H 0,01) площадью 1 см2. Использовали двухслойный композиционный электрически взрываемый проводник, один из слоев которого состоял из молибденовой фольги массой 50 мг, а второй слой - из ниобиевой фольги массой 25 мг. Сформированной плазменной струей оплавляли поверхность титанового штифта при поглощаемой плотности мощности 1,5 ГВт/м2 и формировали на ней электровзрывное покрытие на основе молибдена и ниобия. Электровзрывное напыление осуществляли на электровзрывной установке ЭВУ 60/10 М (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25).
Получили биоинертное покрытие на основе молибдена и ниобия с высокой адгезией покрытия с подложкой на уровне когезии, обладающее антибактериальной активностью.
Пример 2.
Обработке подвергали пластину Т-образную косую (титановый сплав марки ВТ1-0, химический состав %: Ti 99,48, Fe 0,18, С 0,07, Si 0,1, N 0,04, О 0,12, Н 0,01) площадью 15 см2, применяемую для остеосинтеза дистального метаэпифиза лучевой кости. Использовали двухслойный композиционный электрически взрываемый проводник, один из слоев которого состоял из молибденовой фольги массой 500 мг, а второй слой - из ниобиевой фольги массой 1000 мг. Сформированной плазменной струей оплавляли поверхность пластины Т-образной косой при поглощаемой плотности мощности 1,8 ГВт/м2 и формировали на ней электровзрывное покрытие на основе молибдена и ниобия. Получили биоинертное покрытие на основе молибдена и ниобия с высокой адгезией с подложкой на уровне когезии, обладающее антибактериальной активностью. Электровзрывное напыление осуществляли на электровзрывной установке ЭВУ 60/10 М (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25).
Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титанового сплава, низкой шероховатостью, гомогенизированной структурой и антибактериальной активностью, что увеличивает срок службы имплантатов, и расширяет область практического применения.

Claims (1)

  1. Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов, включающий электрический взрыв двухслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги массой, равной 0,5-2,0 массы первого слоя, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 и осаждение на поверхность продуктов взрыва с формированием на ней биоинертного покрытия на основе молибдена и ниобия.
RU2021135548A 2021-12-02 Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов RU2775244C1 (ru)

Publications (1)

Publication Number Publication Date
RU2775244C1 true RU2775244C1 (ru) 2022-06-28

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111273A (zh) * 2004-11-26 2008-01-23 斯坦托米克斯公司 将化学品与医疗植入物螯合和结合
CN100560780C (zh) * 2005-10-08 2009-11-18 华北电力大学(北京) 电爆炸-电磁加速超高速喷涂工艺
RU2583228C1 (ru) * 2014-12-15 2016-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Способ нанесения износостойких покрытий на основе диборида титана и никеля на стальные поверхности
RU2653395C1 (ru) * 2017-07-11 2018-05-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" Способ нанесения износостойких покрытий на основе карбида титана, Cr3 C2 и алюминия на штамповые стали
RU2686092C1 (ru) * 2018-06-29 2019-04-24 Денис Анатольевич Романов Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты
RU208000U1 (ru) * 2021-06-28 2021-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО "СибГИУ") Дентальный имплантат для зубного протезирования

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111273A (zh) * 2004-11-26 2008-01-23 斯坦托米克斯公司 将化学品与医疗植入物螯合和结合
CN100560780C (zh) * 2005-10-08 2009-11-18 华北电力大学(北京) 电爆炸-电磁加速超高速喷涂工艺
RU2583228C1 (ru) * 2014-12-15 2016-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Способ нанесения износостойких покрытий на основе диборида титана и никеля на стальные поверхности
RU2653395C1 (ru) * 2017-07-11 2018-05-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" Способ нанесения износостойких покрытий на основе карбида титана, Cr3 C2 и алюминия на штамповые стали
RU2686092C1 (ru) * 2018-06-29 2019-04-24 Денис Анатольевич Романов Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты
RU208000U1 (ru) * 2021-06-28 2021-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО "СибГИУ") Дентальный имплантат для зубного протезирования

Similar Documents

Publication Publication Date Title
He et al. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium
Grischke et al. Antimicrobial dental implant functionalization strategies—A systematic review
Hu et al. Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application
Kim et al. Antibacterial and bioactive properties of stabilized silver on titanium with a nanostructured surface for dental applications
Shimabukuro et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment
Eliaz et al. The effect of surface treatments on the adhesion of electrochemically deposited hydroxyapatite coating to titanium and on its interaction with cells and bacteria
Lin et al. Effects of plasma nitriding and multiple arc ion plating TiN coating on bacterial adhesion of commercial pure titanium via in vitro investigations
Li et al. Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegration functions
Hao et al. Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy
Guo et al. Hydroxyapatite/titania composite coatings on biodegradable magnesium alloy for enhanced corrosion resistance, cytocompatibility and antibacterial properties
Tsai et al. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants
Huang et al. Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co‐Cr Substrate
Shao et al. A titanium surface modified with zinc-containing nanowires: Enhancing biocompatibility and antibacterial property in vitro
Shimabukuro et al. Investigation of antibacterial effect of copper introduced titanium surface by electrochemical treatment against facultative anaerobic bacteria
Baino et al. Novel antibacterial ocular prostheses: proof of concept and physico-chemical characterization
RU2737912C1 (ru) Способ нанесения биоинертных танталовых покрытий, модифицированных ионами азота, на титановые имплантаты
Liu et al. Engineering three-dimensional structures using bio-inspired dopamine and strontium on titanium for biomedical application
US20170224458A1 (en) Biocompatible implants made of nanostructured titanium with antibacterial properties
Guo et al. Corrosion resistance and biocompatibility of calcium phosphate coatings with a micro–nanofibrous porous structure on biodegradable magnesium alloys
Nowruzi et al. Effect of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of titanium substrates
Xue et al. Antibacterial properties and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface with Ag microparticles by laser treatment
Tang et al. Mechanical strength, surface properties, cytocompatibility and antibacterial activity of nano zinc-magnesium silicate/polyetheretherketone biocomposites
RU2697855C1 (ru) Способ нанесения покрытия на устройства и инструменты для остеосинтеза, ортопедические имплантаты из металла
D’Agostino et al. Mesoporous zirconia surfaces with anti-biofilm properties for dental implants
Švagrová et al. Titania‐based sol–gel coatings with Ag, Ca‐P applied on titanium substrate developed for implantation