RU2670968C1 - Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов - Google Patents

Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов Download PDF

Info

Publication number
RU2670968C1
RU2670968C1 RU2017146248A RU2017146248A RU2670968C1 RU 2670968 C1 RU2670968 C1 RU 2670968C1 RU 2017146248 A RU2017146248 A RU 2017146248A RU 2017146248 A RU2017146248 A RU 2017146248A RU 2670968 C1 RU2670968 C1 RU 2670968C1
Authority
RU
Russia
Prior art keywords
water
soil
meth
acid
microgels
Prior art date
Application number
RU2017146248A
Other languages
English (en)
Inventor
Александр Игоревич Родыгин
Денис Валентинович Анохин
Дмитрий Анатольевич Иванов
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)"
Priority to RU2017146248A priority Critical patent/RU2670968C1/ru
Application granted granted Critical
Publication of RU2670968C1 publication Critical patent/RU2670968C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/04Acids; Metal salts or ammonium salts thereof
    • C08F120/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F126/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

Изобретение относится к способу получения суспензии, которая может быть использована для закрепления почв и грунтов в сельском хозяйстве, при строительстве различных дорог и других земляных сооружений. Способ получения суспензии заключается в том, что растворяют в воде мономер, сшивающий агент и водорастворимый инициатор реакции радикальной полимеризации. Общая концентрация мономеров и сшивающего агента в воде находится в диапазоне от 0,5 до 40 мас.%. Затем эмульгируют водный раствор, содержащий вышеуказанные компоненты, в жидком парафине с использованием технологии эмульгирования - ультразвуковой обработкой или гомогенизацией ротора-статора. Далее стабилизируют полученную эмульсию с использованием поверхностно-активного вещества. Затем инициируют полимеризацию путем нагревания при перемешивании эмульсии типа вода-в-масле. После чего отделяют микрогели от реакционной смеси фильтрованием или выпариванием растворителя и диспергируют микрогели в воде. В качестве исходного мономера используют акриламид, или метакриламид, или N-винилпирролидон, или производные солей акриловой кислоты, метакриловой кислоты, стиролсульфоновой кислоты, 2-акриламидо-2-метил-1-пропансульфоновой кислоты, или акрилат натрия, или хлорид диаллилдиметиламмония, или кватернизованный диметиламиноэтил(мет)акрилат, или N,N'-диметиламинопропил(мет)акриламид, или их смеси. В качестве сшивающего агента используют N,N'-метиленбисакриламид, или полиэтиленгликольди(мет)акрилат, или диаллиламин, или соли триаллиламмония. В качестве инициатора полимеризации используют персульфат калия, или персульфат аммония, или 4,4'-азобис(4-циановалериановую кислоту). В качестве поверхностно-активного вещества используют сорбитанмоноолеат, или поли(этилен-со-бутилен)-b-поли(этиленоксид), или смесь стабилизаторов сорбитана, сесквиолеата и полиоксиэтиленсорбитантриолеата. Изобретение позволяет получить суспензию, содержащую эмульгированные в воде ковалентно сшитые частицы микрогеля и обладающую улучшенными свойствами для стабилизации почв и грунтов. 5 пр.

