RU2792905C1 - Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановые имплантаты - Google Patents

Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановые имплантаты Download PDF

Info

Publication number
RU2792905C1
RU2792905C1 RU2022128560A RU2022128560A RU2792905C1 RU 2792905 C1 RU2792905 C1 RU 2792905C1 RU 2022128560 A RU2022128560 A RU 2022128560A RU 2022128560 A RU2022128560 A RU 2022128560A RU 2792905 C1 RU2792905 C1 RU 2792905C1
Authority
RU
Russia
Prior art keywords
titanium
niobium
zirconium
tantalum
coating
Prior art date
Application number
RU2022128560A
Other languages
English (en)
Inventor
Денис Анатольевич Романов
Кирилл Валерьевич Соснин
Артем Дмитриевич Филяков
Станислав Владимирович Московский
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ"
Application granted granted Critical
Publication of RU2792905C1 publication Critical patent/RU2792905C1/ru

Links

Images

Abstract

Изобретение относится к способу нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановый имплантат. Проводят электрический взрыв четырехслойного композиционного электрически взрываемого проводника. Один из слоев указанного проводника состоит из титановой фольги массой 50-500 мг, второй, третий и четвертый слои соответственно состоят из ниобиевой, циркониевой и танталовой фольги массами, равными 0,5-2,0 массы первого слоя. Из продуктов взрыва формируют импульсную многофазную плазменную струю. Оплавляют ею поверхность имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2. На указанную поверхность осаждают продукты взрыва и формируют на ней биоинертное покрытие на основе титана, ниобия, циркония и тантала. Затем проводят азотирование в течение 3-5 ч при температуре 500-600°С. Осуществляют последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 20-40 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов от 3 до 5. 6 ил., 1 пр.

