RU2679458C1 - Газовый свч-сенсор - Google Patents

Газовый свч-сенсор Download PDF

Info

Publication number
RU2679458C1
RU2679458C1 RU2018102538A RU2018102538A RU2679458C1 RU 2679458 C1 RU2679458 C1 RU 2679458C1 RU 2018102538 A RU2018102538 A RU 2018102538A RU 2018102538 A RU2018102538 A RU 2018102538A RU 2679458 C1 RU2679458 C1 RU 2679458C1
Authority
RU
Russia
Prior art keywords
gas
diode
microstrip line
microwave
metal base
Prior art date
Application number
RU2018102538A
Other languages
English (en)
Inventor
Дмитрий Александрович Усанов
Александр Владимирович Скрипаль
Андрей Вячеславович Романов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского"
Priority to RU2018102538A priority Critical patent/RU2679458C1/ru
Application granted granted Critical
Publication of RU2679458C1 publication Critical patent/RU2679458C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещены микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием. Технический результат: обеспечение возможности повышения чувствительности газового СВЧ сенсора в широком диапазоне концентраций исследуемого газа. 8 ил.

Description

Изобретение относится к аналитическому приборостроению, в частности к СВЧ-технике, а именно к СВЧ газовым сенсорам, и может быть использовано для детектирования малых концентраций различных газов и летучих соединений.
В сенсорных системах изменение импеданса рабочей поверхности газочуствительного слоя сопряженного с линией передачи при адсорбции молекул различных газов однозначно влияет на коэффициенты прохождения/отражения электромагнитной волны в СВЧ-диапазоне, а по характерному изменению частотных зависимостей этих коэффицинтов можно судить о концентрации и химическом составе анализируемого газа. Выбор того, где поместить газочувствительный материал зависит от того, где он будет максимально влиять на работу сенсора, при изменении газового состава окружающей среды.
Известен газовый сенсор (см. WO2012005738, МПК G01N29/02, G01R27/26, G08B21/14). Газовый сенсор представляет собой дисковый резонатор, поверхность которого покрыта пленкой углеродных нанотрубок. Для адекватного определения концентрации и состава исследуемого газа с помощью такого сенсора дополнительно вводился набор резонаторов с разными геометрическими размерами и соответственно с разными резонансными частотами. По полученному набору резонансных частот и по их характеристическому сдвигу при адсорбции молекул анализируемого газа на поверхности углеродных нанотрубок и оценивают концентрацию газа. Другой вариант определения концентрации исследуемого газа, описанный в данном патенте, предполагает наличие второго контольного резонатора, на который анализируемый газ не воздействовал. Затем сравнивают два сигнала, поступающие от двух сенсоров, и определяют разницу между двумя резонансными частотами, которую затем переводят в цифровую форму.
Однако данное сложное конструктивное решение дает низкую воспроизводимость параметров отклика на различные газы, что связано не только с неоднородной структурой газочувствительного слоя из углеродных нанотрубок в каждом резонаторе, но и с наличием технологического разброса геометрических размеров резонаторов. Также необходима сложная аналогово-цифровая система анализа для смеси нескольких газов для устранения неоднозначности полученных результатов в зависимости от концентрации и состава исследуемой газовой смеси. Кроме этого отсутствие возможности перестройки резонансной частоты в процессе работы газового СВЧ-сенсора резко увеличивает погрешность измерения больших концентраций исследуемого газа.
Другой вариант конструкции СВЧ газового сенсора предложен в работе («Novel Microwave Gas Sensor using Dielectric Resonator With SnO2 Sensitive Layer» H. Hallil, P. Menini and H. Aubert. Procedia Chemistry 1 (2009) 935–938). В качестве резонатора используют дисковый диэлектрический резонатор на поверхности, которого нанесен газочувствительный слой из оксида олова. По характерному сдвигу одного из резонансов (в диапазоне 50-75 ГГц) описанного выше резонатора определяют концентрацию и состав газа (например, ацетилен).