Description

Изобретение относится к области химического закрепления почв и грунтов и может быть использовано для их фиксации в сельском хозяйстве, а также при строительстве различных дорог и других земляных сооружений.
Эрозия почв - это распространенное явление, возникающее в самых различных ландшафтных и климатических условий и ускоряемое ветром и дождями. В сельском хозяйстве эрозия почвы приводит к снижению продуктивности и вызывает загрязнение питьевых вод рек и озер пестицидами и удобрениями. В области дорожного строительства очень важно повысить прочность и устойчивость определенного слоя почвы, называемого "поддерживающим слоем", который располагается непосредственно над "материковым" грунтом. Ошибка при подготовке материкового грунта и поддерживающего слоя при строительстве асфальтового покрытия может быть катастрофической: готовая дорога будет чрезвычайно опасна для движения, а ее покрытие будет требовать частого дорогостоящего ремонта.
Различные коммерчески доступные твердые стабилизаторы грунтов изготовлены на цементной или полимерной основе. Среди стабилизаторов на полимерной основе наиболее известным и широко применяемым является высокомолекулярный полиакриламид (ПАА) [Commun. Soil Sci. Plant Anal. 1994, 25, 2171-2185]. ПАА, по большей части, взаимодействует с глинистой фракцией почв, а включение в структуру стабилизатора заряженных групп может улучшить взаимодействие с частицами почвы. Например, улучшенные субстратные почвенные связующие смеси с использованием сополимеров на основе ПАА, содержащих ионные группы, были описаны в US 20140169879 А1.
Полиэлектролиты также могут эффективно стабилизировать почву. Примеры можно найти в следующем патенте US 2625529. Смесь катионных и анионных полиэлектролитов довольно часто применяется для стабилизации почвы, например, [US 2839417]. Для получения равномерного распределения воды в закрепляющем слое к таким смесям следует добавлять соли [RU 2142492 С1]. Количество соли может быть уменьшено за счет использования нестехиометрических количеств катионных и анионных полиэлектролитов (RU 2478684 С2, RU 2490301 С2 и RU 2490302 С2).
В патенте US 3705467 улучшение, кондиционирование и стабилизация почв достигались путем покрытия частиц почвы реакционноспособным высокомолекулярным катионным полиэлектролитом или латексными частицами и последующим взаимодействием сформированной системы с анионным щелочным обработанным связующим лигнином для получения пленки с достаточной влажностью.
Прототипом данного изобретения по своим функциональным качествам, способу получения и методике получения является ковалентно сшитый гидрогель - перспективный конкурентоспособный кандидат для стабилизации почвы (US 5407909, Environ. Sci. Technol., 2016, 50, 12401-12410). В отличие от линейных или разветвленных полимеров химическое сшивание приводит к образованию трехмерных сетей, что значительно увеличивает механическую прочность обрабатываемого грунта, на которое не может в большей степени влиять окружающая среда, например, температура, рН, содержания воды и т.д. Именно такое технологическое решение привело к созданию ковалентно сшитого гидрогеля. Однако для гомогенной обработки поддерживающего слоя нанесение путем распыления ковалентно сшитых гидрогелей было ранее невозможно ввиду особенностей синтеза данного типа соединений описанного в патенте прототипа, а применение технологии сшивания на месте не может быть реализовано при обработке большой площади ввиду неравномерности распределения активного компонента - основного продукта реакции, при таком сценарии, что приведет к ухудшению свойств поддерживающего слоя грунта. В случае предлагаемого способа получения модернезаруется технология за счет перехода к ковалентно сшитым микрогелям, которые потом дополнительно обрабатываются водой, и затем смешиваются с ней в требуемом стехиометрическом и объемном соотношении, а затем получаемая смесь суспензируется и готовится для нанесения на почву, таким образом предлагаемый способ отличается от прототипа методом синтеза активного компонента, а также способом его последующей обработки.
Предлагаемый способ получения относится к усовершенствованному химическому способу получения суспензии для стабилизации почвы путем укрепления и связывания грунтов и предотвращения эрозии. Более конкретно, это изобретение относится к разработке улучшенной суспензии для стабилизации водосодержащей почвы, содержащей эмульгированные в воде ковалентно сшитые частицы микрогеля и их комбинации с противоположно заряженными полиэлектролитами, способную к равномерному нанесению и распределению путем распыления.