Description

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на поверхности титановых имплантатов, работающих в организме человека, покрытий на основе титана, ниобия, циркония, тантала и азота, которые могут быть использованы в области медицины с целью получения биосовместимых низкомодульных сплавов системы Ti-Nb-Zr-Ta-N.
Известен способ нанесения биоинертных покрытий на основе ниобия на титановые имплантаты (RU №2686093 МПК A61L 27/06, A61L 2/02, С23С 4/00, C25D 11/26, опубл. 24.04.2019). Способ нанесения биоинертных покрытий на основе ниобия на титановые имплантаты включает электрический взрыв ниобиевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе ниобия.
Недостатком способа является низкая антибактериальная активность биоинертного электровзрывного покрытия на основе ниобия.
Наиболее близким к заявляемому изобретению является способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты (RU №2686092 МПК A61L 27/06, A61L 2/02, С23С 4/00, C25D 11/26, опубл. 24.04.2019). Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты включает электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.
Недостатком способа является низкая антибактериальная активность биоинертного электровзрывного покрытия на основе циркония.
Технической проблемой, решаемой заявляемым изобретением является получение биоинертного или биосовместимого покрытия на основе титана, ниобия, циркония, тантала и азота на поверхности медицинских титановых имплантатов, обладающего антибактериальной активностью.
Существующая техническая проблема решается тем, что предложен способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановые имплантаты, включающий электрический взрыв четырехслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из титановой фольги массой 50-500 мг, второй, третий и четвертый слои соответственно состоят из ниобиевой, циркониевой и танталовой фольги массами равными 0,5-2,0 от массы первого слоя, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе титана, ниобия, циркония и тантала, затем азотирование в течение 3-5 часов при температуре 500-600°С и осуществление последующей импульсно-периодической электронно-пучковой обработки поверхности покрытия при поглощаемой плотности энергии 20-40 Дж/см2, длительности импульсов 150-200 мкс и количестве 3-5 импульсов.
Технический результат, получаемый при осуществлении изобретения, заключается в том, что, при электрическом взрыве композиционного электрически взрываемого проводника, состоящего из титановой, ниобиевой, циркониевой и танталовой фольг, продукты разрушения образуют плазменную струю, служащую инструментом формирования на поверхности имплантатов из титановых сплавов покрытия на основе титана, ниобия, циркония и тантала. Электровзрывное напыление приводит к формированию покрытия на основе титана, ниобия, циркония и тантала с высокой адгезией с имплантатом из титанового сплава. Азотирование такого покрытия приводит к внесению в поверхностный слой ионов азота и формированию нитридов ниобия, циркония, тантала и титана, которые обеспечивают антибактериальный эффект. Импульсно-периодическая электронно-пучковая обработка приводит к формированию в покрытии высокодисперсной и однородной структуры. Поверхность покрытия приобретает зеркальный блеск. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании покрытия, которое обладает лучшей пролиферативной активностью клеточных линий, противомикробной активностью и цитотоксичностью. Замещение покрытия из циркония (в случае прототипа) на покрытие на основе титана, ниобия, циркония, тантала и азота позволяет этого добиться. Достижение такого результата обеспечивает применение биоинертных металлов: титана, ниобия, циркония и тантала, а также азота, который образует нитриды этих металлов, а также находится в покрытии в виде ионов. Значения микротвердости, нанотвердости, модуля упругости и предела прочности сформированного покрытия также являются лучшими по сравнению с прототипом из-за совокупности характеристик структуры и фазового состава.