Однако предложенная конструкция газового сенсора имеет ряд недостатков: система имеет множество достаточно близко расположенных резонансов, что затрудняет идентификацию сдвига одной из выбранных резонансных частот, для данной системы характерна невысокая температурная стабильность частоты резонанса и высокая чувствительность резонатора к различным неоднородностям в структурах диэлектрического резонатора и газочувствительного слоя. Описанные выше недостатки резко снижают точность и воспроизводимость определения концентрации исследуемого газа. Кроме этого у данной конструкции отсутствует возможность плавной перестройки резонансной частоты газового СВЧ-сенсора в широком диапазоне частот.
Кроме дисковых резонаторов в газовых сенсорах часто используют резонаторы сложной формы (J. Rossignol, et al., Microwave-based gas sensor with phthalocyanine film at room temperature, Sens. Actuators B: Chem. (2013), http://dx.doi.org/10.1016/j.snb.2013.03.092), например, в виде набора полуволновых микрополосковых отрезков соединенных между собой, часть из которых закорочены на землю. Полученный резонатор покрывают фталоциановой пленкой легированной кобальтом. Данная система имеет резонанс на частоте ~ 3.65 ГГц и при воздействии газа (например, аммиака) наблюдается сдвиг резонансной частоты, а величина сдвига зависит от концентрации аммиака.
В предложенной конструкции газового сенсора имеется ряд недостатков, таких как: сложность расчета топологии резонатора, из-за этого при изготовлении данного резонатора имеется большой разброс по частоте и добротности резонанса, а также отсутствие возможности настройки резонансной частоты перед началом работы газового сенсора и/или в процессе его работы при измерении концентрации исследуемого газа для повышения точности измерения концентрации анализируемого газа.
Наиболее близким к заявленному изобретению является микрополосковый СВЧ-сенсор, использующий в качестве газочувствительного слоя углеродные нанотрубки (см. US2005183492, МПК G01H13/00, G01N29/02). В СВЧ-сенсоре используют микрополосковый резонатор в виде диска, на поверхность которого нанесен чувствительный слой из однослойных или многослойных нанотрубок. С одного конца дисковый резонатор подключен к 50-омной микрополосковой линии передачи (МПЛП). На спектре отражения измерительной структуры наблюдается резонанс на частоте ~ 5,5 ГГц. При воздействии паров аммиака NH3 наблюдается линейное изменение частоты резонанса при увеличении концентрации аммиака.
Однако воспроизводимость параметров и чувствительность представленного газового СВЧ-сенсора достаточно низкая, что связано c недостаточно высокой добротностью резонатора. В предложенном способе реализации газового сенсора всегда присутствует значительная погрешность в определении концентрации исследуемого газа, связанная с разбросом параметров газочуствительного слоя (например, углеродные нанотрубки). Эти параметры зависят от способа нанесения газочувствительного слоя и от морфологии самих углеродных нанотрубок. Также требуется трудоемкая процедура обработки отклика резонансной системы в СВЧ-диапазоне и преобразования СВЧ-отклика в низкочастотный аналоговый сигнал, для дальнейшей его оцифровки. Кроме этого отсутствие возможности перестройки резонансной частоты снижает чувствительность данного газового СВЧ-сенсора при анализе больших концентраций исследуемого газа.
Технической проблемой изобретения является реализация возможности создания высокоэффективного газового СВЧ-сенсора, у которого параметры резонансной системы могут перестраиваться за счет электрического управления.
Технический результат заключается в повышении чувствительности газового СВЧ сенсора в широком диапазоне концентраций исследуемого газа, за счет возможности электрической перестройки резонансной частоты в широком диапазоне частот, а также в повышении технологичности процесса изготовления СВЧ-сенсора и снижении его себестоимости.