Водная микрогелевая частица представляет собой сшитую латексную частицу, которая набухает в воде [Adv. Colloid Interface Sci. 1999, 80, 1-25]. Водные микрогели из полимеров с низкой температурой критического раствора могут быть получены полимеризацией соответствующих мономеров в присутствии сшивающего агента в воде. Примерами таких полимеров являются поли (N-этилакриламид), поли (N-изопропилакриламид), поли (N-винилкапролактам) и т.д. Различные водорастворимые мономеры могут быть сополимеризованы с этими полимерами с получением микрогелей сополимера. Для синтеза микрогелей из водорастворимых полимеров при любой температуре, например, полиакриламида водный раствор «прегель» суспендируют в масляной фазе с получением эмульсии типа вода-в-масле. Прегель может быть либо мономером, либо раствором полимера. На второй стадии гелеобразования капли эмульсии подвергаются химической реакции с целью получения геля из каждой капли эмульсии. Этот тип полимеризации часто называют «обратная эмульсионная полимеризация» [Macromolecules 2000, 33, 2370-2376].
Микрогели, используемые в этом изобретении, получают путем обратной эмульсионной полимеризации. Мономеры могут быть неионными, такими как акриламид, метакриламид, N-винилпирролидон и т.Д. Особенно предпочтительным является акриламид. Также можно использовать анионные и катионные мономеры. Анионные мономеры включают акриловую кислоту, метакриловую кислоту, стиролсульфоновую кислоту, 2-акриламидо-2-метил-1-пропансульфоновую кислоту или их водорастворимые соли. Особенно предпочтительным является акрилат натрия. Катионные мономеры выбирают из группы, состоящей из хлорида диаллилдиметиламмония, кватернизованных диметиламиноэтил (мет) акрилатов и N,N'-диметиламинопропил (мет) акриламидов.
Микрогели могут быть получены с использованием одного мономера, двух мономеров или даже большего количества мономеров. Предпочтительна комбинация неионных и ионных. В такой комбинации молярная доля ионных мономеров должна составлять от 0,01 до 99,9 мольных %, предпочтительно от 1 до 50 мол. %, Наиболее предпочтительно от 10 до 30 мол. %.
Сшивающий агент включает молекулы, имеющие две или более углерод-углеродные двойные связи, например N,N'-метиленбисакриламид, N,N'-метиленбисметакриламид, полиэтиленгликольди (мет) акрилат, диаллиламин, соли триаллиламмония и т.Д. Предпочтительно что молярное отношение сшивающего агента к мономерам находится в диапазоне от 0,001 до 0,1, предпочтительно от 0,002 до 0,05 и наиболее предпочтительно от 0,003 до 0,03.
Для инициирования радикальной полимеризации могут быть использованы водорастворимые инициаторы, такие как персульфат калия, персульфат аммония и 4,4'-азобис (4-циановалериановая кислота).
В общей процедуре мономеры, сшивающий агент и инициатор растворяются в воде, общая концентрация мономеров и сшивающего агента в воде находится в диапазоне от 0,5 до 40 мас. %, предпочтительно от 1 до 30 мас. %, и наиболее предпочтительно от 5 до 20 мас. %. Водный раствор, содержащий мономеры, сшивающий агент и инициатор, эмульгируют в жидком парафине с использованием хорошо известной технологии эмульгирования, такой как ультразвуковая обработка, гомогенизация ротора-статора и т.д. Для стабилизации используют поверхностно-активные вещества или смеси поверхностно-активных веществ (эмульгаторов) эмульсии, примерами являются коммерчески доступные поверхностно-активные вещества, такие как Span 80 (сорбитанмоноолеат), KLE3729 (поли (этилен-со-бутилен)-b-поли (этиленоксид), Mw=6600 г/моль, 44 мас. % ЕО), смесь Span 83 (сорбитан сесквиолеат) и Tween 85 (полиоксиэтиленсорбитантриолеат) и т.д. Массовое отношение вода-масло находится в интервале от 0,01 до 0,5, предпочтительно от 0,05 до 0,5, наиболее предпочтительно от 0,1 до 0,5. Полученные эмульсии типа вода-в-масле затем нагревают при перемешивании для инициирования полимеризации. Затем микрогели отделяют от реакционной смеси фильтрованием или выпариванием растворителя в зависимости от концентрации поверхностно-активного вещества. Предпочтительно использовать такую концентрацию поверхностно-активного вещества (обычно 5-10 мас. % непрерывной фазы), чтобы эмульсия оставалась стабильной во время полимеризации, а затем образовавшиеся частицы микрогеля осаждались.
Полученные микрогели диспергируются в воде без добавления каких-либо солей или дисперсионных добавок. Любые стандартные способы осаждения, такие как распыление из спринклера предварительно разведенных микрогелей в воде, могут быть использованы для последующего нанесения суспензии содержащей частицы микрогелей на почву.
Исследование структуры и увлажненности почв, а также вычисление массы суспензии необходимой для укрепления почвы и контроля влажности рассчитывается в России согласно ГОСТ 30491-2012.
Следующие примеры иллюстрируют получение суспензий микрогелей различного состава, пригодных для использования в стабилизации почвы. Их характеристики сравниваются с характеристиками линейных полимеров аналогичного химического состава. Эти примеры предназначены только для иллюстрации и не должны рассматриваться как ограничивающие, так как любые другие суспензии частиц микрогеля, обладающие сходными свойствами, могут быть использованы в способе по настоящему изобретению.
Пример 1.