Исследования методом сканирующей электронной микроскопии показали, что при электровзрывном напылении на титановых имплантатах путем электрического взрыва четырехслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из титановой фольги массой 50-500 мг, второй слой - из ниобиевой фольги равной 0,5-2,0 массы первого слоя, третий слой - из циркониевой фольги равной 0,5-2,0 массы первого слоя, а четвертый слой - из танталовой фольги равной 0,5-2,0 массы первого слоя при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 происходит формирование покрытия на основе титана, ниобия, циркония и тантала. Указанный режим, при котором поглощаемая плотность мощности составляет 1,5-1,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 1,5 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из титанового сплава, вследствие чего возможно отслаивание покрытия, а при интенсивности воздействия выше 1,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы титановой фольги менее 50 мг становится невозможным изготовление трехслойного композиционного электрически взрываемого проводника. При значении массы титановой фольги более 500 мг покрытие на основе титана, ниобия, циркония и тантала на поверхности имплантатов из титановых сплавов обладает большим количеством дефектов. Дефекты в данном случае представлены фрагментами титановой фольги, которые не разрушились при электрическом взрыве, а лишь частично оплавились и прилипли к поверхности покрытия. При значении массы ниобиевой, циркониевой или танталовой фольги менее 0,5 от массы фольги из титана, будет нарушена слоистая конструкция композиционного проводника, поэтому будет невозможно поместить танталовую и циркониевую фольги над ниобиевой, что в свою очередь приведет к неравномерному перемешиванию титана, циркония, ниобия и тантала в плазменной струе при электрическом взрыве. Последнее повлияет на однородность структуры покрытия, а именно в покрытии будут наблюдаться участки, обогащенные тем или иным металлом (титаном, цирконием, ниобием или танталом). Однородность структуры покрытия будет нарушена. При значении массы ниобиевой, циркониевой или танталовой фольги более 2,0 от массы фольги из титана электрический взрыв композиционного проводника не произойдет, а возникнет лишь его оплавление, поэтому импульсная плазменная струя продуктов электрического взрыва не сформируется, следовательно, покрытие не образуется. В указанных режимах электровзрывного напыления граница покрытия с подложкой не является ровной, что позволяет увеличить адгезию покрытия с подложкой, что является положительной стороной данного способа.
При времени азотирования менее 3 часов и температуре ниже 500°С поверхностный слой электровзрывного покрытия на основе титана, ниобия, циркония и тантала слабо насыщается ионами азота, также не формируются нитриды ниобия, циркония, тантала и титана, что не обеспечивает антибактериальный эффект формируемому покрытию. При времени азотирования более 5 часов и температуре выше 600°С в поверхностном слое электровзрывного покрытия на основе титана, ниобия, циркония и тантала образуются твердые растворы на основе азота, и формируется дендритная структура, что повышает твердость и износостойкость этого покрытия, но делает его непригодным для эксплуатации в организме человека. В этом случае начинает изнашиваться костная ткань.
Импульсно-периодическая электронно-пучковая обработка покрытия приводит к формированию в нем более дисперсной и однородной структуры. Указанный режим является оптимальным, поскольку при поверхностной плотности энергии меньше 20 Дж/см2, длительности импульсов короче 150 мкс, количестве импульсов менее 3, не происходит образования однородной структуры в покрытии. При поверхностной плотности энергии больше 40 Дж/см2, длительности импульсов длиннее 200 мкс, количестве импульсов более 5, происходит формирование рельефа поверхности. Рельеф поверхности образуют вскрывшиеся и закристаллизовавшиеся пузыри паров материала покрытия, поднимающиеся из объема расплавленного покрытия под действием электронного пучка на его поверхность, периодические волны, возникающие из-за интенсивного растекания расплава и другие особенности электронно-пучковой обработки. Все это будет отрицательно сказываться при установке имплантата с таким покрытием в костную ткань, поскольку будут возникать повреждения костной ткани, а также частичное или полное отсутствие первичной фиксации имплантата.
Микротвердость измеряли на микротвердомере HVS-1000A. Значения микротвердости сформированного покрытия находятся в интервале 102-108 кгс/мм2. Нанотвердость измеряли с использованием системы Agilent U9820A Nano Indenter G200. Значения нанотвердости сформированного покрытия составляет 107 кгс/мм2. Модуль упругости сформированного покрытия составил 9860 кгс/мм2, предел прочности при растяжении - 29,8 кгс/мм2.