Указанная техническая проблема решается тем, что в газовом СВЧ-сенсоре, содержащем микрополосковую линию с заземляющим металлическим слоем, и резонатор со слоем газоактивного материала на его поверхности, согласно решению, резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещена микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием.
Изобретение поясняется чертежами.
На фиг. 1 – изображена конструкция заявляемого электрически управляемого газового СВЧ-сенсора (вид сбоку).
На фиг. 2 – изображена конструкция заявляемого электрически управляемого газового СВЧ-сенсора (вид сверху).
На фиг. 3 – схема включения СВЧ-сенсора.
На фиг. 4 – представлена топология микрополосковой линии передачи с гребенчатым конденсатором.
На фиг. 5 – представлены зависимости коэффициента отражения СВЧ-сигнала от времени воздействия аммиака с фиксированной объемной концентрацией 500 ррм (1 – 0 мин, 2 – 1 мин, 3 – 5 мин, 4 – 10 мин, 5 – 15 мин).
На фиг. 6 – изображены зависимости изменения резонансной частоты СВЧ-сенсора от времени воздействия аммиака при циклической работе СВЧ-сенсора с различной объемной концентрацией аммиака (первая-100 ррм; вторая-500 ррм; третья-1500 ррм) в рабочей камере.
На фиг. 7 – представлена калибровочная кривая для определения концентрации аммиака в воздухе по величине сдвига резонансной частоты от величины объемной концентрации аммиака (0-1500 ррм) при фиксированном времени наблюдения t = 15 мин.
На фиг. 8 – представлена калибровочная кривая для определения концентрации аммиака в воздухе, полученная за счет компенсации сдвига резонансной частоты путем изменения величины управляющего тока, протекающего через p-i-n диод от объемной концентрации аммиака в диапазоне 0–1500 ррм при фиксированном времени наблюдения t = 15 мин.
Позициями на чертежах обозначены:
1 – газовый СВЧ-сенсор;
2 – микрополосковая линия передачи;
3 – заземляющий металлический слой микрополосковой линии передачи;
4 – микрополосковый гребенчатый конденсатор;
5 – вход микрополосковой линии передачи;
6 – выход микрополосковой линии передачи;
7 – петлевой элемент;
8 – слой газоактивного материала;
9 – p–i–n-диод;
10 – электрический фильтрующий элемент;
11 – источник управляющего напряжения;
12 – металлическое основание;
13 – диэлектрическая пластина;
14 – рабочая камера;
15 – натекатель;
16 – анализатор СВЧ-цепей.
Электрически управляемый газовый СВЧ-сенсор 1 содержит отрезок микрополосковой линии передачи 2 с заземляющим металлическим слоем 3 и резонатор, выполненный в виде микрополоскового гребенчатого конденсатора 4, встроенного в разрыв микрополосковой линии 2, между её входом 5 и выходом 6, и петлевого элемента 7. На поверхность микрополоскового гребенчатого конденсатора 4 нанесен слой газоактивного материала 8 в виде тонкой пленки из углеродных нанотрубок. Цепь управления газового СВЧ-сенсора 1 состоит из p–i–n-диода 9, электрического фильтрующего элемента 10 и источника управляющего напряжения 11. Газовый СВЧ-сенсор 1 содержит металлическое основание 12, на котором размещена микрополосковая линия передачи 2, таким образом, что заземляющий металлический слой 3 микрополосковой линии гальванически соединен с металлическим основанием 12, как это показано на фиг. 1 и фиг. 2. На металлическом основании 12 также размещен p–i–n-диод 9 и электрический фильтрующий элемент 10. Один конец петлевого элемента 7 соединен с выходом 6 микрополосковой линии, а второй конец петлевого элемента 7 соединен с металлическим основанием 12. Петлевой элемент одним или более витками огибает p–i–n-диод, при этом отрицательный полюс p–i–n-диода 9 соединен с металлическим основанием 12, а положительный полюс p–i–n-диода 9 подключен к источнику управляющего напряжения 11 через электрический фильтрующий элемент 10.
