RU2671549C1 - Фотоэлектрический преобразователь с просветляющим нанопокрытием - Google Patents

Фотоэлектрический преобразователь с просветляющим нанопокрытием Download PDF

Info

Publication number
RU2671549C1
RU2671549C1 RU2018104996A RU2018104996A RU2671549C1 RU 2671549 C1 RU2671549 C1 RU 2671549C1 RU 2018104996 A RU2018104996 A RU 2018104996A RU 2018104996 A RU2018104996 A RU 2018104996A RU 2671549 C1 RU2671549 C1 RU 2671549C1
Authority
RU
Russia
Prior art keywords
layer
coating
antireflection
ohmic contact
face
Prior art date
Application number
RU2018104996A
Other languages
English (en)
Inventor
Сергей Константинович Сигалаев
Валерий Алексеевич Казаков
Ражудин Насрединович Ризаханов
Елена Александровна Высотина
Екатерина Александровна Шмыткова
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority to RU2018104996A priority Critical patent/RU2671549C1/ru
Application granted granted Critical
Publication of RU2671549C1 publication Critical patent/RU2671549C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей. Технический результат изобретения заключается в снижении поверхностного удельного сопротивления и уменьшении площади металлической контактной сетки (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к повышению КПД преобразования солнечной энергии в электрическую не менее чем на один абсолютный процент. Указанный технический результат достигается тем, что фотоэлектрический преобразователь с просветляющим нанопокрытием включает в себя полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие. Между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой TaOтолщиной 1÷2 нм. Просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al толщиной 50÷60 нм, на который непосредственно нанесен лицевой омический контакт, и слой оксида кремния SiOтолщиной 70÷90 нм. 1 ил.