100 грамм водного раствора, содержащего 10 грамм акриламида, 0.5 грамм N,N'-метиленбисакриламида и 0.01 грамм персульфата калия добавляют к 300 граммам жидкого парафина с 5 массовыми процентами Span 80. Смесь эмульгируется с использованием роторного гомогенизатора. (IKA, Т18 digital Ultra-Turrax®) на скорости 15000 оборотов в минуту. Полученную эмульсию помещали в двустенный стеклянный реактор, продуваемый азотом, и снабженный механической мешалкой с холодильником. Реакционную смесь нагревают до 50°С перемешивая в процессе со скоростью 5000 оборотов в минуту. Затем образовавшийся микрогель отделяли от реакции и диспергировали в воде до желаемой концентрации. Линейный ПАА был приготовлен с использованием аналогичного рецепта без сшивающего агента.
Водная дисперсия, содержит 0,1 мас. % микрогеля или иную концентрацию вычисляемую в ходе тестов на характер и свойства почвы, а также в зависимости от свойств микрогеля согласно ГОСТ 30491-2012.
Пример 2.
100 грамм водного раствора, содержащего 10 грамм акрилата натрия, 0.5 грамм N,N'-метиленбисакриламида и 0.01 грамм персульфата калия добавляют к 300 граммам жидкого парафина с 5 массовыми процентами Span 80. Смесь эмульгируется с использованием роторного гомогенизатора. (IKA, Т18 digital Ultra-Turrax®) на скорости 15000 оборотов в минуту. Полученную эмульсию помещали в двустенный стеклянный реактор, продуваемый азотом, и снабженный механической мешалкой с холодильником. Реакционную смесь нагревают до 50°С перемешивая в процессе со скоростью 5000 оборотов в минуту. Затем образовавшийся микрогель отделяли от реакции и диспергировали в воде до желаемой концентрации. Водная дисперсия, содержит 0,1 мас. % микрогеля или иную концентрацию вычисляемую в ходе тестов на характер и свойства почвы, а также в зависимости от свойств микрогеля согласно ГОСТ 30491-2012. Линейный полиакрилат натрия был приготовлен с использованием аналогичного рецепта без сшивающего агента.
Пример 3.
100 грамм водного раствора, содержащего 8 грамм акриламида и 2 грамма акрилата натрия, 0.5 грамм N,N'-метиленбисакриламида и 0.01 грамм персульфата калия добавляют к 300 граммам жидкого парафина с 5 массовыми процентами Span 80. Смесь эмульгируется с использованием роторного гомогенизатора. (IKA, Т18 digital Ultra-Turrax®) на скорости 15000 оборотов в минуту. Полученную эмульсию помещали в двустенный стеклянный реактор, продуваемый азотом, и снабженный механической мешалкой с холодильником. Реакционную смесь нагревают до 50°С перемешивая в процессе со скоростью 5000 оборотов в минуту. Затем образовавшийся микрогель отделяли от реакции и диспергировали в воде до желаемой концентрации. Линейный сополимер poly(acrylamide-co-sodium acrylate) был приготовлен с использованием аналогичного рецепта без сшивающего агента. Водная дисперсия, содержит 0,1 мас. % микрогеля или иную концентрацию вычисляемую в ходе тестов на характер и свойства почвы, а также в зависимости от свойств микрогеля согласно ГОСТ 30491-2012.
Пример 4.
100 грамм водного раствора, содержащего 8 грамм акриламида и 2 грамма(3-акриламидопропил) триметиламмонийхлорида 0.5 грамм N,N'-метиленбисакриламида и 0.01 грамм персульфата калия добавляют к 300 граммам жидкого парафина с 5 массовыми процентами Span 80. Смесь эмульгируется с использованием роторного гомогенизатора. (IKA, Т18 digital Ultra-Turrax®) на скорости 15000 оборотов в минуту. Полученную эмульсию помещали в двустенный стеклянный реактор, продуваемый азотом, и снабженный механической мешалкой с холодильником. Реакционную смесь нагревают до 50°С перемешивая в процессе со скоростью 5000 оборотов в минуту. Затем образовавшийся микрогель отделяли от реакции и диспергировали в воде до желаемой концентрации. Линейный сополимер поли (акриламид-со-(3-акриламидопропил)триметиламмонийхлорид) был приготовлен с использованием аналогичного рецепта без сшивающего агента. Водная дисперсия, содержит 0,1 мас. % микрогеля или иную концентрацию вычисляемую в ходе тестов на характер и свойства почвы, а также в зависимости от свойств микрогеля согласно ГОСТ 30491-2012.
Пример 5.
100 грамм водного раствора, содержащего 8 грамм акриламида 1 грамм акрилата натрия и 1 грамм (3-акриламидопропил) триметиламмонийхлорида 0.5 грамм N,N'-метиленбисакриламида и 0.01 грамм персульфата калия добавляют к 300 граммам жидкого парафина с 5 массовыми процентами Span 80. Смесь эмульгируется с использованием роторного гомогенизатора. (IKA, Т18 digital Ultra-Turrax®) на скорости 15000 оборотов в минуту. Полученную эмульсию помещали в двустенный стеклянный реактор, продуваемый азотом, и снабженный механической мешалкой с холодильником. Реакционную смесь нагревают до 50°С перемешивая в процессе со скоростью 5000 оборотов в минуту. Затем образовавшийся микрогель отделяли от реакции и диспергировали в воде до желаемой концентрации. Линейный сополимер поли (акриламид-со-натрий-акрилат-со-(3-акриламидопропил) триметиламмонийхлорид) был приготовлен с использованием аналогичного рецепта без сшивающего агента. Водная дисперсия, содержит 0,1 мас. % микрогеля или иную концентрацию вычисляемую в ходе тестов на характер и свойства почвы, а также в зависимости от свойств микрогеля согласно ГОСТ 30491-2012.