Предложенный газовый СВЧ-сенсор включается в СВЧ-схему на отражение. В этом случае входной СВЧ-сигнал подается на вход 5 микрополосковой линии передачи и на этом же входе 5 измеряется отраженный СВЧ-сигнал, содержащий информацию о степени поглощения контролируемого газа слоем газоактивного материала.
Микрополосковая линия передачи выполнена на основе диэлектрической пластины 13, на одной стороне которой размещен металлический полосковый проводник, в разрыв которого встроен микрополосковый гребенчатый конденсатор 4, а другая сторона покрыта заземляющим металлическим слоем 3.
Схема включения газового СВЧ-сенсора изображена на фиг. 3. Электрически управляемый газовый СВЧ-сенсор 1 помещают в камеру 14, в которую через натекатель 15 напускают газообразный аммиак. Вход 5 микрополосковой линии подключают к анализатору СВЧ-цепей 16.
С помощью источника управляющего напряжения 11, подключенного к положительному полюсу p–i–n-диода 9, управляют резонансной частотой газового СВЧ-сенсора.
Пример практической реализации изобретения.
Микрополосковый гребенчатый конденсатор 4, встроенный в разрыв микрополосковой линии 2 шириной 1 мм, между её входом 5 и выходом 6, изготовлен методом фотолитографии на одной стороне пластины 13 из поликора (Al2O3) толщиной 1 мм (см. фиг. 4), на другой стороне которой нанесен заземляющий металлический слой 3. Пластина 13 заземляющим металлическим слоем 3 припаяна припоем ПОСК-50-18 к металлическому основанию 12, к которому также припаян кремниевый диффузионный переключательный p–i–n-диод 9 типа 2А523А-4 его отрицательным электродом. Петлевой элемент 3 выполнен в виде трех витков медной проволоки диаметром 0.2 мм, огибающей корпус p–i–n-диода 9 и припаянной одним концом к выходу микрополосковой линии 6, а другим концом – к металлическому основанию 12. Положительный полюс p–i–n-диода 9 подключен к положительному полюсу источника управляющего напряжения 11 через фильтрующий элемент 10, состоящий из керамического конденсатора емкостью 10 мкФ и дросселя. Отрицательный полюс источника управляющего напряжения 11 гальванически соединен с металлическим основанием 12.
Используемые в СВЧ-сенсоре углеродные нанотрубки были получены газофазным химическим осаждением пропанобутановой смеси на металлическом катализаторе и имели следующие размеры: диаметр ~ 20 – 50 нм, длина ~ 1 мкм. Было проведено их диспергирование в ультразвуковой ванне УЗВ-4/150-МП (частота УЗ-колебаний 22 кГц, мощность УЗ-колебаний 100 Вт) в водном растворе с добавление ПАВ (цетилтриметиламмония бромида) в течение 30 минут. Полученная взвесь фильтровалась и наносилась на подогретую диэлектрическую подложку через маску с помощью пульвизатора. Толщина пленки из углеродных нанотрубок составляла ~ 1 мкм.
Для проведения измерений электрических параметров электрически управляемый газовый СВЧ-сенсор помещают в рабочую камеру, вход 5 микрополосковой линии через СВЧ-циркулятор подключают к входу векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A через коаксиально-микрополосковый адаптер, а на p–i–n-диод подают прямое напряжение смещения. Для дегазации чувствительного слоя газового СВЧ-сенсора проводят отжиг пленки из углеродных трубок при температуре 1500С в течение 1 часа.
При помощи анализатора цепей были измерены частотные зависимости коэффициента отражения устройства при различных значениях электрического тока, протекающего через p–i–n-диод. Варьированием величины электрического тока, протекающего через p–i–n-диод, добиваются минимума коэффициента отражения СВЧ-сигнала от газового СВЧ-сенсора. Значение коэффициента отражения в минимуме на частоте 4,14 ГГц составляло ~ – 90 дБ, при токе через p–i–n-диод, равном 0.08 мА.
Затем напускают газообразный аммиак в рабочую камеру с объемной концентрацией 500 ррм (количество подаваемого аммиака с учетом объема рабочей камеры пересчитывается в величину объемной концентрации) и фиксируют сдвиг резонансной частоты в течение 15 минут.