В результате такой трехстадийной обработки взаимодополняющими методами исследования покрытия: сканирующей электронной микроскопии и микрорентгеноспектрального анализа поверхности покрытия, их прямых шлифов, рентгенофазового анализа и послойным анализом методом просвечивающей электронной микроскопии установлено следующее. Методами сканирующей электронной микроскопии и микрорентгеноспектрального анализа поверхности покрытия установлено, что поверхность покрытия однородна, а распределение элементов на ней представлено только атомами элементов, из которых формировали покрытие: титана, ниобия, циркония, тантала и азота. Исследование элементного состава покрытия по его толщине показало, что основными элементами покрытия также являются титан, ниобий, цирконий, тантал и азот. Эти результаты исследования структуры покрытия на поперечном шлифе полностью согласуются с результатами исследования поверхности покрытия, изложенными выше. Методом картирования проведена визуализация распределения элементов в объеме покрытия, согласно которой, можно отметить отсутствие явно выраженных участков покрытия с преобладающим расположением того или иного элемента, то есть все элементы распределены однородно. Сформированные покрытия содержат поры. Данные покрытия предлагается использовать как биоинертные покрытия на титановых имплантатах после проведения клинических и других испытаний. Предполагается, что вторичная фиксация имплантатов с такими покрытиями будет достигаться за счет остеоинтеграции с открытыми порами покрытия, а врастание в покрытие имплантата рубцовой ткани, исходящей из мягкотканного компонента сегмента, обеспечит предохранение тканей от обсеменения (проникновения) микробными телами и возникновения воспалительной реакции при установке имплантата. Методами микрорентгеноспектрального анализа и просвечивающей электронной микроскопии установлено содержание в покрытии фаз α-Ti, Zr, Nb, Та, NbN, Zr2N, TiN, Ti2N, NbTi4 и TaN. Проведенные исследования структуры, фазового и элементного составов не выявили соединений на основе ванадия и алюминия (как правило, они содержатся в титановых сплавах медицинского назначения), которые снижают биосовместимость покрытия. Выявленные фазы содержат только титан, ниобий, цирконий, тантал и азот, являющиеся биоинертными. Этот факт позволяет утверждать, что, биосовместимость полученного покрытия будет выше по сравнению с титановым сплавами Titanium Grade 5 и ВТ6.
Пролиферативную активность клеточных линий определяли методом непосредственного подсчета количества клеток после их контакта с образцами с нанесенными покрытиями с помощью оптического микроскопа. Исследования проводили на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). Количество клеток определяли методом непосредственного подсчета при помощи 4-х сеточной камеры Горяева и оптического инвертированного микроскопа Axio Observer (Zeiss). Для подсчета клеток использовали витальную окраску трипановым синим для одновременного определения количества живых и погибших клеток. Клеточную линию культивировали в среде Игла MEM с добавлением 10% фетальной бычьей сыворотки (FBS) и 5% пенициллин-стрептомицина-глутамина в сосудах площадью 75 см2. Культивирование клеток проводили при температуре 37±1°С и 5% CO2 в течение 24 часов. Культуру клеток рассевали в культуральные 24-луночные планшеты (общий объем 2 мл) в количестве 50000 клеток на одну лунку. Образцы помещали на монослой клеток в каждую лунку. Клетки инкубировали с образцами в течение 24 часов. В ходе эксперимента за контроль принимали культуру, не контактировавшую с образцами. После инкубирования производили непосредственный подсчет клеток. В результате проведенных исследований было выявлено, что процент выживших клеток на поверхности биоинертного покрытия на основе титана, ниобия, циркония, тантала и азота составляет 100%, что указывает на высокую пролиферативную активность фибробластов. При этом на образце без покрытия (титановый сплав ВТ6) процентное содержание выживших клеток составило 90,5%.
Проводили исследования на растровом электронном микроскопе образцов с биоинертными покрытиями на основе титана, ниобия, циркония и азота. Для этого образцы с высаженными на их поверхность культурами клеток промывали и фиксировали в специальных растворах, а затем высушивали в гексане. По окончании процесса высушивания культуру извлекали из держателя и помещали в эксикатор с влагопоглотителем для временного хранения. На полученных изображениях проводили подсчет клеток фибробластов с помощью программного обеспечения «Photoshop». В результате статистического анализа полученных изображений было выявлено, что наибольшее количество клеток обнаружено на образцах с покрытием на основе титана, ниобия, циркония, тантала и азота. На образцах без покрытия (титановый сплав ВТ6) среднее количество клеток было на 20,6% меньше.