Description

Изобретение относится к технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей.
Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямое, одноступенчатое преобразование энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП).
Основные необратимые потери энергии в ФЭП связаны с:
- отражением солнечного излучения от поверхности преобразователя;
- прохождением части излучения через ФЭП без поглощения в нем;
- рассеянием на тепловых колебаниях решетки избыточной энергии образовавшихся фотопар;
- рекомбинацией образовавшихся фотопар на поверхностях и в объеме ФЭП;
- внутренним сопротивлением преобразователя и некоторыми другими физическими процессами.
Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяются различные мероприятия. К их числу относятся:
- использование полупроводников с оптимальной для солнечного излучения шириной запрещенной зоны;
- направленное улучшение свойств полупроводниковой структуры путем ее оптимального легирования и создания встроенных электрических полей;
- оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);
- применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;
- разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
- переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам. Создание каскадных ФЭП из специально подобранных по ширине запрещенной зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.
Главной задачей усовершенствований ФЭП является увеличение КПД преобразования солнечной энергии в электрическую.
Известен патент, принятый нами за прототип, RU №2436191 (опубликованный 10.12.2011 г.) «Каскадный фотоэлектрический преобразователь с наноструктурным просветляющим покрытием», в котором предложен ФЭП на основе многослойной полупроводниковой структуры AlGaInP/GaInP/Ga(In)As/Ge, где фронтальный слой AlxGayIn1-x-yP, где х=0,53, y=0,47, толщиной 30÷40 нм. Просветляющее покрытие выполнено трехслойным и включает последовательно нанесенные слои Si02 толщиной 70÷80 нм, Si3N4 толщиной 25÷35 нм и TiOx, где х=1,8÷2,2, толщиной 20÷30 нм. Технический эффект в прототипе обеспечивается применением оптических покрытий, обеспечивающих просветление в ФЭП.
Недостатком указанного технического решения является то, что сохраняются значительные потери на контактной металлической сетке и не достигается максимально возможный КПД преобразования солнечного излучения.
Задачей заявляемого изобретения является разработка конструкции фотоэлектрического преобразователя с токопроводящим просветляющим нанопокрытием, обладающего повышенным КПД и низким коэффициентом отражения в коротковолновой и длинноволновой области солнечного спектра.
Технический результат изобретения заключается в снижении поверхностного удельного сопротивления и уменьшения площади металлической контактной сетки лицевого контакта (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к повышению КПД преобразования солнечной энергии в электрическую не менее чем на один абсолютный процент.
Указанный технический результат достигается тем, что в фотоэлектрическом преобразователе, включающем в себя полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие. Между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Ta2O5 толщиной 1÷2 нм. Просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al, толщиной 50÷60 нм, на который непосредственно нанесен лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм.
Само просветляющее покрытие выполняет двойную функцию: оно снижает отражение в широком спектре падающего солнечного излучения и снижает внутреннее сопротивление и площадь лицевой металлической контактной сетки.
Технический результат изобретения достигается за счет использования проводящего слоя ZnO:Al в составе просветляющего токопроводящего нанопокрытия и, дополнительно, туннельного слоя Та2О5 толщиной 1÷2 нм, необходимого для выполнения функции диффузионного барьера между материалами проводящего слоя ZnO:Al и фронтального слоя AlxGayIn1-x-yP.
Формирование просветляющего покрытия на фронтальной поверхности фотоэлектрического преобразователя необходимо для уменьшения потерь на отражение солнечного излучения. Включение в состав просветляющего нанопокрытия фотоэлектрического преобразователя токопроводящего слоя ZnO:Al, выполняющего совместно с металлической контактной сеткой функцию токосъема лицевого контакта, позволяет снизить сопротивление лицевого поверхностного электрода и одновременно, за счет этого, снизить площадь металлической контактной сетки. Наличие у просветляющего покрытия функции токосъема позволяет уменьшить общее сопротивление лицевого электрода и снизить омические потери. Выбор материалов для создания просветляющего покрытия общего состава Ta2O5/ZnO:Al/SiO2 обусловлен тем, что помимо низкого коэффициента отражения такая структура включает в себя токопроводящий слой, что в итоге приводит к увеличению КПД из-за уменьшения удельного поверхностного сопротивления и уменьшения площади металлической контактной сетки. Толщины слоев ZnO:Al в 50÷60 нм и SiO2 в 70÷90 нм обусловлены минимальными значениями отражения просветляющей системы в видимой и ближней инфракрасной области спектра. Также слой SiO2 выполняет функцию защитного слоя для всей конструкции. Если толщины слоев ZnO:Al и SiO2 будут больше и или меньше указанных значений, то это приведет к возрастанию коэффициента отражения в видимой и длинноволновой области солнечного спектра. Расчет минимального коэффициента отражения двухслойной, четвертьволновой просветляющей системы (n2h2=n3h30/4) при контроле на длине волны λ0 производится по формуле
Figure 00000001
, где n2, n3, n4 - показатели преломления для SiO2, ZnO и фронтального слоя соответственно, h2 и h3 толщины SiO2 и ZnO соответственно.
При расположении металлической контактной сетки лицевого электрода на слое ZnO:Al, а не на контактном промежуточном слое, можно избежать повреждений полупроводниковой структуры ФЭП, присущих обычному ее формированию. В прототипе в местах вжигания металлической контактной сетки в контактный промежуточный слой GaAs в локальных местах происходит слишком глубокое проникновение металла контактной сетки в полупроводниковую структуру с затрагиванием активной части p-n-перехода, что приводит к формированию центров рекомбинации на продиффундировавших вглубь атомах металла и к увеличению рекомбинации образовавшихся фотопар в результате возникающих дефектов, что приводит к снижению КПД, возможно также локальное короткое замыкание p-n-перехода. Размещение же металлической контактной сетки на поверхности слоя оксида цинка устраняет проникновение металла вглубь полупроводниковой структуры AlGaInP/GaInP/Ga(In)As/Ge ФЭП.
Заявляемый фотоэлектрический преобразователь с просветляющим нанопокрытием поясняется чертежом, где схематически показано сечение фотопреобразователя.
Фотоэлектрический преобразователь с нанотолщинным просветляющим покрытием содержит:
- полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP - 1;
- просветляющее и одновременно токопроводящее покрытие 2 на поверхности фронтального слоя состоит из слоя оксида цинка 6, допированного алюминием ZnO:Al толщиной 50÷60 нм с показателем преломления n=2,2, и слоя 7 из оксида кремния SiO2 толщиной 70÷90 нм с показателем преломления n=1,45;
- тыльный омический контакт - 3;
- тонкий промежуточный туннельный барьерный слой 4 из Та2О5 толщиной до 2 нм;
- лицевой омический контакт 5 в виде металлических дорожек.
Пример конкретного выполнения
Изготовлен лицевой электрод фотоэлектрического преобразователя с просветляющим нанопокрытием, состоящим из слоя Ta2O5 толщиной 1 нм и слоя ZnO:Al толщиной 55 нм, нанесенных методом атомно-слоевого осаждения, металлических дорожек толщиной 0,3 мкм и шириной 20 мкм, и финального защитного слоя из SiO2 толщиной 85 нм, закрывающего слой ZnO:Al с металлическими дорожками.
Изготовленный таким образом на поверхности полупроводниковой структуры лицевой электрод обладает повышенной проводимостью и прозрачностью, что привело к повышению КПД фотоэлектрического преобразователя не менее чем на один абсолютный процент.
Заявляемый фотоэлектрический преобразователь с просветляющим токопроводящим нанопокрытием помимо низкого коэффициента отражения во всем спектре преобразования солнечного излучения дополнительно обладает низким поверхностным удельным сопротивлением и уменьшенной площадью металлической контактной сетки (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к получению максимального КПД (не менее чем на один абсолютный процент) преобразования солнечной энергии в электрическую.