На фиг. 5 представлены частотные зависимости коэффициента отражения электромагнитного излучения L=10⋅lg(Рпадотр), измеренные при различном времени воздействия газообразного аммиака с объемной концентрацией 500 ррм на углеродные нанотрубки в составе СВЧ-сенсора с фиксированным значением прямого тока I=0.08 мА, пропускаемого через p–i–n-диод, где Рпад – мощность СВЧ-излучения, поступающая на вход газового СВЧ-сенсора, Ротр – мощность СВЧ-излучения, отраженная от газового СВЧ-сенсора. Анализ частотных зависимостей коэффициента отражения электромагнитного излучения L(f) показал, что с течением времени наблюдается сдвиг резонансной частоты, величина которого достигала максимума и составляла 24 МГц на частоте резонанса ~ 4,14 ГГц при времени воздействия аммиака t = 15 минут, а коэффициент отражения изменял свое значение на 45 дБ. Чувствительность заявляемого СВЧ-сенсора составила ~ 48 кГц/ррм (при концентрации аммиака – 500 ррм).
На фиг. 6 изображены зависимости изменения резонансной частоты от времени воздействия аммиака при циклической работе СВЧ-сенсора с различной объемной концентрацией аммиака (первая-100 ррм; вторая-500 ррм; третья-1500 ррм) в рабочей камере.
Экспериментально установленные частотные зависимости коэффициента отражения при различных объемных концентрациях аммиака в рабочей камере, позволяют использовать предлагаемую структуру для создания высокочувствительного газового СВЧ-сенсора.
На основе экспериментальных данных была построена калибровочная кривая, которая представлена на фиг. 7, в виде зависимости сдвига резонансной частоты от величины объемной концентрации аммиака при фиксированном времени наблюдении (t = 15 мин), которая позволяет однозначно определять концентрацию аммиака в окружающем воздухе.
На основе экспериментальных данных была построена вторая калибровочная кривая, которая представлена на фиг. 8, в виде зависимости величины управляющего тока, протекающего через p–i–n-диод, при котором происходит компенсация сдвига резонансной частоты из-за адсорбции молекул аммиака на поверхности углеродных нанотрубок, от величины объемной концентрации аммиака при фиксированном времени наблюдении (t = 15 мин). В процессе измерения концентрации исследуемого газа возможно проводить подстройку частоты и добротности резонатора путем изменения величины пропускаемого тока через p–i–n-диод для сохранения максимальной добротности резонансной системы предложенного газового СВЧ-сенсора, что позволяет расширить диапазон измеряемых концентраций исследуемого газа при сохранении требуемой точности измерений концентрации анализируемого газа.
Таким образом, заявляемый электрически управляемый газовый СВЧ-сенсор, содержащий микрополосковую линию с заземляющим металлическим слоем и резонатор с пленкой из углеродных нанотрубок на его поверхности, который выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии, и петлевого элемента, при этом цепь управления газового СВЧ-сенсора, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, позволяет определять низкие концентрации аммиака (на уровне 100 ррм) в течение нескольких минут, за счет широкого диапазона перестройки частоты резонанса ~ 400 МГц (до 10% от частоты основного резонанса) и изменения величины потерь затухания на отражение более 70 дБ.
Устройство значительно снижает требования к параметрам элементов СВЧ-узлов, линий передач и характеристикам газочувствительного слоя, тем самым повышает технологичность процесса изготовления СВЧ-сенсора и снижает его себестоимость. Это связано с тем, что возможно провести предварительную электрическую настройку газового сенсора по частоте или по добротности резонанса перед началом его работы. Кроме этого значительно упрощается процедура обработки результатов измерений, так как сдвиг частоты СВЧ-сигнала при адсорбции молекул анализируемого газа на поверхности углеродных нанотрубок однозначно может быть преобразован в величину постоянного тока, протекающего через p–i–n-диод.