Противомикробная активность образцов была проверена методом подсчетов жизнеспособных бактерий. В этом методе in vitro динамика уничтожения бактерий в образце измерялась путем подсчета остаточных бактерий по сравнению с контролем. Культуры микроорганизмов Staphylococcus aureus (MRSA) культивировали в течение 24 часов при температуре 37±1°С, затем готовили взвесь микроорганизмов в концентрации 105 КОЕ/мл. Staphylococcus aureus 209 - грамположительные шаровидные клетки диаметром 0,5-1,5 мкм. Измерение эффективности сорбции поводили на бактериях Staphylococcus aureus согласно рекомендациям (Ворошилова А.А. Окисляющие нефть бактерии показатели интенсивности биологического окисления нефти в природных условиях / А.А. Ворошилова, Е.Д. Дианова // Микробиология. - 1952. - Т. 21. - С. 408-415.). Для определения эффективности сорбции, образцы стерилизованного в автоклаве продукта с массой 100 мг помещали в стерильные колбы и добавляли 30 мл бактериальной суспензии с концентрацией 1,0×103 КОЕ/мл. Адсорбцию микроорганизмов на образцах проводили при постоянном перемешивании суспензии в течение 30 мин на магнитной мешалке РЕ-6600 (Ecroskhim, Россия) со скоростью 500 об/мин. Далее пробы центрифугировали в течение 3 минут при скорости вращения 1300 об/мин и осуществляли посев 1 мл надосадочной жидкости на МПА. Посевы инкубировали в термостате при температуре 37±1°С в течение 24 ч. Через сутки после инкубирования проводили подсчет колоний. Остаточные жизнеспособные бактерии (КОЕ/мл) подсчитывали после 3 и 6 ч инкубации при 37°С. Микроорганизмы в PBS использовали только в качестве контролей. Для каждого образца были проведены два независимых эксперимента с пятью повторениями на образец на один эксперимент. Статистический анализ проводили с помощью непарного t-теста Стьюдента, а р<0,05 считали статистически значимым. Биоинертное покрытие на основе титана, ниобия, циркония, тантала и азота, обладает антибактериальным эффектом. Количество КОЕ уменьшается после 6 часов культивирования до 7515 с титановым имплантатом без покрытия (титановый сплав ВТ6) - 10 226.
Цитотоксическое действие образцов с биоинертными покрытиями на основе титана, ниобия, циркония, тантала и азота определяли при помощи МТТ-теста на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). Конечная концентрация клеток составила 0,5⋅104 клеток/100 мкл в лунке 96-луночного микропланшета. Клетки культивировали в виде монослоя в среде Игла MEM (Lonza, Швейцария) с добавлением 10% FCS, 2 mM L-глутамина и 5% пенициллин/стрептомицина/глутамина. Культивирование клеток проводили при температуре 37±1°С и 5% CO2 в течение 24 часов. После инкубирования питательную среду осторожно удаляли и два раза промывали клетки раствором DPBS. Клетки с образцами инкубировали при температуре 37±1°С и 5% CO2 в течение 24, 48 и 72 часов. Затем в каждую лунку добавляли по 100 мкл питательной среды и по 10 мкл раствора МТТ (3-4,5-диметилтиазол-2,5 дифенил тетразилия бромида). Инкубирование с раствором МТТ проводили в течение 2 часов при температуре 37±1°С и 5% CO2. По окончании инкубирования питательную среду осторожно удаляли и добавляли в каждую лунку по 100 мкл диметилсульфоксида для растворения кристаллов формазана. Через 15 минут определяли оптическую плотность на микропланшетном спектрофотометре Multiscan FC при длине волны 620 нм. Далее вычисляли процент живых клеток (CL) по формуле CL=(As/Ac)⋅100%, где As - оптическая плотность исследуемого образца, Ас - оптическая плотность контрольного образца. Контрольной группой служили клетки без добавления образца с покрытиями. Для статистической обработки данных использовались параметрические методы с уровнем достоверности р≤0,05. Образцы с покрытиями на основе титана, ниобия, циркония и азота, не являются токсичными, что подтверждают исследования цитотоксичности. При этом, количество выживших клеток после контакта с образцом с покрытиями на основе титана, ниобия, циркония, тантала и азота на 3,6% выше, чем у образца без покрытия (титановый сплав ВТ6). Способ поясняется рисунками, где:
на фиг. 1 представлено электронное изображение структуры поперечного сечения поверхностного слоя биоинертного покрытия на основе титана, ниобия, циркония, тантала и азота, - покрытие получено на титановом сплаве марки ВТ6. «А-А» - линия, вдоль которой осуществлялся набор спектров для микрорентгеноспектрального анализа.
на фиг. 2 - изменение интенсивности отклика детектора микрорентгеноспектрального анализа на титан (I) в зависимости от толщины покрытия (h) вдоль линии «А-А» на фиг. 1.
на фиг. 3 - изменение интенсивности отклика детектора микрорентгеноспектрального анализа на цирконий (7) в зависимости от толщины покрытия (h) вдоль линии «А-А» на фиг. 1.
на фиг. 4 - изменение интенсивности отклика детектора микрорентгеноспектрального анализа на ниобий (I) в зависимости от толщины покрытия (h) вдоль линии «А-А» на фиг. 1.