Claims (6)

  1. Способ получения суспензии, включающей диспергированные в воде частицы ковалентно сшитых микрогелей, содержащий:
  2. а) растворение мономера акриламида, или метакриламида, или N-винилпирролидона, или производных солей акриловой кислоты, метакриловой кислоты, стиролсульфоновой кислоты, 2-акриламидо-2-метил-1-пропансульфоновой кислоты, или акрилата натрия, или хлорида диаллилдиметиламмония, или кватернизованного диметиламиноэтил(мет)акрилата, или N,N'-диметиламинопропил(мет)акриламида, или их смесей, сшивающего агента N,N'-метиленбисакриламида, или полиэтиленгликольди(мет)акрилата, или диаллиламина, или солей триаллиламмония и водорастворимого инициатора реакции радикальной полимеризации персульфата калия, или персульфата аммония, или 4,4'-азобис(4-циановалериановой кислоты) в воде, общая концентрация мономеров и сшивающего агента в воде находится в диапазоне от 0,5 до 40 мас.%;
  3. б) эмульгирование водного раствора, содержащего мономеры, сшивающий агент и инициатор, эмульгируют в жидком парафине с использованием технологии эмульгирования - ультразвуковая обработка или гомогенизация ротора-статора, стабилизация получаемой эмульсии осуществляется с использованием поверхностно-активного вещества сорбитанмоноолеат или поли(этилен-со-бутилен)-b-поли(этиленоксид) или смеси стабилизаторов сорбитан сесквиолеат и полиоксиэтиленсорбитантриолеат;
  4. в) инициирование полимеризации путем нагревания при перемешивании эмульсии типа вода-в-масле;
  5. г) отделение микрогелей от реакционной смеси фильтрованием или выпариванием растворителя;
  6. д) диспергирование полученных микрогелей в воде.
RU2017146248A 2017-12-27 2017-12-27 Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов RU2670968C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146248A RU2670968C1 (ru) 2017-12-27 2017-12-27 Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146248A RU2670968C1 (ru) 2017-12-27 2017-12-27 Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов

Publications (1)

Publication Number Publication Date
RU2670968C1 true RU2670968C1 (ru) 2018-10-26

Family

ID=63923570

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146248A RU2670968C1 (ru) 2017-12-27 2017-12-27 Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов

Country Status (1)

Country Link
RU (1) RU2670968C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624465A (zh) * 2024-01-09 2024-03-01 长春职业技术学院 一种土壤改良剂的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1599384A1 (ru) * 1987-09-11 1990-10-15 Предприятие П/Я А-1758 Способ получени полимерного состава дл детектора нейтронов
RU2026867C1 (ru) * 1988-12-19 1995-01-20 Американ Цианамид Компани Способ получения водорастворимого анионного полимерного флокулянта
WO2009131917A2 (en) * 2008-04-21 2009-10-29 Nalco Company Composition and method for recovering hydrocarbon fluids from a subterranean reservoir

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1599384A1 (ru) * 1987-09-11 1990-10-15 Предприятие П/Я А-1758 Способ получени полимерного состава дл детектора нейтронов
RU2026867C1 (ru) * 1988-12-19 1995-01-20 Американ Цианамид Компани Способ получения водорастворимого анионного полимерного флокулянта
WO2009131917A2 (en) * 2008-04-21 2009-10-29 Nalco Company Composition and method for recovering hydrocarbon fluids from a subterranean reservoir

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624465A (zh) * 2024-01-09 2024-03-01 长春职业技术学院 一种土壤改良剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
ES2447415T3 (es) Polímero en dispersión aniónico o no iónico soluble en agua
JPH07258305A (ja) 低粘度水溶性ポリマー分散液の製造方法、それからなる凝集剤、保持剤、増粘剤、添加剤、脱水剤および土壌改良剤
RU2203914C2 (ru) Полимерные композиции, способ их получения и использование
US5480934A (en) Method for the production of a low-viscosity, water-soluble polymeric dispersion
RU99118023A (ru) Полимерные композиции и их получение и использование
CN103509180B (zh) 聚合物分散体和制备聚合物分散体的方法
US5541252A (en) Method of manufacturing water-soluble polymer dispersions having high polymer content
Isik et al. Preparation of poly (ionic liquid) nanoparticles and their novel application as flocculants for water purification
RU99118022A (ru) Полимерные композиции и их получение и использование
SK280241B6 (sk) Vodorozpustný, rozvetvený, katiónový, polymérny fl
CA2769892C (en) Anionic cross-linked polymers in water-in-water polymer dispersions
KR20050084682A (ko) 성능특성을 개선시킨 개질된 중합체 응집제
US20100256298A1 (en) Preparation of Micro Gel Particle Dispersions and Dry Powders Suitable For Use As Fluid Loss Control Agents
KR102637489B1 (ko) 겔 공정에 의한 분말 형태의 구조화된 중합체의 제조 방법
RU2670968C1 (ru) Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов
Wang et al. Synthesis and characterization of multi-sensitive microgel-based polyampholyte hydrogels with high mechanical strength
CN103059216B (zh) 一种分散剂、其制备方法、及其在阴离子聚丙烯酰胺水分散乳液聚合中的应用
JP3240144B2 (ja) マルチモードエマルジョン及びマルチモードエマルジョンの製造法
JP3712190B2 (ja) 紙の製造方法
JP5366123B2 (ja) 水溶性イオン性高分子混合物からなるダイラタンシー性組成物
EP0761701B1 (de) Vernetzte wasserlösliche Polymerdispersionen
Du et al. Rheological behavior of hydrophobically modified polysulfobetaine methacrylate aqueous solution
Sobhanimatin et al. Study on the inverse emulsion copolymerization of microgels based on acrylamide/2-acrylamido-2-methylpropane sulfonic acid
JP7101947B2 (ja) 溶解性且つ安定性に優れた油中水型分散液
JP4380048B2 (ja) 一級アミノ基含有重合体エマルジョン型凝集剤