Claims (1)

  1. Газовый СВЧ-сенсор, содержащий микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, отличающийся тем, что резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещены микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием.
RU2018102538A 2018-01-23 2018-01-23 Газовый свч-сенсор RU2679458C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018102538A RU2679458C1 (ru) 2018-01-23 2018-01-23 Газовый свч-сенсор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018102538A RU2679458C1 (ru) 2018-01-23 2018-01-23 Газовый свч-сенсор

Publications (1)

Publication Number Publication Date
RU2679458C1 true RU2679458C1 (ru) 2019-02-11

Family

ID=65442367

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018102538A RU2679458C1 (ru) 2018-01-23 2018-01-23 Газовый свч-сенсор

Country Status (1)

Country Link
RU (1) RU2679458C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117309906A (zh) * 2023-09-27 2023-12-29 江南大学 一种无敏感材料的VOCs传感器及VOCs的检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244466A1 (en) * 2003-06-06 2004-12-09 Chi-Yen Shen Ammonia gas sensor and its manufacturing method
US20050183492A1 (en) * 2004-02-24 2005-08-25 Clemson University Carbon nanotube based resonant-circuit sensor
RU2438214C1 (ru) * 2010-06-10 2011-12-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" МИКРОПОЛОСКОВЫЙ p-i-n-ДИОДНЫЙ СВЧ-ВЫКЛЮЧАТЕЛЬ
KR20160060343A (ko) * 2014-11-20 2016-05-30 연세대학교 산학협력단 공진기 기반의 전도성 물질을 이용한 가스 감지 센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244466A1 (en) * 2003-06-06 2004-12-09 Chi-Yen Shen Ammonia gas sensor and its manufacturing method
US20050183492A1 (en) * 2004-02-24 2005-08-25 Clemson University Carbon nanotube based resonant-circuit sensor
RU2438214C1 (ru) * 2010-06-10 2011-12-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" МИКРОПОЛОСКОВЫЙ p-i-n-ДИОДНЫЙ СВЧ-ВЫКЛЮЧАТЕЛЬ
KR20160060343A (ko) * 2014-11-20 2016-05-30 연세대학교 산학협력단 공진기 기반의 전도성 물질을 이용한 가스 감지 센서

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. Bailly1, A. Harrabi1, J. Rossignol, B. Domenichini, J.P. Bellat, I. Bezverkhyy, P. Pribetich, D. Stuerga, Influence of the design in microwave-based gas sensors: ammonia detection with titania nanoparticles, 30th Eurosensors Conference, EUROSENSORS, 2016. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117309906A (zh) * 2023-09-27 2023-12-29 江南大学 一种无敏感材料的VOCs传感器及VOCs的检测方法

Similar Documents

Publication Publication Date Title
Adhikari et al. Ultrahigh-sensitivity mediator-free biosensor based on a microfabricated microwave resonator for the detection of micromolar glucose concentrations
US6771481B2 (en) Plasma processing apparatus for processing semiconductor wafer using plasma
Khanna et al. Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator
US20070235135A1 (en) Plasma processing apparatus
JP6783268B2 (ja) Nmrプローブ
Yang et al. Perturbation of the electrified interface and the response of the thickness-shear mode acoustic wave sensor under conductive liquid loading
Xu et al. Dielectric characterization of liquid mixtures using EIT-like transmission window
RU2679458C1 (ru) Газовый свч-сенсор
US11585841B1 (en) Low-frequency atomic electrometry
Ma et al. ZnO piezoelectric film resonator modified with multi-walled carbon nanotubes/polyethyleneimine bilayer for the detection of trace formaldehyde
Burrell et al. A dielectric constant method of following the non-stationary state in polymerization I. The theory of the method
US2724798A (en) Apparatus for measuring characteristics of materials
Shen et al. A PDMS-assisted back-to-back SIW re-entrant cavity microwave resonator film for VOC gas detection
JP2005198253A (ja) 半同軸共振器型測定治具及び誘電体薄膜の電気的物性値測定方法
US4246534A (en) Calibration method for lumped capacitance measurement of complex permittivity at HF, VHF and UHF frequencies
McGrath et al. Carbon nanotube based microwave resonator gas sensors
US11598743B2 (en) Soil monitoring sensor including single probe and temperature compensation and method of operating the same
Abd Rahman et al. Dual Band Planar Microwave Sensor for Dielectric Characterization using Solid and Liquid Sample
JP2007127606A (ja) 複素誘電率測定装置及び方法
Roy et al. Coaxial microwave resonant sensor design for monitoring ionic concentration in aqueous solutions
US9588061B2 (en) Measuring whispering-gallery-mode resonator
CN114295645B (zh) 一种工作频率可调的谐振式微波传感器
Bahar et al. Dielectric properties measurement based on split ring resonator for microfluidic characterization
WO2000004375A1 (en) Microwave measuring instrument and methods of measuring with microwaves
Jackson et al. A novel microstrip slot antenna for permittivity measurement