на фиг. 5 - изменение интенсивности отклика детектора микрорентгеноспектрального анализа на тантал (I) в зависимости от толщины покрытия (h) вдоль линии «А-А» на фиг. 1.
на фиг. 6 - изменение интенсивности отклика детектора микрорентгеноспектрального анализа на азот (I) в зависимости от толщины покрытия (h) вдоль линии «А-А» на фиг. 1. Примеры конкретного осуществления способа:
Пример 1.
Обработке подвергали титановый штифт (ввинчивается в челюстную кость) дентального имплантата (титановый сплав марки ВТ6, химический состав %: Ti 90,04, Fe 0,5, С 0,1, Si 0,1, V 3,5, N 0,05, Al 5,3, Zr 0,2, О 0,2, H 0,01) площадью 1 см2.
Использовали четырехслойный композиционный электрически взрываемый проводник, один из слоев которого состоял из тинановой фольги массой 50 мг, второй слой - из ниобиевой фольги 25 мг, третий слой - из цикониевой фольги 25 мг, а четвертый слой - из танталовой фольги 25 мг. Сформированной плазменной струей оплавляли поверхность титанового штифта при поглощаемой плотности мощности 1,5 ГВт/м2 и формировали на ней электровзрывное покрытие на основе титана, ниобия, циркония и тантала. Электровзрывное напыление осуществляли на электровзрывной установке ЭВУ 60/10 М (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25). Азотирование проводили в течение 3 часов при температуре 500°С. Последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия проводили при поглощаемой плотности энергии 20 Дж/см2, длительности импульсов 150 мкс и количестве 3 импульсов. Азотирование и электронно-пучковую обработку проводили на установке «КОМПЛЕКС» (https://www.hcei.tsc.ru/ru/cat/unu/unikuum/03_06.html).
Получили биоинертное покрытие на основе титана, ниобия, циркония, тантала и азота. По вышеуказанным методикам, описанным на с. 7-10, провели испытания титанового штифта с полученным покрытием на пролиферативную активность клеточных линий, противомикробную активность и цитотоксичность. Результаты подтверждают, что процентное содержание выживших клеток при испытаниях на пролиферативную активность клеточных линий выше, чем у титанового штифта без покрытия. Также результаты подтверждают, что покрытие обладает противомикробной активностью и к тому же не является токсичным. Значения микротвердости, нанотвердости, модуля упругости и предела прочности сформированного покрытия находятся в интервалах соответствующих испытаний, приведенных на с. 6. Пример 2.
Обработке подвергали титановую пластину Т-образную косую (медицинский титановый сплав марки Titanium Grade 5, химический состав %: Ti 88,096, С 0,07, V 4,5, Н 0,014, О 0,19, N 0,04, Fe 0,39, Al 6,7) площадью 15 см2, применяемую для остеосинтеза дистального метаэпифиза лучевой кости.
Использовали четырехслойный композиционный электрически взрываемый проводник, один из слоев которого состоял из титановой фольги массой 500 мг, второй слой - из ниобиевой фольги 1000 мг, третий слой - из циркониевой фольги 1000 мг, а четвертый слой - из танталовой фольги 1000 мг. Сформированной плазменной струей оплавляли поверхность Т-образной косой пластины при поглощаемой плотности мощности 1,8 ГВт/м2 и формировали на ней электровзрывное покрытие на основе титана, ниобия, циркония и тантала. Электровзрывное напыление осуществляли на электровзрывной установке ЭВУ 60/10 М (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25). Азотирование проводили в течение 5 часов при температуре 600°С. Последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия проводили при поглощаемой плотности энергии 40 Дж/см, длительности импульсов 200 мкс и количестве 5 импульсов. Азотирование и электронно-пучковую обработку проводили на установке «КОМПЛЕКС» (https://www.hcei.tsc.ru/ru/cat/unu/unikuum/03_06.html).
Получили биоинертное покрытие на основе титана, ниобия, циркония и азота. По вышеуказанным методикам, описанным на с. 7-10, провели испытания титанового штифта с полученным покрытием на пролиферативную активность клеточных линий, противомикробную активность и цитотоксичность. Результаты подтверждают, что процентное содержание выживших клеток при испытаниях на пролиферативную активность клеточных линий выше, чем у титанового штифта без покрытия. Также результаты подтверждают, что покрытие обладает противомикробной активностью и к тому же не является токсичным. Значения микротвердости, нанотвердости, модуля упругости и предела прочности сформированного покрытия находятся в интервалах соответствующих испытаний, приведенных на с. 6.
Предлагаемый способ позволяет сформировать покрытие, которое по совокупности свойств, характеристикам структуры и фазовому составу позволяет увеличить срок службы имплантатов, и расширить область практического применения.