Claims (1)

  1. Фотоэлектрический преобразователь с просветляющим нанопокрытием, включающий полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие, отличающийся тем, что между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Та2О5 толщиной 1÷2 нм, просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al, толщиной 50÷60 нм, на который непосредственно нанесен металлический лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм.
RU2018104996A 2018-02-09 2018-02-09 Фотоэлектрический преобразователь с просветляющим нанопокрытием RU2671549C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018104996A RU2671549C1 (ru) 2018-02-09 2018-02-09 Фотоэлектрический преобразователь с просветляющим нанопокрытием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018104996A RU2671549C1 (ru) 2018-02-09 2018-02-09 Фотоэлектрический преобразователь с просветляющим нанопокрытием

Publications (1)

Publication Number Publication Date
RU2671549C1 true RU2671549C1 (ru) 2018-11-01

Family

ID=64103205

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018104996A RU2671549C1 (ru) 2018-02-09 2018-02-09 Фотоэлектрический преобразователь с просветляющим нанопокрытием

Country Status (1)

Country Link
RU (1) RU2671549C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539604A (zh) * 2019-01-17 2019-03-29 河北道荣新能源科技有限公司 薄膜光伏发电耦合选择性吸收涂层结构
CN109631353A (zh) * 2019-01-17 2019-04-16 河北道荣新能源科技有限公司 薄膜光伏发电耦合选择性吸收涂层制法及其集热管制法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
RU2436191C1 (ru) * 2010-06-28 2011-12-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Каскадный фотоэлектрический преобразователь с наноструктурным просветляющим покрытием
RU2442242C1 (ru) * 2010-10-20 2012-02-10 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Многопереходный преобразователь
US20130092218A1 (en) * 2011-10-17 2013-04-18 International Business Machines Corporation Back-surface field structures for multi-junction iii-v photovoltaic devices
US20130104970A1 (en) * 2011-10-14 2013-05-02 Florida State University Research Foundation, Inc. Four junction solar cell
RU2605839C2 (ru) * 2015-03-03 2016-12-27 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" (Госкорпорация "РОСКОСМОС") Фотоэлектрический преобразователь

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
RU2436191C1 (ru) * 2010-06-28 2011-12-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Каскадный фотоэлектрический преобразователь с наноструктурным просветляющим покрытием
RU2442242C1 (ru) * 2010-10-20 2012-02-10 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Многопереходный преобразователь
US20130104970A1 (en) * 2011-10-14 2013-05-02 Florida State University Research Foundation, Inc. Four junction solar cell
US20130092218A1 (en) * 2011-10-17 2013-04-18 International Business Machines Corporation Back-surface field structures for multi-junction iii-v photovoltaic devices
RU2605839C2 (ru) * 2015-03-03 2016-12-27 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" (Госкорпорация "РОСКОСМОС") Фотоэлектрический преобразователь

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539604A (zh) * 2019-01-17 2019-03-29 河北道荣新能源科技有限公司 薄膜光伏发电耦合选择性吸收涂层结构
CN109631353A (zh) * 2019-01-17 2019-04-16 河北道荣新能源科技有限公司 薄膜光伏发电耦合选择性吸收涂层制法及其集热管制法

Similar Documents

Publication Publication Date Title
TWI513014B (zh) 高性能光電元件
KR100974226B1 (ko) 유전체를 이용한 태양전지의 후면 반사막 및 패시베이션층형성
RU2423755C2 (ru) Лицевой контакт с промежуточным слоем (слоями), смежным(и) с ним для использования в фотоэлектрических устройствах, и способ его производства
KR101098152B1 (ko) 태양 전지
SA109300244B1 (ar) الكترود أمامي للاستخدام في جهاز ڤٌلطائي ضوئي وطريقة لتصنيعه
JP2013508998A (ja) 酸素富化界面を有する分極抵抗型太陽電池
JP2009231505A (ja) 太陽電池
RU2671549C1 (ru) Фотоэлектрический преобразователь с просветляющим нанопокрытием
JP5123830B2 (ja) 反射防止膜、反射防止膜の製造方法、及び反射防止膜を用いた半導体装置
Sarker et al. Optimization of multilayer antireflection coatings for improving performance of silicon solar cells
RU2455730C2 (ru) Солнечный элемент
CN103563094A (zh) 光电转换元件
RU2436191C1 (ru) Каскадный фотоэлектрический преобразователь с наноструктурным просветляющим покрытием
CN103715276A (zh) 太阳能电池及其模组
KR101814821B1 (ko) 태양전지 모듈
Dobrozhan et al. Optical and recombination losses in thin film solar cells based on heterojunctions n-ZnS (n-CdS)/p-CdTe with current collecting contacts ITO and ZnO
JP2008159799A (ja) 光起電力装置
JP5542038B2 (ja) 薄膜太陽電池およびその製造方法、薄膜太陽電池モジュール
CN103165686B (zh) 一种具有减反射膜的五结太阳能电池
JPH05145096A (ja) 透過型太陽電池
JP5542025B2 (ja) 光電変換装置
JP2015141941A (ja) 太陽電池および太陽電池モジュール
JP6456585B2 (ja) 光電変換素子
TWI464889B (zh) 具異質介面之太陽能電池及其製造方法
JPS59152675A (ja) アモルフアスシリコン光起電力素子