Claims (1)

  1. Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановый имплантат, включающий электрический взрыв четырехслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из титановой фольги массой 50-500 мг, второй, третий и четвертый слои соответственно состоят из ниобиевой, циркониевой и танталовой фольги массами, равными 0,5-2,0 массы первого слоя, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на указанную поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе титана, ниобия, циркония и тантала, затем проводят азотирование в течение 3-5 ч при температуре 500-600°С и осуществление последующей импульсно-периодической электронно-пучковой обработки поверхности покрытия при поглощаемой плотности энергии 20-40 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов от 3 до 5.
RU2022128560A 2022-11-02 Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановые имплантаты RU2792905C1 (ru)

Publications (1)

Publication Number Publication Date
RU2792905C1 true RU2792905C1 (ru) 2023-03-28

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2325191C1 (ru) * 2007-02-16 2008-05-27 Алексей Суренович Григорьян Способ получения имплантационного материала на основе пористого политетрафторэтилена и материал, полученный этим способом
RU2434073C9 (ru) * 2005-05-05 2012-12-27 Х.К. Штарк Гмбх Способ покрытия поверхности субстрата и продукт с нанесенным покрытием
RU2555336C2 (ru) * 2009-01-08 2015-07-10 Байо Дг, Инк. Имплантируемое медицинское устройство, содержащее биодеградируемые сплавы
WO2018081283A1 (en) * 2016-10-27 2018-05-03 The Penn State Research Foundaiton Implantable medical devices having hydrophilic surfaces
RU2669808C2 (ru) * 2012-05-11 2018-10-16 Дентспли Их Аб Медицинское устройство с поверхностью, включающей наночастицы
RU2686092C1 (ru) * 2018-06-29 2019-04-24 Денис Анатольевич Романов Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2434073C9 (ru) * 2005-05-05 2012-12-27 Х.К. Штарк Гмбх Способ покрытия поверхности субстрата и продукт с нанесенным покрытием
RU2325191C1 (ru) * 2007-02-16 2008-05-27 Алексей Суренович Григорьян Способ получения имплантационного материала на основе пористого политетрафторэтилена и материал, полученный этим способом
RU2555336C2 (ru) * 2009-01-08 2015-07-10 Байо Дг, Инк. Имплантируемое медицинское устройство, содержащее биодеградируемые сплавы
RU2669808C2 (ru) * 2012-05-11 2018-10-16 Дентспли Их Аб Медицинское устройство с поверхностью, включающей наночастицы
WO2018081283A1 (en) * 2016-10-27 2018-05-03 The Penn State Research Foundaiton Implantable medical devices having hydrophilic surfaces
RU2686092C1 (ru) * 2018-06-29 2019-04-24 Денис Анатольевич Романов Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты

Similar Documents

Publication Publication Date Title
Kazemzadeh-Narbat et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections
Sedelnikova et al. Modification of titanium surface via Ag-, Sr-and Si-containing micro-arc calcium phosphate coating
JP5777609B2 (ja) ナノ銀を用いた骨接合
Li et al. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy
Sarraf et al. Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V
CN107899076B (zh) 具有包含抗微生物的金属的表面的医疗装置
Tsai et al. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants
Shimabukuro et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment
Si et al. In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect
Wang et al. Mussel-inspired nano-multilayered coating on magnesium alloys for enhanced corrosion resistance and antibacterial property
Asgari et al. Mg–phenolic network strategy for enhancing corrosion resistance and osteocompatibility of degradable magnesium alloys
Liu et al. Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties
Patil et al. Antibacterial and cytocompatibility study of modified Ti6Al4V surfaces through thermal annealing
Feng et al. Plasma and ion-beam modification of metallic biomaterials for improved anti-bacterial properties
RU2737912C1 (ru) Способ нанесения биоинертных танталовых покрытий, модифицированных ионами азота, на титановые имплантаты
Huang et al. Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings
Endrino et al. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique
Huo et al. Formation of a novel Cu-containing bioactive glass nano-topography coating with strong bactericidal capability and bone regeneration
RU2697855C1 (ru) Способ нанесения покрытия на устройства и инструменты для остеосинтеза, ортопедические имплантаты из металла
RU2792905C1 (ru) Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония, тантала и азота на титановые имплантаты
RU2792909C1 (ru) Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония и азота на титановые имплантаты
Swain et al. Ceragenin-CSA13 loaded high strength coatings of nano-and micro-SrHA implanted N-Carboxymethyl chitosan–Polyetheretherketone by low temperature high speed collision approach: In vitro pro-osteogenicity and bactericidal activity against MRSA
RU2775244C1 (ru) Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов
Popova et al. Osteoconductive, Osteogenic, and Antipathogenic Plasma Electrolytic Oxidation Coatings on Titanium Implants with BMP-2
Marín et al. Influence of silver content on microstructural, bactericidal, and cytotoxic behavior of TiAlVN (Ag) composite coatings deposited by magnetron sputtering